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SUMMARY

The numerical simulation of rapid landslides is quite complex mainly because constitutive models capable

of simulating the mechanical behaviour of granular materials in the pre- and post-collapse regimes are still

missing. The goal of this paper is to introduce a constitutive model capable of capturing the response of dry

granular flows from quasi-static to dynamic conditions, in particular when the material experiences a sort

of from solid to fluid phase transition. An ideal assembly of identical spheres under simple shear conditions

is condsidered. In the constitutive model, void ratio and granular temperature have been chosen as state

variables, and both shear and normal stresses are computed as the sum of two contributions: the quasi static

and the collisional one. The former one is determined by using a perfect elasto-plastic model including the

critical state concept, while the latter one is derived from the kinetic theory of granular gases. The evolution

of the granular temperature, fundamentally governing the material phase transition, is obtained by imposing

the kinetic fluctuating energy balance. The constitutive relationship has been integrated, under both constant

pressure and constant volume conditions, and the influence of shear strain rate, initial void ratio and normal

pressure on the mechanical response has been investigated. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As is well known, rapid landslides are particularly dangerous for their catastrophic consequences

both on the territory and in terms of human lives. For this reason, in the last decades, several
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2 I. REDAELLI ET AL.

numerical approaches have been developed [1, 2, 3, 4, 5] with the aim of assessing the vulnerability

and the risk for the environment and, eventually, designing mitigation measures. However, the

theoretical analysis of the movement of granular masses is not straightforward since the considerable

complexity of the phenomenon is still far to be understood. In order to describe both the inception

and the propagation phase of the landslide, the numerical approach has to be capable of dealing

with large displacements, large strain rates, heterogeneous and multiphase granular materials

characterized by a particularly complex rheology, governed this latter by hydro-thermo-mechanical

processes. During rapid landslides, because of the local high strain rates, a “from slide to flow”

failure mechanism transition is also expected: when the velocity of the motion is sufficiently large,

landslides may evolve into a fluid-like process where a large part of the granular material flows.

For this reason, it is quite common in literature approaching the inception and the initiation by

means of standard soil mechanics tools, whereas investigating the propagation by means of fluid

dynamics. Some of the approaches available in the literature either treat the moving mass as a single

phase incompressible fluid [6, 4, 7], or artificially separate the initiation and the propagation stages

without reproducing the transition from one to another [2, 5].

To analyze both inception and propagation by using a unique numerical tool, according to the

authors, a suitable constitutive model must be implemented, capable of capturing the macroscopic

behavior of the material without disregarding its particulate nature and taking into consideration the

complex microscale particle interaction mechanisms. In fact, as already suggested by some authors

in the last decade [8, 9, 10], at the micro-scale level, two are the possible dissipative mechanisms

of interaction among particles: (i) enduring contacts among grains involved in force chains, and (ii)

nearly instantaneous collisions. When the latter mechanism prevails, that is when the particles are

widely spaced (i.e. the void ratio is sufficiently large), the material starts behaving like a viscous fluid

and the stress tensor becomes prevalently dependent on the strain rate. Under this condition, usually

called “collisional” regime, deformations are rapid and the material is strongly agitated: the energy

of the system is totally dissipated through collisions and stored as kinetic energy due to the particle

velocity fluctuations. Conversely, in the “quasi-static” regime (when force chains dominate the

material response), strain rates are small and the entire network of contacts has to be continuously

re-arranged. The energy is mainly stored as elastic energy and dissipated through frictional enduring

contacts. When the grains interact both through force chains and through collisions, the material is in

the “transition” regime. Understanding and reproducing the “phase transition” between the solid and

the fluidized states is the most ambitious goal of this paper. The collisional regime has been largely
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studied in the context of kinetic theories of granular gases [11, 12, 13, 14, 15, 16]. In this context,

the state variable representing the measure of the degree of agitation of the system is the granular

temperature. In standard kinetic theories the granular material is assumed to be composed of

identical, frictionless spheres which interact mainly through instantaneous, binary and uncorrelated

collisions, but several modifications to standard kinetic theories have been recently introduced in

the literature with the aim of taking into account interparticle friction [17, 18, 14, 19, 20], correlated

motion of particles [21, 22], nonspherical grains [23] and polydispersivity [24]. Nevertheless, kinetic

theories are not yet capable of capturing the mechanical behavior of granular materials observed at

high concentrations, when force chains develop within the medium [25, 26]. On the other hand, the

constitutive models proposed within the soil mechanics community [27, 28, 29], considering quasi-

static regimes and not incorporating the granular temperature as a representative state variable, are

unable to reproduce the previously mentioned “from solid to fluid” state transition.

To achieve this goal, several constitutive models have been proposed in the literature, as those

based on either dimensional analyses [30, 31, 32] or granular solid hydrodynamics [33]. In contrast,

the theoretical constitutive model hereafter presented, as in Johnson and Jackson [34, 35], Savage

[36], Louge [37], Lee and Huang [38], Berzi et al. [39] and Vescovi et al. [40], assumes a parallel

scheme according to which the stress tensor is evaluated as the sum of two contributions: one “rate-

dependent” and another “rate-independent”. The model hereafter illustrated can be interpreted as

the extension to unsteady conditions of the model discussed in Berzi et al. [39] and Vescovi et al.

[40]. The parallel scheme was already proposed by some authors [34, 35, 36, 37, 38], but the novelty

of the approach introduced by Berzi et al. [39] and Vescovi et al. [40] concerns the role of critical

state [41, 42, 43, 44, 28]: this is here interpreted as the limit for granular stationary flows, under

simple shear conditions, when the granular temperature nullifies.

In Berzi et al. [39] and Vescovi et al. [40], as it is here in the following, a revised kinetic theory

is adopted: this allows to account, in the collisional contribution, for both the clusters formation

occuring at high concentrations [21, 22] and the contact duration during a collision. In this paper the

quasi-static contribution is computed by assuming a perfect elasto-plastic constitutive relationship

including the critical state concept.

The paper is organized as follows. In Section 2, the constitutive equations are defined. In Section

3, an introductive discussion of the theoretical model is presented. In Section 4, the constitutive

equations are integrated in time, by applying suitable initial conditions. Constant pressure and

constant volume tests are taken into account in order to study both the steady and unsteady responses

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)

Prepared using nagauth.cls DOI: 10.1002/nag



4 I. REDAELLI ET AL.

under a wide range of both strain rate values and initial conditions. Finally, concluding remarks are

in Section 5.

2. THEORY

As in Vescovi et al. [40], in this paper, an ideal assembly of identical spherical particles of diameter

d and density ρp is taken into consideration. Simple shear conditions are imposed (Figure 1) and

thus the components of the stress vector σ governing the response of the material are the shear stress

τ and the normal stress σ, whereas the components of the strain vector ε are the shear strain γ and

the normal strain v. The state variables taken into account are the void ratio e (or, alternatively, the

material concentration ν = 1/(1 + e)), and the granular temperature T , defined as

T =
〈〈V〉〉

3
, (1)

where 〈〈·〉〉 designates the average over particle velocity using the single particle velocity

distribution function, and V is the particle velocity fluctuation:

V = v − u, (2)

being v the instantaneous single particle velocity and u = 〈〈v〉〉 the mean velocity.

Figure 1. Representative elementary volume under simple shear conditions.

To evaluate the stress vector, a parallel scheme, as in Berzi et al. [39] and Vescovi et al. [40], is

proposed (Figure 2). The quasi-static contribution, composed of an elastic spring acting in series

with a frictional slider, is added to the collisional contribution represented by the damper.

As was already proposed by Johnson and Jackson [34, 35], Savage [36], Louge [37], Lee and

Huang [38], Berzi et al. [39] and Vescovi et al. [40], the quasi-static contribution, σq, is assumed to
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be associated with long elapsing frictional contacts among grains involved in force chains, whereas

the collisional one, σc, with instantaneous inelastic collisions:

σ =





σ

τ



 = σq + σc =





σq

τq



+





σc

τc



 . (3)

From a kinematic viewpoint, the model schematically reported in Figure 2 also implies

ε =





v

γ



 =





vq

γq



 =





vc

γc



 . (4)

Subscripts q and c denote the quasi-static and the collisional contribution, respectively. According

to the standard elasto-plastic theories,

ε = ε
e + ε

p, (5)

where ε
e and ε

p are the elastic and the plastic components of ε, respectively.

Figure 2. Rheological model for the granular material flowing under transient conditions.

For the system of Figure 2, treated as a material point, the total balance of energy reduces to:

Ẇ = Ėk,f + Ėel + Γ, (6)
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6 I. REDAELLI ET AL.

where dots stand for time derivative. In Equation 6, the energy produced by the work of internal

stresses, Ẇ , is defined as

Ẇ = σ · ε̇; (7)

Ėk,f , the kinetic fluctuating transported energy associated with the agitation of the material, is given,

according to kinetic theories [15], by

Ėk,f =
3

2
ρp

1

1 + e
Ṫ ; (8)

Ėel, the variation in elastically stored energy, reads:

Ėel = σq · ε̇
e. (9)

Finally, Γ is the dissipated energy, that, according to the parallel scheme [40], can be written as

Γ = Γq + Γc, (10)

where Γq is the energy dissipated by force chains

Γq = σq · ε
p, (11)

whereas Γc is the energy dissipated by inelastic collisions. This term will be discussed in Section

2.2. Substituting Equations 8-11 into Equation 6 the following is obtained:

σc · ε̇ =
3

2
ρp

1

1 + e
Ṫ + Γc, (12)

that is the balance of the kinetic fluctuating energy.

2.1. The quasi-static elasto-plastic constitutive contribution

As is well known, elasto-plastic constitutive relationships have to be incrementally formulated:

σ̇q = Dep
ε̇, (13)

where Dep is the elasto-plastic matrix (2×2). In the model hereafter introduced, three different

mechanical responses are assumed:
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• the elastic response, for either f < 0 or f = 0 ∩ ḟ < 0;

• the standard perfect elasto-plastic response, for f = ḟ = 0;

• the critical elasto-plastic response, for f = ḟ = G1 = Ġ1 = 0.

where f = 0 and G1 = 0 are the yield and critical state loci, respectively. The expressions for f and

G1, as well as the details about the conditions associated with the activation of the three different

responses, are given here below.

The elastic response

In this case

D
ep = D

e, (14)

where D
e is the elastic stiffness matrix. This is derived by employing a hyperelastic formulation

[45, 46, 47, 48, 49, 50, 51]. Its dependence on the stress state is imposed by suitably defining the

Gibbs energy Eel. The authors have decided to adopt, for defining this latter, the approach proposed

by Houlsby et al. [51] and they have introduced, under simple shear conditions, the following

expression:

Eel =
p2−n
0

p1−n
a k̄(1− n)(2− n)

−
σq

k̄(1− n)
, (15)

where

p20 = σ2
q +

k̄(1− n)τ2q
ḡ

, (16)

pa is the atmospheric pressure, k̄ and ḡ are material dimensionless constitutive parameters associated

with the oedometric and the shear stiffnesses, respectively, whereas n is a non-dimensional constant

(n 6= 1). From Equations 15 and 16, the authors have derived the elastic matrix D
e as it follows:

D
e =

[∂2Eel

∂σq
2

]−1

. (17)

The standard perfect elasto-plastic response

In standard perfect elasto-plasticity [52, 53, 54], the elasto-plastic stiffness matrix is given by

D
ep = D

e −
D

e ∂g
∂σq

(

∂f
∂σq

)T

D
e

(

∂f
∂σq

)T

De ∂g
∂σq

, (18)

where g is the plastic potential. Here below, the expressions for both f and g are given.

Yield locus
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The yield locus f = 0 governs the activation of the frictional slider (Figure 2), and its expression is

given by:

f =











β
(

|τq|
σ∗

q

)3/2

σ∗
q − sin

(

σq

σ∗

q

)

σ∗
q = 0 σq < σq0

|τq| − τ̄q − σq tanφ
′ = 0 σq ≥ σq0

, (19)

where

σ∗
q =

σq0

arccos (tanφ′)

β =
(2

3

1

[sin (arccos (tanφ′))]1/3

)3/2

τ̄q =
3

2
σq0

sin (arccos (tanφ′))

arccos (tanφ′)
− σq0 tanφ

′.

(20)

φ′ is the internal friction angle at the critical state under simple shear conditions [43, 54, 55], whereas

σq0 is a constant non influencing the mechanical response of the model and whose geometrical

meaning is graphycally suggested in Figure 3. The expression of Equation 19 allows to avoid the

angular point implicitely introduced by the Mohr-Coulomb locus and implies the differentiability

of f even in the origin. A comparison between the standard Mohr-Coulomb locus and the locus

defined in Equation 19 is reported in Figure 3.

� � � � � � � � � � � �
σ�  � � 	 
 ��� �� �� �� � �

|τ
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Figure 3. Comparison between the expression for f = 0 here proposed (Equation 19) and the standard Mohr-
Coulomb.

Plastic potential

With the aim of incorporating the critical state concept into the model, a plastic potential evolving

with the void ratio is here introduced:

g = |τq|+ δG1 (21)
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where δ is a positive parameter and

G1 =
σq

K
− f0 (22)

The critical state locus in the e− σq plane is

G1 = 0, (23)

as defined in Vescovi et al. [40]. In Equation 22,

f0 =















a
e− ec

(1 + e)(1 + ec)
e < ec

0 e ≥ ec.

(24)

and K is the particle stiffness defined according to the Hertzian contact model (K = 4Ep/[6(1−

ν2p)], being Ep and νp the particle Young modulus and the Poisson coefficient, respectively). The

expression for f0 (Equation 24) coincides with that suggested by Chialvo et al. [56] fitting their

3D Discrete Element Method (DEM) numerical results concerning steady simple shear flows of

monodisperse spherical particles. According to Chialvo et al. [56], a is a dimensionless coefficient,

related to the interparticle friction coefficient φp and ec is the critical void ratio describing the

transition to the purely collisional regime under steady simple shear conditions (i.e. σq = τq = 0).

The current void ratio, implicitely appearing in Equation 21, is calculated by imposing the mass

balance under uniform conditions:

ė

1 + e
= −v̇. (25)

In standard perfect elasto-plasticity [52, 53, 54], the plastic potential governs the direction of the

plastic strain rate vector by means of the flow rule. From Equation 21, term ∂g/∂σq of Equation 18

can be derived:

∂g

∂σq
=





∂g
∂σq

∂g
∂τq



 =





δG1

sgn(τq)



 . (26)

From Equations 22, 24 and 26, it is evident that dilatancy D = v̇p/γ̇p = (∂g/∂σq)/(∂g/∂τq) is

a function of both e and σq (state dependent dilatancy [44, 57]). In particular, when G1 = 0,

plastic volumetric strain rates nullify (D = 0), whereas when G1 > 0 (loose conditions) the material

experiences a plastic compaction (D > 0), and when G1 < 0 (dense conditions) the material

plastically dilates (D < 0).
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The critical elasto-plastic response

When the critical state condition is attained (f = ḟ = G1 = 0), Dep is replaced by the critical

elasto-plastic matrix D
cr. This latter is obtained by imposing a sort of extended consistency rule:

Ġ1 = 0, (27)

instead of imposing the standard flow rule. As a consequence

D
cr =







∂G1

∂e

(

∂G1

∂σq

)−1

(1 + e) 0

∂f
∂σq

∂G1

∂e

(

∂f
∂τq

∂G1

∂σq

)−1

(1 + e) 0






. (28)

2.2. The collisional contribution

The collisional contribution is modelled according to kinetic theories of granular gases [11, 12, 13,

14, 15, 16]. According to these theories:

σc = 〈ρpf1T + ρpdf4T
1/2v̇〉 (29a)

τc = ρpdf2T
1/2γ̇. (29b)

where 〈·〉 means 〈X〉 = 0 when X < 0 and 〈X〉 = X when X ≥ 0. In compact form, Equation 29

becomes

σc = Φ
v
ε̇+ h, (30)

where Φ
v is a viscous matrix, depending on e and T , defined as:

Φ
v ≡

















































ρpdf4T
1/2 0

0 ρpdf2T
1/2






σc > 0







0 0

0 ρpdf2T
1/2






σc = 0

(31)
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whereas h is a vector depending on e and T according to the following expression:

h ≡

































ρpf1T

0






σc > 0

0 σc = 0.

(32)

For evaluating the granular temperature T and its evolution, Equation 12 is used. In Equation 12,

the expression for Γc is derived from the extended kinetic theory [21, 22]:

Γc = ρp
f3
L
T 3/2, (33)

where the correlation length L is a scalar variable representing the length of the contact chains:

L = d · max
(

1,
1

2
cG1/3 d

T 1/2

[

(v̇2 + γ̇2)1/2 + v̇
]

)

, (34)

with c a dimensionless material coefficient of order one.

In Equations 29, 33 and 34, f1, f2 and G coincide with those proposed by Vescovi et al. [40]

for the steady state case, whereas functions f3 and f4 are derived from Garzó and Dufty [15]. All

these functions depend on e and diverge for e = es, defined as the shear rigidity void ratio [58].

Their expression is in Table I. Functions fi, i = 1, · · · , 4 depend also on the effective coefficient of

restitution εr, accounting for the energy dissipated during inelastic collisions and depending on the

normal coefficient of restitution, the tangential coefficient of restitution in a sticking collision, and

the interparticle friction coefficient, characterizing sliding collisions [20].

The current value of T , appearing in Equations 31-34, is obtained by integrating the balance of

the kinetic fluctuating energy (Equation 12), in which Equation 33 is introduced:

Ṫ =
σc · ε̇− ρp

f3
L f4T

3/2

3

2
ρp

1

1+e

. (35)

2.3. The constitutive relationship

According to Equation 3, in order to formulate the constitutive relationship, the quasi-static and

the collisional contibutions defined in Sections 2.1 and 2.2, have to be added. To this purpose, the
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12 I. REDAELLI ET AL.

quasi-static contribution is expressed in finite form by integrating in time Equation 13:

σq = D
ep∆tε̇+ σ̄q, (36)

where ∆t is the integration time step and σ̄q is the quasi-static stress vector calculated at the previous

time step. From Equations 30 and 36, the total stress vector becomes:

σ = D
vep

ε̇+ c, (37)

Table I. List of expressions for the collisional contribution.

f1 = 4 GF
1+e

f2 = 8
5π1/2

JG
(1+e)

f3 = 144
5
√

2
1

(1+e)2
ζ∗

f4 = 5
96

π1/2
[

3
5
Γ∗ − 2

3
η∗k

(

1 + 4
5

g0
1+e

(1 + εr)
)]

G = g0
1+e

g0 =







(2e+1)(1+e)2

2e3
, if e ≥ 1.04

5.69(0.51− 0.49es)
1 + e

e− es
, if e < 1.04

F =
1 + εr

2
+ 1

4G

J =
1 + εr

2
+

π

32

[5 + 2(1 + εr)(3εr − 1)G][5 + 4(1 + εr)G]

[24− 6(1− εr)2 − 5(1− ε2r)]G
2

Γ∗ = 128
5π

g0
1+e

(1 + εr)
(

1− 1
32

c∗
)

η∗k =
(

g0

[

1− 1
4
(1− εr)2

][

1− 1
64

c∗
]

− 5
24

g0(1− ε2r)(1 + 3
32

c∗)
)−1[

1− 2
5
(1 + εr)(1− 3εr)

g0
1+e

]

c∗ = 32(1− εr)(1− 2ε2r)[81− 17εr + 30ε2r(1− εr)]−1

ζ∗ = ζ0∗ + ζ1∗

ζ0∗ = 5
12

g0(1 + ε2r)
(

1 + 3
32

c∗
)

ζ1∗ =
[

5
96

√

π
T
d(1 + e)(p∗ − 1)− 5

32
(1− ε2r)

(

1 + 3
64

c∗
)

g0Cd

]

v̇

Cd = 5
96

√

5
96

d(1 + e)
[

1
2
ζ0∗ + ν∗γ + 5

64
c∗
(

1 + 3
64

c∗
)

g0(1− ε2r)
]−1[

4
15

λ g0
1+e

+ (p∗ − 1)
(

2
3
− εr

)

c∗
]

p∗ = 1 + 2(1 + εr)
g0
1+e

ν∗γ = 1+εr
48

g0

[

128− 96εr + 15ε2r − 15ε3r + c∗

64
(15ε3r − 15ε2r + 498εr − 434)

]

λ = 3
8

[

(1− εr)(5ε2r + 4εr − 1) + c∗

12
(159εr + 3ε2r − 19εr − 15ε3r)

]

.
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where

D
vep ≡ D

ep∆t+Φ
v (38)

is the visco-elasto-plastic matrix, and

c ≡ σ̄q + h. (39)

D
vep and c depend on the void ratio, the granular temperature T and the quasi-static stress vector,

evaluated at the previous time step.

2.4. Constitutive parameters

To define the constitutive relationship, 14 parameters have been introduced: 5 are micro-mechanical

and refer to the single particle (ρp, d, Ep, νp and εr) and 9 are macro-mechanical (k̄, ḡ, n, δ, c, a,

φ′, ec and es). For all the reference tests discussed in the following, the authors have employed the

values listed in Table II. All the values assigned to the micro-mechanical parameters, except for the

elastic constants Ep and νp, coincide with those chosen by Vescovi et al. [40]. As was previously

mentioned, the authors, as far as the elastic contact rules among grains are concerned, decided to

use, conversely to Vescovi et al. [40], a Hertzian relationship. As previously mentioned, the material

is assumed to be composed of spherical grains (d = 0.001 mm) made of quartz (ρp = 2600 kg/m3,

Ep=90 GPa, νp=0.2).

Among the 9 macro-mechanical parametes, k̄, ḡ and n are employed to define the Gibbs energy

function (Equation 15), δ for the plastic potential (Equation 21), a, ec, φ
′ for the critical state locus

(Equations 23 and 19) and es and c for the collisional functions (Table I). The values of a, ec and

φ′ employed are taken from Chialvo et al. [56]. These have been calculated by performing 3D

DEM numerical simulations on a granular assembly of identical spheres, for an interparticle friction

coefficient φp = 0.5. The values of both c and εr coincide with that used in Vescovi et al. [40]. In the

definition of fi, i = 1, · · · , 4 and G (Table I), es is a singular point. To avoid numerical problems,

es is imposed to be equal to 0.35. The authors are aware of the arbitrariness of this choice but this

is imposed by the type of functions fi here employed. A discussion about such a point is in Vescovi

[59].

The unique constitutive parameters requiring, according to the authors, a suitable discussion, due

to the lack of either experimental or numerical data, are δ, k̄, ḡ and n. Nevertheless, for the sake

of brevity, the results of the parametric study performed to assess the influence of δ, k̄, ḡ and n is
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14 I. REDAELLI ET AL.

not here reported. These parameters prevalently affect the volumetric behaviour and the rapidity in

getting the steady state but not the nature of the mechanical response.

Table II. List of micro- and macro-mechanical parameters adopted in the tests.

Micro-mechanical parameters

ρp = 2600 kg/m3

d = 0.001 m

Ep = 90 GPa

νp = 0.2

εr = 0.6

Macro-mechanical parameters

k̄ = 381

ḡ = 127

n = 0.5

δ = 0.1

c = 0.5

a = 0.089

φ′ = 0.365 rad

ec = 0.70358

es = 0.35

3. THEORETICAL DISCUSSION

As was previously sinthetically inferred, the model presented in this paper has been conceived to

numerically reproduce the mechanical behaviour of a granular material under unsteady conditions.

According to the model, the response of the material under unsteady conditions, can be: (I) visco-

elastic, (II) visco-elasto-plastic, (III) critical and (IV) collisional, here interpreted as flow regimes.

A graphical representation of the four regimes is in Figure 4. Each regime corresponds to a specific

constitutive relationship which is derived from the general one given by Equation 37. The space of

the possible evolving states in Figure 4 is bounded by two limit conditions: the static lower boundary,

defined by T = v̇ = γ̇ = 0 and the steady upper boundary, characterized by Ṫ = v̇ = γ̈ = 0.

Here below, the constitutive relationship associated with each unsteady regime is discussed.
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(I) In the visco-elastic regime, conditions f < 0 and G1 6= 0 ∩ f = 0, ḟ 6= 0 and G1 6= 0 are

satisfied. The constitutive relationship simply reduces to

σ =
(

D
e∆t+Φ

v
)

ε̇+ c, (40)

where De, Φv and c are given by Equations 17, 31 and 39, respectively. The material behaves

like a visco-elastic solid and strain rates are sufficiently low. As a consequence, T is almost

negligible and the energy is predominantly stored as elastic energy.

(II) In the visco-elasto-plastic regime, conditions f = ḟ = 0 and G1 6= 0 are fulfilled and the

constitutive relationship is

σ = D
vep

ε̇+ c, (41)

where D
vep is given by Equation 38. Quasi-static irreversible strains develop and their

relevance with respect to the total irreversible strains is governed by γ̇.

(III) In the critical regime, conditions f = ḟ = G1 = Ġ1 = 0 and e < ec are satisfied. The

constitutive relationship is defined as it follows:

σ =
(

D
cr∆t+Φ

v
)

ε̇+ c, (42)

STEADY

STATIC

(I)

VISCO-ELASTIC

(II)

VISCO-ELASTO-

PLASTIC

(IV)

COLLISIONAL

(III)

CRITICAL

Figure 4. Schematical representation of the four unsteady flow regimes. The solid arrows and the dashed
arrows corresponds to the possible loading (γ̇ > 0) or unloading (γ̇ < 0) paths, respectively.
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16 I. REDAELLI ET AL.

with D
cr given by Equation 28 and the response is visco-elasto-plastic. When steady

conditions are reached (i.e. the state of the material lies on the upper boundary of regime

(III)), conditions Ṫ = v̇ = γ̈ = 0 are also satisfied and the work of the internal stresses is

totally dissipated by both collisions and force chains. In this case, the balance of the kinetic

fluctuating energy (Equation 35) provides

T = d2f5γ̇, (43)

where

f5 =
L

d

f2
f3

(44)

and the correlation length, defined by Equation 34, reduces to

L = d ·max
[

1,
(c2G2/3f3

4f2

)]

. (45)

As a consequence, Equation 42 becomes

σ = Kf0 + ρpd
2f1f5γ̇

2

|τ | = Kf0 tanφ
′ + ρpd

2f2f
1/2
5 γ̇2.

(46)

(IV) In the collisional regime, conditions f = ḟ = G1 = Ġ1 = 0 and e > ec are satisfied. In

this regime the material behaves like a rate-dependent collisional granular matter and the

constitutive relationship becomes:

σ = Φv
ε̇+ h, (47)

where h is given by Equation 32. The response is purely collisional (i.e. force chains cannot

develop and σq = τq = 0). The energy is solely stored as kinetic energy due to velocity

fluctuations and is dissipated through collisions. The upper bound of this regime is again the

steady state condition (Ṫ = v̇ = γ̈ = 0). When steady state is reached, the work of internal

stresses is totally dissipated by collisions and the model reduces to:

σ = ρpd
2f1f5γ̇

2

|τ | = ρpd
2f2f

1/2
5 γ̇2.

(48)
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According to Figure 4, from regime (I) only regime (II) can be got. In contrast, from regime (II),

according to the current γ̇ and e values, all the other regimes can be got. It is possible to go from (II)

to (I) in case of unloading. From regime (IV) solely regime (III) can be got, whereas from regime

(III) (during loading) regime (IV) and (during unloading) regime (I) can be achieved. For instance,

standard quasi-static loading tests, starting from the lower boundary of regime (I) (static condition),

passes through regime (II) and gets regime (III) on its upper bound (steady state).

4. NUMERICAL RESULTS

In this section, the model is discussed with reference to constant pressure and constant volume tests

and by discussing the influence of both strain rate level and initial conditions. Both loading (γ̇ > 0)

and unloading (γ̇ < 0) tests are accounted for.

Initial conditions

Here in the following, the authors have assumed that at time t = t0 the material may be in either

(i) static or (ii) stationary conditions. In any case, at time t = t0, γ̇0, v̇0, e0, T0, τ0, σ0 have to be

either directly assigned or determined by imposing a constraint. The subscript 0 refers to quantities

evaluated at time t = t0.

(i) Static conditions

In this case, three constraints have to be imposed: T0 = γ̇0 = v̇0 = 0 and three variables must

be initially assigned (e0, σ0 and τ0). Actually, according to Equation 12, T can never nullify.

Therefore the T0 value will be assigned very small but not nil. Nevertheless, it is possible

to prove that, if a sufficiently small value of T0 is imposed, an inifinitesimal variation of this

initial datum does not affect the system response. Under static conditions, the initial collisional

contribution is negligible (Equation 29) and this implies that σ0 ≈ σq0 and τ0 ≈ τq0.

σq0, τq0 and e0 are free variables but they cannot be arbitrarily assigned: in Figure 5 the

admissible regions for these variables are plotted in the τq − σq and e− σq planes. In

particular, f ≤ 0 condition has to be satisfied at t = t0 and this implies that, in Figure 5a,

the image point of the quasi-static state of stress has to belong to the grey domain. Moreover,

in the e− σq plane (Figure 5b), the initial state must belong to either the light or the dark

grey sub-domains. These sub-domains are obtained by drawing three lines: the upper one,

representing the maximum void ratio under static conditions, is taken from the literature [60].

This was numerically obtained by performing 3D DEM simulations on disordered packing of
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18 I. REDAELLI ET AL.

identical spheres:

e =
Kbemax + σq(1 + emax)

Kb− σq(1 + emax)
(49)

where b = 0.545 and emax corresponds to the loosest possible packing of randomly distributed

monodispersed spheres under static conditions for σq = 0. According to Silbert [60], for φp =

0.5, emax = 0.74216. The intermediate line of Figure 5b is the critical state line (Equation 23)

while the lower one, corresponding to the densest possible packing of randomly distributed

monodispersed spheres under static conditions, is totally theoretical and, for the sake of

simplicity, it is here assumed to be horizontal with e = emin = 0.57.

= > = = ? = = @ = = A = =
σB  C D E F G=H = => = =I = =? = =

τ

J  KLM NO P Q RP S R
(a)

T U T T V T T W T T X T T
σY  Z [ \ ] ^T _ W `T _ W WT _ W aT _ b UT _ b cT _ b X

d
e f g hi j j k l m n o p qr n s k l m n o p qt ut v w x

t v y z { | } ~{ | � ~
(b)

Figure 5. Admissible states under static conditions in (a) τq − σq and (b) e− σq planes.

(ii) Steady state conditions

With respect to the previous case, where three were the free variables to be imposed to

characterize the initial state, the system is here more constrained. In fact, at the steady state,

two variables have to be assigned (γ̇0 and either σ0 or τ0), and four are the constraints to be

imposed (Ṫ = v̇ = f = G1 = 0).

The initial conditions employed in the following analyses are collected in Table III and are

identified by the acronym ’ICX y i’, where X denotes the type of test: P for constant pressure tests

(Section 4.1) and V for constant volume tests (Section 4.2); y indicates the type of initial condition: st

for static conditions and ss for steady state conditions; finally, i represents an identification number.
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4.1. Constant pressure tests

In this section, simple shear tests are be simulated by employing a mixed-controlled condition: σ

and γ̇ are imposed, whereas τ and e are measured. In particular, σ is kept constant whereas γ̇ is

imposed to vary with time according to the following function:

γ̇(t) = γ̇f −
(

γ̇f − γ̇0
)

e−t/tr , (50)

where γ̇f corresponds to the final shear strain rate asymptotically reached by the material, whereas

tr (a sort of characteristic time) governs the evolution of γ̇ with time. In all the tests numerically

simulated here below, tr=1 s. This implies that after about 7 seconds, the shear strain rate is

approximately constant and equal to γ̇f .

For constant pressure tests, both the two initial conditions are accounted for: static (Section 4.1.1)

and steady (Section 4.1.2). In the former case, solely loading tests are analyzed and the influence of

γ̇f , e0 and σ0 is discussed. In the latter one, for the sake of brevity, one test of unloading is critically

discussed. The choice of discussing the influence of γ̇f , σ0 and e0 stems from the observation that,

according to γ̇f and σ0, the mechanical response of the system may be prevalently either quasi-static

Table III. Initial conditions for constant pressure and constant volume tests.

Code γ̇0 [1/s] T0 [m2/s2] τ0 σ0 [kPa] e0

ICP st 1 0 10−15 0 50 0.66

ICP st 2 0 10−15 0 50 0.70

ICP st 3 0 10−15 0 50 0.71

ICP st 4 0 10−15 0 50 0.72

ICP st 5 0 10−15 0 20 0.66

ICP st 6 0 10−15 0 100 0.66

ICP ss 7 2000 0.773 23.02 50 0.70356

ICV st 1 0 10−15 0 50 0.7034

ICV st 2 0 10−15 0 50 0.7035

ICV st 3 0 10−15 0 50 0.70356

ICV st 4 0 10−15 0 50 0.7037

ICV st 5 0 10−15 0 100 0.7035

ICV st 6 0 10−15 0 200 0.7035
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or collisional, whereas both e0 and σ0 influence the volumetric response of the material throughout

the definition of the plastic potential (Equation 21).

4.1.1. From static initial conditions

Influence of γ̇f

All the tests discussed in this sub-section refer to the initial condition ICP st 1 of Table III and refer

to a dense ideal material for which G1 < 0 at t = t0. The six tests numerically performed differ

from each other for γ̇f (Test 1: γ̇f = 100 1/s, Test 2: γ̇f = 1000 1/s, Test 3: γ̇f = 2000 1/s, Test 4:

γ̇f = 3000 1/s, Test 5: γ̇f = 4000 1/s, Test 6: γ̇f = 6000 1/s). For the sake of clarity, in all the figures

reported below, the points corresponding to both the initial and the final states are denoted with Ii

and Si, respectively, where subscript i indicates the test number. The obtained results (Figure 6)

clearly show that:

• initially and independently of γ̇f , the mechanical response is almost elastic (pseudo-vertical

straight line in Figure 6a).

• During a second phase and according to the imposed γ̇f , the stress path in the τq − σq plane

reaches final values of σq and τq progressively smaller all belonging to the f = 0 locus (dashed

line in Figure 6a); in case γ̇f is sufficiently large (Tests 5 and 6), the origin of the axes is got

and the phase transition to the collisional regime takes place.

• All the tests are performed until the steady state is reached. This is evident from Figures 6c,

6d, 6e and 6f.

• By increasing γ̇f , a more dilatant response is obtained (Figure 6b). In two cases (Tests 5

and 6) the void ratio increases over emax. To clearly visualize the paths, the graph in Figure

6b has been cut in correspondence of e = emax, therefore the final point S5 and S6 are not

reported. In the e− σq plane, the pseudo-elastic initial phases degenerate into the initial points

(I1 = I2 = I3 = I4 = I5 = I6). All paths refer to the second phase for which f = ḟ = 0. By

changing γ̇f , the critical state locus G1 = 0 (dashed line) is achieved for different values of e

and σq.

• From Figures 6a and 6b, it is evident that paths of Tests 1, 2, 3, and 4 pass throughout regimes

(I), (II), and (III) of Figure 4, whereas paths of Tests 5 and 6 pass throughout regimes (I), (II),

(III) and (IV), getting finally the collisional steady state.
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• The change in the void ratio evolution is particularly evident in case the material reaches

the pure collisional state (Tests 5 and 6 in Figure 6c). The nullification of the quasi-static

contribution is in this figure testified by the rapid step-wise increase in the void ratio.

• By increasing γ̇f , the collisional stresses increase, and in case γ̇f is sufficiently large (Tests 5

and 6), a peak in both the τc − γ and τ − γ planes is present (Figures 6e and 6f, respectively).

• Exclusively in case γ̇f is sufficiently small (Test 1), the τ − γ response seems to be perfect

elasto-plastic (Figure 6f).

Influence of e0

Figure 7 refers to four numerical tests performed by imposing different values of e0 (Test 1:

ICP st 1, Test 2: ICP st 2, Test 3: ICP st 3 and Test 4: ICP st 4) and γ̇f =2000 1/s. The value of e0

affects the way in which the volume varies before the attainment of the steady state. Independently

of the value of e0, the paths reach the same final stationary condition. In the τq − σq and e− σq

planes (Figures 7a and 7b), paths start from different points (I1, I2, I3, I4) pass throughout regimes

(I), (II) and (III) of Figure 4 and arrive to the same steady state belonging to the critical state

locus (S1 = S2 = S3 = S4). In particular, the paths are perfectly coincident in the τq − σq plane

(Figure 7a), while the evolution of the void ratio differs significantly (Figure 7b). The initially dense

materials (Tests 1 and 2), reach the G1 = 0 locus by dilating. The initially loose materials (Tests 3

and 4) initially dilate but, subsequently, compact until the attainment of the ultimate point (see also

Figure 7c). Graphs illustrating the variation of T , τc and τ against the shear strain γ, are negligibly

affected by the initial void ratio and, for the sake of brevity, they are not here reported.

Influence of σ0

The results here considered refer to three tests performed by imposing three different values of σ0

(Test 1: ICP st 5, Test 2: ICP st 1, Test 3: ICP st 6) and γ̇f = 2000 1/s. Unless the different value

of σ0 imposed, owing to the e0 assumed, in all the three cases the material points at the beginning

markedly dilate (Figures 8b and 8c). As is illustrated in Figures 8a and 8b, the τq − σq and e− σq

paths start from different initial states (I1, I2 and I3) and reach distinct final points lying on the

critical state locus (S1, S2 and S3). In particular, paths of Tests 2 and 3 pass throughout regimes

(I), (II) and (III) of Figure 4, whereas the path of Test 1 passas throughout regimes (I), (II), (III)

and (IV). Indeed, for decreasing values of the imposed normal stress, quasi-static stresses decrease;

when σ0 is sufficieltly small (Test 1), the corresponding τq − σq path reaches the origin of the axes:

total stresses coincide with collisional stresses and the material reaches the collisional steady state
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Figure 6. Influence of γ̇f for constant pressure tests relative to a dense material (ICP st 1) on the planes: (a)
τq − σq , (b) e− σq , (c) e− γ, (d) T − γ, (e) τc − γ, (f) τ − γ.
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(Figure 8a). Analogously to what observed in Figure 6 for very high shear rates, when force chains

disappear, a rapid increase in the void ratio (Figure 8c) occurs. In the three tests here considered, the

total shear stress increases monotonically (Figure 8f). Since the γ̇ imposed coincides, the granular

temperature evolution seems to coincide too (Figure 8d).

4.1.2. From steady initial conditions

In this sub-section, exclusively the numerical results of an unloading test are discussed. At time t0

the material is assumed to flow under steady conditions (ICP ss 4). The test is characterized by a

continuous decrease in γ̇, until an asymptotic value of γ̇f = −2000 1/s. The numerical results areû ü ý þ ÿ � ü � � � � � �û ü ý þ � � ü � � � � � � û ü ý þ � � ü � � � � � ÿû ü ý þ 	 � ü � � � � � �
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Figure 7. Influence of e0 for constant pressure tests on the planes: (a) τq − σq , (b) e− σq , (c) e− γ.
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Figure 8. Influence of σ0 for constant pressure tests on the planes: (a) τq − σq , (b) e− σq , (c) e− γ, (d)
T − γ, (e) τc − γ, (f) τ − γ.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. (0000)

Prepared using nagauth.cls DOI: 10.1002/nag



25

reported in Figure 9. The test can be subdivided in 3 phases, corresponding to three regimes of

Figure 4:

• initially, from I to C, the material flows by satisfying conditions f = 0 and G1 = 0 (regime

(III)) and γ̇ > 0. At point C, γ̇ nullifies. Quasi-static stresses increase (Figures 9a and 9b)

while all the remaining stress variables decrease and τc rapidly vanishes (Figures 9e and 9f).

As was expected, even T rapidly reduces until its nullification (Figure 9d);

• from C to Y , the material enters into the visco-elastic regime (f < 0, regime (I)) and γ̇ < 0.

At point Y , the material yields again (f = 0, G1 6= 0, regime (II)). Both T and τc remain

negligible (Figures 9d and 9e). At point M , both τ and τc become negative;

• from Y to S (corresponding this latter to the final steady state), G1 > 0 and f = 0 (regime

(II)). Again the void ratio changes very slightly until condition G1 = 0 is newly satisfied

(regime (III)). At the end of the test, stationary conditions are achieved.

4.2. Constant volume tests

The numerical results are in this case obtained by imposing a constant void ratio (e = e0) and by

changing γ̇ according to Equation 50, while σ and τ are measured. Conversely to Section 4.1, solely

static conditions are here considered. In Table III, the initial static conditions are listed. As was done

in sub-section 4.1.1, hereafter the influence of γ̇f , e0 and σ0 on the numerical results is analyzed

separately.

Influence of γ̇f

The results here presented are obtained by imposing ICV st 2 of Table III. The six tests numerically

performed differ to each other for γ̇f : Test 1: γ̇f = 100 1/s, Test 2: γ̇f = 1000 1/s, Test 3: γ̇f = 2000

1/s, Test 4: γ̇f = 3000 1/s, Test 5: γ̇f = 4000 1/s and Test 6: γ̇f = 6000 1/s. As is evident from

Figures 10a and 10b, when the initial void ratio is coincident, the response of the model in terms

of τq − σq and e− σq coincides, independently of the value of γ̇f imposed. Since initially G1 < 0

(dense case), the τq − σq curves, as was expected, are characterized by a monotonic increasing trend

(Figure 10a). The granular temperature is severely affected by the value of γ̇f imposed (Figure 10c).

This is also testified by the response in terms of σ and τ (Figures 10e and 10f). The stress ratio τ/σ

is equal to tanφ′ only in case γ̇f is sufficiently small (Test 1 of Figure 10d). All the paths pass

throughout regimes (I), (II) and (III) of Figure 4.
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Figure 9. Numerical response for a constant pressure test relative to a material initially flowing under steady
state conditions (ICP ss 4) and γ̇f = −2000 1/s on the planes: (a) τq − σq , (b) e− σq , (c) e− γ, (d) T − γ,

(e) τc − γ, (f) τ − γ.
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Figure 10. Influence of γ̇f for constant volume tests relative to a dense material (ICV st 2) on the planes: (a)
τq − σq , (b) e− σq , (c) T − γ, (d) τ/σ − γ, (e) σ − γ, (f) τ − γ.
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Influence of e0

In this case, different e0 values are imposed, while γ̇f = 2000 1/s. Four different tests were

performed: Test 1: ICV st 1, Test 2: ICV st 2, Test 3: ICV st 3 and Test 4: ICV st 4. The τq − σq and

e− σq paths, although starting from different initial void ratios e0, all get the critical state (Figures

11a and 11b): at increasing values of e0, the final σq, τq values decrease. In case e0 ≥ ec (Test 4),

both σq and τq nullify. Then, path of Test 4 passes throughout regimes (I), (II) and (IV) of Figure 4,

whereas paths of Tests 1, 2 and 3 pass throughout regimes (I), (II) and (III). The τ/σ ratio evolution,

as well as the τ , σ evolutions, is markedly affected by e0 (Figures 11d-11f). In case of “dense”

specimens (Tests 1 and 2), the response in terms of τ/σ, σ and τ is pseudo-hardening; in case of

“loose” specimens (Tests 3 and 4), a pseudo-softening takes place (Figures 11e and 11f). In contrast,

since γ̇f is kept constant, in the T − γ plane all the curves differ very slightly (Figure 11c). When

e0 is sufficiently large, τ/σ increases over tanφ′ (Tests 2, 3, and 4 of Figure 11d).

Influence of σ0

The results here considered refer to three tests performed by imposing three different σ0 values (Test

1: ICV st 2, Test 2: ICV st 5 and Test 3: ICV st 6) and γ̇f=2000 1/s. Since both e0 and γ̇f coincide

for the three ideal numerical tests, the final steady states reached coincide (S1 = S2 = S3), whereas

the stress paths in the τq − σq and e− σq planes totally differ (Figures 12a and 12b), although all

the paths pass throughout regimes (I), (II) and (III). The curves in the T − γ plane (Figure 12c)

perfectly coincide, therefore the difference in τ/σ, σ and τ derive solely from the different response

in the τq − σq plane (Figures 12d, 12e and 12f). Once again, the pseudo-softening is evident only in

case of loose initial conditions (Test 3).

5. CONCLUDING REMARKS

In this paper, a constitutive model capable of simulating both the inception and the post-collapse

behaviour of granular matters under simple shear conditions has been proposed. According to

the conceived constitutive relationship, stresses are calculated as the sum of two contributions: a

quasi-static and a collisional one. The former one accounts for the response of the granular matter

as a solid-like continuum, the latter one for its fluid-like nature. The quasi-static contribution is

calculated by assuming a perfect elasto-plastic constitutive relationship, whereas the collisional

contribution is modelled according to the kinetic theory of granular gases. The transition form solid-

like to fluid-like conditions is therefore assumed to be governed by the granular temperature and
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Figure 11. Influence of e0 for constant volume tests on the planes: (a) τq − σq , (b) e− σq , (c) T − γ, (d)
τ/σ − γ, (e) σ − γ, (f) τ − γ.
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Figure 12. Influence of σ0 for constant volume tests on the planes: (a) τq − σq , (b) e− σq , (c) T − γ, (d)
τ/σ − γ, (e) σ − γ, (f) τ − γ.
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the void ratio, the unique state variables of the model. Constitutive equations have been integrated

in time by considering two different tests: constant pressure and constant volume. Both loading

and unloading tests have been simulated. Admissible initial conditions have been imposed in order

to reproduce either an initially static system or a system flowing under stationary conditions. The

model is based on the definition of four distinct unsteady regimes: the visco-elastic, the visco-elasto-

plastic, the critical and the collisional. The transition from one regime to another is governed by the

fulfillment of suitable mechanical conditions.

The numerical results testify the capability of the model of taking into account the dependence of

the mechanical behaviour of granular matters on the initial void ratio, the imposed normal pressure

and, in particular, the imposed shear strain rate.

The originality of the approach proposed derives from the interpretation of the critical state as

a peculiar steady state taking place for the granular temperature approaching a zero value, i.e. for

quasi-static conditions. Under unsteady conditions, the authors introduce a critical regime, where

the void ratio evolution is governed by the normal quasi-static stress via the critical state locus

definition. This implies that the plastic volumetric strain rate does not obey the flow-rule but is

computed by depurating the total volumetric strain rate of the elastic component.

Further extensions of the theoretical framework here suggested to three dimensional conditions

and to strain-hardening plasticity are remanded to subsequent studies.
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42. Wroth C. Soil behaviour during shear - existence of critical void ratios. Engineering 1958; 186: 409-413.

43. Schofield A, Wroth C. Critical state soil mechanics. McGraw-Hill: London, U.K., 1968.

44. Been K, Jefferies MG. A state parameter for sands. Gèotechnique 1985; 35(2): 99-112.
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