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Algorithms to Find Two-Hop Routing Policies
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Abstract—Most of the literature on delay tolerant networks
(DTNs) focuses on optimal routing policies exploiting a priori
knowledge about nodes mobility traces. For the case in which
no a priori knowledge is available (very common in practice),
apart from basic epidemic routing, the main approaches focus on
controlling two-hop routing policies. However, these latter results
commonly employ fluid approximation techniques, which, in prin-
ciple, do not provide any theoretical bound over the approximation
ratio. In our work, we focus on the case without a priori mobility
knowledge and we provide approximation algorithms with theo-
retical guarantees that can be applied to cases where the number
of hops allowed in the routing process is arbitrary. Our approach
is rather flexible allowing us to address heterogeneous mobil-
ity patterns and transmission technologies, to consider explicitly
the signaling and transmission costs, and to include also nodes
discarding packets after a local timeout. We then provide a com-
prehensive performance evaluation of our algorithms, showing
that two-hop routing provides the best tradeoff between delay and
energy and that, in this case, they find solutions very close to the
optimal ones with a low overhead. Finally, we compare our meth-
ods against some state-of-the-art approaches by means of a DTN
simulation environment in realistic settings.

Index Terms—Delay Tolerant Networks, performance evalua-
tion, routing.

I. INTRODUCTION

D TNs are sparse and/or highly mobile wireless ad hoc net-
works with discontinuous connectivity, which may occur

due to limits in the wireless radio range, sparsity of mobile
nodes, constrained energy resources, attacks, and noise. One
central problem in DTNs is the optimal routing of packets from
a source towards the desired destinations.

When no a priori information is available on the mobility
pattern of the nodes, a common technique for overcoming lack
of connectivity is to disseminate multiple copies of the packet:
this enhances the probability that at least one of them will reach
the destination within a temporal deadline. This is referred to as
epidemic–style forwarding, because, alike the spread of infec-
tious diseases, each time a packet–carrying node encounters a
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new node not having a copy thereof, the carrier may infect this
new node by passing on a packet copy. A convenient compro-
mise of energy versus delay compared to epidemic routing is
provided by two–hop routing where the infection is limited to
contacts between the source and intermediary nodes, that is,
the source node passes on the packets to all the mobile nodes
she encounters, and the “infected” mobile nodes can deliver the
packets they are carrying only to the final destination.

In this paper, we focus on the characterization of two–hop
routing policies for DTNs as in [1]–[3], where the problem
concerns the decision on whether or not forwarding a given
packet to a given mobile node the source is encountering at
a given time. We propose an optimization-based framework
to derive optimal two–hop routing policies which extends the
available approaches in the literature in different directions: (i)
we account for mobile nodes which are categorized in distinct
multiple classes capturing different mobility patterns and avail-
able communication technologies on board; (i i) we account
for the cost for neighbor discovery and signaling messages
exchange to support packet forwarding further allowing mobile
nodes to discard the packets they are carrying upon expiration
of a local temporal deadline; (i i i) rather than resorting to fluid
approximation to derive optimal two–hop routing policies, we
propose algorithms for finite mobile node populations with the-
oretical guarantees; namely we provide an exponential–time (in
the number of classes) algorithm to find routing policies that
are arbitrarily close to the optimal ones, as well as approximate
polynomial–time algorithms; (iv) we extend our algorithms and
analysis to the case where the routing policy allows an arbi-
trary maximum number of hops. Finally, we provide a thorough
performance evaluation with realistic settings of the proposed
algorithms in terms of approximation ratio, scalability in the
number of classes, further evaluating the impact of network
parameters onto the optimal routing policies. We also eval-
uate our routing policies with different maximum numbers
of allowed hops and we compare them w.r.t. state–of–the–art
routing policies within The ONE Simulator [4].

The paper is organized as follows. Section II reviews the
relevant literature. Sections III and IV describe the reference
scenario and routing problem. Our approximation algorithms
are presented in Section V while extensions to more than
two hops is addressed in Section VI. Section VII, evaluates
algorithms in synthetic network instances while Section VIII
concludes the paper.

II. RELATED WORK

The main distinctive features of the present work w.r.t. the
reference literature are: (i) we take into account the cost for
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neighbor discovery and signaling messages exchange to support
packet forwarding, further allowing mobile nodes to discard
“older” packets upon expiration of a local temporal deadline
(implying that, differently from what customarily assumed in
the reference literature, the number of copies of a packet is not
monotone–increasing); (i i) we do not resort to fluid approxi-
mation, but rather propose algorithms to find optimal routing
policies for finite mobile node populations with theoretical per-
formance guarantees; (i i i) we extend our algorithms to the case
where the number of hops allowed in the routing phase is arbi-
trary; (iv) we compare our algorithms w.r.t. state–of–the–art
algorithms by means of one of the main DTN simulators.

We overview here the main body of literature in the fields of
optimizing multi–hop routing and two–hop routing in DTNs.

Multi–Hop Routing. Besides basic epidemic–style forward-
ing schemes operating under a zero–information assumption (in
Section VII-E we briefly review and compare against them),
literature on optimal routing mainly devoted efforts in scenar-
ios where some knowledge about mobility is available and can
be exploited. The seminal work [5] studies optimal multi–hop
routing strategies when the nodes have a limited buffer further
providing an experimental comparison of the different routing
policies. In [6], the authors address the DTN routing problem by
first proposing an optimization framework to optimally set the
routes and then by introducing a gradient–based routing heuris-
tic which exploits the concept of connectivity degree. In [7],
the authors cast the routing problem as an optimal stopping rule
problem and further propose an Optimal Opportunistic Routing
scheme which maximizes the average packet delivery probabil-
ity. In [8], the authors focus on a multi–hop routing heuristic
named Ring Distribution Routing. In all the aforementioned
works, routing decisions only leverage topological information
such as the contact time and statistics. Differently, recent liter-
ature shows that routing performance can be improved if social
information on the mobile nodes can be leveraged [9]–[12].

Optimal Control for Two–Hop Routing. The seminal work
[13] studies optimal static and dynamic control (proved to be
threshold based) policies for two–hop DTN when mobile nodes
are homogeneous. Furthermore, the authors show that when the
parameters are unknown it is still possible to obtain a policy
that converges to the optimal one by using some adaptive auto–
tuning mechanism. Extensions of such adaptive mechanism are
proposed in [14].

Scenarios where mobile nodes belong to multiple distinct
classes are studied in [3], showing that the routing policy may
be class dependent. The authors resort to fluid approximation
to characterize the routing policies under the assumption that
the number of copies of the packet is monotonically increas-
ing in time. However, no theoretical guarantee over the quality
of the solutions is provided and, in principle, fluid approxi-
mation may provide arbitrarily inefficient solutions, see, e.g.,
[15]. Furthermore, it is not clear whether fluid–approximation
approaches can be extended to more than two hops. The
authors, in [2], extend the previously mentioned work by con-
sidering also non–monotone routing strategies, whereas Chahin
et al. design optimal control rules to maximize the packet
delivery probability under energy budget constraints [16]. The
aforementioned work focuses on routing control policies which

assume disjoint traffic generation and routing, that is, the rout-
ing process is completely decoupled from the traffic generation
one. Alma et al. extend this previous work to account for
the case in which traffic sources continuously generate traffic
during the routing process [17]. The tradeoff between energy
consumption and packet delivery probability is studied in [18]
in the case where packet replication is allowed at the source to
create redundancy in the spread–out information.

A fluid representation of the routing process is adopted
also in [19], where a scheduling framework is proposed to let
each mobile node locally decide if/when a packet in transmis-
sion should be dropped or forwarded under the assumption
that the packet forwarding process can be approximated by a
time–continuous Markov chain process. In [20], the authors
characterize the probability distribution of the packet delivery
delay for epidemic and two–hop routing schemes; moreover,
they also evaluate the communication cost measured as the
number of replica of a given packet at the time the packet has
been received by the intended destination.

III. REFERENCE SCENARIO

We consider an environment populated by one source node,
one sink node and multiple mobile nodes. Sink and source nodes
may as well be mobile. A packet is initially held by the source
and it must be delivered to the sink no later than τ time units
through two–hop opportunistic routing. (In Tab. I, we summa-
rize all the symbols used along the paper.) Thus, the source can
decide to deliver the packet to any mobile node she gets in touch
with, and such mobile node can only deliver the packet to the
sink in the event of a direct contact. A mobile node carrying a
packet from the source discards the packet after a pre–defined
time–out (defined below), further refraining from accepting the
very same packet again in the future.

Each mobile node belongs to a specific class c ∈ C . We
denote by Nc the number of mobile nodes of class c. Each
class encodes the features of its nodes, including their mobil-
ity profile and transmission technology. The mobility profile is
characterized by the average speed vc and by the class–specific
time–out value tc (i.e., the time after which the node discards
the packet and does not accept it again in the future). We denote
by ω ∈ � a transmission technology (e.g., WiFi). Transmission
technologies are characterized by a number of parameters that
we introduce below. For the sake of simplicity, we assume each
node to use a single technology, while the source and the sink
can use all the technologies. All the nodes of a class c use
the same technology. Finally, the subset of classes adopting
technology ω is Cω ⊆ C .

The interactions among nodes of the same class are regu-
lated by the following rules/parameters: (i) two nodes are in
contact at a given time if they are within each other’s trans-
mission range (we denote by Rω the transmission range of
technology ω, and we use, with slight abuse of notation, Rc in
place of Rω when c ∈ Cω); (i i) technology–specific neighbor
discovery procedures are used to dynamically discover contacts
over time; (i i i) upon neighbor discovery, technology–specific
association procedures are adopted to create peer–to–peer con-
nections among nodes in contact; (iv) once the association
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TABLE I
NOTATION SUMMARY

phase has been carried out, nodes carrying the reference packet
may decide to transfer it to the associated node if the active
routing policy so prescribes.

We assume all the three aforementioned operations per-
formed by nodes to incur in some energy cost. W.l.o.g., let βω
represent the energy consumed for performing operations (i i)–
(i i i) by technology ω, and ρω represent the energy consumed
to transmit the reference packet by technology ω. We will refer
to βω and ρω as to the signaling and transmission costs, respec-
tively. With slight abuse of notation, we use βc and ρc in place
of βω and ρω, respectively, when c ∈ Cω. All the classes c ∈ Cω
using the same technology ω share the signaling costs βω.

The implementation details and parameter values for the
routing signaling phase are technology dependent; e.g., refer-
ring to WiFi Direct technology, points (i i) and (i i i) include the
required time and message exchange to perform IEEE 802.11
Channel Scanning, Channel Probing, Group Owner Negotiation
and Address Configuration [21]; referring to Bluetooth Low
Energy technology, points (i i) and (i i i) include the Advertising
and Scanning/Initiating phases [22], [23].

We consider a discrete representation of time organized in
time slots whose duration is fixed to� time units and we denote
the total number of useful time slots as K = �τ/��, where the
k–th time slot corresponds to the time interval [k�, (k + 1)�).

Transmission opportunities between two nodes are given
by contacts taking place when each node is within the com-
munication range of the other one. As we are considering
two–hop routing schemes, contacts of interest are limited to
those between the source and mobile nodes and between mobile
nodes and the sink. In the following, we mainly rely on
Markovian models for the packet spreading process, that is,
we assume that contacts at the source and at the sink follow
a multi–class Poisson distribution; such assumption is largely
used in the literature to study the performance of opportunistic
routing as it eases up the problem’s tractability while maintain-
ing practical insights in the routing design problem [13]–[27].
Recent studies further support such assumption by showing that
Poisson distributions well approximate the contact numbers in
opportunistic networks with nodes moving according to real-
istic mobility models provided that the transmission range is
large w.r.t. the reference arena and the speed is sufficiently large
[28]. In the following, we leverage the formulas derived in [28]

to approximate the pairwise contact creation rate. Namely, in
our analysis, λc (the contact rate of nodes belonging to class c)
is defined as λc = 8ιRcvc

πL2 where ι is a constant set to 1.3693 and
L is the radius of circle in which the nodes move. With Poisson
distributions, optimal policies are zero–memory [13]. That is,
the best policies from a time slot on do not depend on the con-
tacts happened in the time slots before and therefore optimal
policies do not depend on information available at runtime.

When a contact happens between the source and any mobile
node that did not receive the packet yet, the source decides to
hand over the packet according to a forwarding policy µ which
depends on the current time and the potential recipient’s class.
Given a time slot k and a class c, the policy profile at time k
is µ(k) = (μ1(k), . . . , μ|C|(k)) where μc(k) indicates the for-
ward probability at time slot k for class c; we also denote with
µc the entire policy for such class c. In general, when the packet
is forwarded, some energy is spent and the packet’s delivery
probability is increased. We denote with FD(µ, K ) the proba-
bility of delivering the message before time K� given policy
profile µ. Obviously, such value is prevented from growing
indefinitely by an energy budget, denoted by �, on the total
spent energy (including both signaling and transmission).

IV. OPTIMAL ROUTING POLICIES

A. Problem Formulation

We define Xc,k(µ) as the random variable expressing the
number of mobile nodes of class c that have received the packet
by time slot k, while Yc,k(µ) is a random variable expressing
the number of mobile nodes of class c that still keep a copy of
the packet at time slot k. These variables both depend on µ and
are, in general, different. Indeed, since a mobile node can both
receive and discard a packet before time slot k, we have that
Yc,k(µ) ≤ Xc,k(µ). Furthermore, we denote by Qc,k,k′(μc) the
probability that a mobile node of class c does not receive any
packet in time slots k, . . . , k′ as function of μc which can be
expressed as:

Qc,k,k′(μc) = e
−λc�

k′∑
i=k

μc(i)
. (1)
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The expected number of mobile nodes of class c that receive
a packet in time slots 0, . . . , k is:

E[Xc,k(µ)] = Nc · (1− Qc,0,k(μc)). (2)

Thus, the expected number of mobile nodes of class c that
have the packet at time slot k is:

E[Yc,k(μc)] = Nc · (1− Qc,max{0,k−tc},k(μc)). (3)

The probability that a packet is delivered to the sink by time
k� can be defined as:

FD(µ, k) = 1−
∏
c∈C

k−1∏
h=0

X∗c,h(λc�,µ), (4)

being

X∗c,h(s,µ) = E[e−sYc,h(µ)], (5)

where X∗ is the Laplace–Stieltjes transform (see [13] for
details). Note that Eq. (4) inherently uses the Markovian
assumption on the contact inter–arrival time, which allows to
consider variables Yc,h to be independent w.r.t. the temporal
index h (i.e., the number of mobile nodes holding the packet
is memoryless over time). The constraint on the consumed
energy is:∑

c∈C

ρc Nc(1− Qc,0,K (µc))︸ ︷︷ ︸
transmission costs

+
∑
ω∈�

K−1∑
k=0

βω ·
⎛
⎝1−

∏
c∈Cω

(1− μc(k))

⎞
⎠

︸ ︷︷ ︸
signaling costs

≤ �. (6)

The left term of the inequality adds up the expected transmis-
sion costs with the expected signaling costs for class c, given a
policy profile µ. In particular, transmission costs are obtained
by multiplying ρc by the expected number of nodes that will
receive the packet from slot 0 to slot K ; on the other side, a
signaling cost of βω is paid for each time slot k with the proba-
bility that at least one class c ∈ Cω will forward the packet, i.e.,
1−∏c∈Cω(1− μc(k)).

The problem of finding the optimal routing policy can be
formally defined as follows: find policy µ∗ that maximizes
FD(µ, K ) subject to the budget constraint reported in Eq. (6).

B. Problem Properties

We now show some theoretical properties that we will exploit
in the following.

Property IV.1. Optimal policies either completely consume the
budget or prescribe that all the classes transmit for all the slots.

Proof: It is easy to see that FD(µ, K ) is monotonically
increasing in

∑K−1
h=0 μc(h) and that, as a consequence, trans-

mitting for a larger (expected) number of slots cannot result in
a lower delivery probability. �

Similarly to what proposed in [13], we define a threshold–
based policy μc as:

μc(k) =

⎧⎪⎨
⎪⎩

1 k < �hc�
{hc} k = �hc�
0 k > �hc�

,

where hc is the threshold of class c and {hc} is the fractional part
of hc. The following property, which was holding in the single-
class case, keeps valid also when multiple classes are allowed.

Property IV.2. Optimal policies are threshold based.

Proof: The delivery delay c.d.f. is FD(µ, K ) =
1−∏c �c(µ, s), where �c(µ, s) =∏K−1

h=0 X∗c,h(s,µ) and
s = λc�. Let us denote with µc a non–threshold pol-
icy for class c and with µ̂c a policy obtained by shifting
to the left all the non–empty slots of µc and by round-
ing them so that µ̂c matches the definition of threshold
policy introduced above. For any (µc, µ̂c) obtained in
this way we have that �c(µ, s) ≥ �̂c(µ, s) and therefore,
defined �−c(µ, s) =∏c′ 
=c

∏K−1
h=0 X∗c,h(s′,µ), we have

1− �c(µ, s) · �−c(µ, s) ≤ 1− �̂c(µ, s) · �−c(µ, s), that is,
for any given joint policy µ, if we substitute the marginal
policy of a class c with its threshold version the probability of
delivery within K time slots will not decrease. �

Property IV.3. Optimal policies can prescribe non–integer
thresholds for all the classes.

Proof: Consider, e.g., a two–class scenario: K = 20,
� = 100, � = 0.7, N1 = 1, N2 = 2, λ1 = 21× 10−5, λ2 =
20× 10−5, t1 = t2 = K . We approximate the optimal policy
profile by discretizing the values of hc with a fine grid of step
0.01. In addition to these points, we consider all the points in
which the threshold of one class is integer and the threshold
of the other class is calculated in such a way the budget is
completely consumed. We evaluate the objective function at all
these points and select the maximum. The approximately opti-
mal policy is h1 = 7.87, h2 = 15.91. Hence, at the optimum, a
fractional part is assigned to both classes. �

Property IV.4. The optimization problem with objective func-
tion given by Eq. (4) and constraint given by Eq. (6) is
nonlinear and nonconvex.

Proof: Nonlinearity is trivial. Nonconvexity is proved by
showing the nonconvexity of the feasibility region by com-
puting the Hessian matrix of the budget constraint in Eq. (6)
to which we will refer here with u (notice that we restrict
our attention on threshold policies). It can be easily seen
that all the eigenvalues of the Hessian matrix (of the form
−N|c|λ2|c|�2e−λ|c|�h|c|) are strictly negative for every policy
profile µ and therefore the feasibility region is non convex. �

Some of the above properties show that the optimization
problem is hard and that no exact algorithm is possible. The
adoption of non–convex programming techniques cannot assure
to approximate the global optimum. Hence, we focus on the
problem of developing approximation algorithms and of study-
ing their theoretical and empirical approximation errors.



BASILICO et al.: ALGORITHMS TO FIND TWO-HOP ROUTING POLICIES IN MULTICLASS DELAY TOLERANT NETWORKS 4021

Algorithm 1. ε–grid search

1: F∗ ← 0
2: if µ s.t. hc = K−1

ε
for all c is feasible then

3: µ∗ = µ

4: else
5: for c ∈ C do
6: for every µ = (μc,µ−c) s.t. µ−c is integer and budget
� is entirely consumed do

7: if FD(µ,
K−1
ε
) > F∗ then

8: µ∗ ← µ

9: F∗ ← FD(µ,
K−1
ε
)

V. APPROXIMATION ALGORITHMS

A. Non-Polynomial-Time Approximation Scheme

We start by defining a non–polynomial–time algorithm
returning a solution arbitrarily close to the optimal one. To this
extent, we over–constrain the optimization problem, allowing
only a single class to have a fractional threshold in its routing
policy. This additional constraint is likely to worsen the solution
quality (see Property IV.3) but it allows us to provide a combi-
natorial version of the optimization problem. Indeed, once all
the classes except one have been assigned integer policies, the
potentially fractional policy of the remaining class is univocally
determined either by the policy that consumes all the remaining
budget or the one that transmits until the last useful time slot
(see Property IV.1). To have more precision, we split each slot
of length � in sub–units of length ε� where, for simplicity,
1
ε
∈ N.
We solve optimally this over–constrained problem by enu-

meration. We enumerate all the feasible threshold policies
and we select the best one (see Property IV.2). We report
in Algorithm 1 the necessary steps. At Step 1, the algorithm
initializes F∗—the variable with the value of the best found
solution—to be zero. Let us denote µ−c the forwarding policy
of all the classes except class c. If the budget cannot be entirely
consumed, then the optimal policy is to assign hc = (K − 1)/ε
to each class c (Steps 2–3). Otherwise, the algorithm enumer-
ates all the classes c, and for each class c it enumerates all
the policies µ = (μc,µ−c) s.t. µ−c is integer and budget �
is entirely consumed (Steps 5–6). Finally, we keep trace of the
best policy found so far. We now describe an efficient scheme
to enumerate all and only the feasible policies µ = (μc,µ−c)

s.t. µ−c is integer and budget � is entirely consumed in Step
6. First, we build a lexicographic (strict) order �L over C−c =
C \ c and we scan lexicographically the classes in C−c. Then,
for each c′ ∈ C−c we determine the range Ic′ of feasible values
for hc′ on the basis of the policies assigned to the classes c′′
preceding c′ in the lexicographic order (i.e., c′′ �L c′):

Ic′(µ−c′) =
{

max

{
0,min

{
K − 1

ε
, 
rc′(µ−c′)�

}}
, . . . ,

min

{
K − 1

ε
, �rc′(µ−c′)�

}}
,

µ−c′ =

⎧⎪⎨
⎪⎩

µc′′ = µc′′ c′′ �L c′

µc′′ : hc′′ = K−1
ε

c′ �L c′′

µc : hc = K−1
ε

,

µ−c′ =

⎧⎪⎨
⎪⎩

µ
c′′ = µc′′ c′′ �L c′

µ
c′′ : hc′′ = 0 c′ �L c′′

µ
c
: hc = 0

,

µ−c′ is the policy in which the policies of all the classes c′′
with c′′ �L c′ are given by µ and for all the other classes c′′
with c′ �L c′′ the threshold is the maximum one (i.e., K−1

ε
)

and therefore the energy budget that can be used for class c′ is
minimized, while µ−c′ is the policy in which the policies of all
the classes c′′ with c′′ � c′ are given by µ and for all the other
classes c′′ with c′ � c′′ the threshold is the minimum one (i.e.,
0) and therefore the energy budget that can be used for class c′
is maximized.

Function rc′(µ−c′) returns the maximum threshold hc′ for
class c′ given the policy µ−c′ of all the other classes subject to
the energy budget constraint and can be computed as follows:
• initially we compute in closed form:

rc′(µ−c′) = −
log
(

1+ A−�+B
ρc′Nc′

)
λc′�ε

where

A =
∑

c′′:c′′ 
=c′
ρc′′Nc′′

⎛
⎜⎝1− e

−λc′′�ε
K−1
ε∑

k=0
μc′′ (k)

⎞
⎟⎠ ,

B =
∑
ω∈�

K−1
ε∑

k=0

βω ·
⎛
⎝1−

∏
c′′∈Cω:c′′ 
=c′

(1− μc′′(k))

⎞
⎠ ,

the above rc′(µ−c′) is the maximum threshold hc′ for
c′ in the case in which hc′ does not affect the signal-
ing costs due to the technology used by class c′; this
happens when 
εrc′(µ−c′)� ≤ maxc′′:c′′∈Cω,c′′ 
=c′ {�εhc′′ �}
where c′ ∈ Cω, that is, when some class adopting the
same technology of class c′ transmits for the whole slot of
duration � that is the last slot in which class c′ transmits;

• if, solving the above closed form, we obtain

εrc′(µ−c′)� > maxc′′:c′′∈Cω,c′′ 
=c′ {�εhc′′ �} where
c′ ∈ Cω, then the policy of class c′ affects the sig-
naling costs due to the technology adopted by c′. Thus,
we can compute rc′(µ−c′) by solving the following
equation:

ρc′Nc′(1− e−λcε�rc′ (µ−c′ ))+

+
∑

ω∈�:c′ 
∈ω

K−1
ε∑

k=0

βω ·
⎛
⎝1−

∏
c′′∈Cω

(1− μc′′(k))

⎞
⎠+

+
K−1
ε∑

k=0

βω ·
⎛
⎝1− ∏

c′′∈Cω :c′∈ω,c′′ 
=c′
(1− μc′′(k))·

(
1− rc′(µ−c′)

)⎞⎠+
+A −� = 0,



4022 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 6, JUNE 2016

by means of the Newton algorithm. Notice that the
above function has only one variable, rc′(µ−c′), and it is
strictly monotonically increasing. Therefore the Newton
algorithm can be used to obtain an arbitrarily accurate
approximation of the exact solution.

Once the previous steps are done, for every element in
Ic′(µ−c′), we assign it to hc′ and go to the next class accord-
ing to the lexicographic order. Finally, once the policies of all
the classes c′ ∈ C−c have been assigned, the policy of c is easily
given by hc = rc(µ−c).

Theorem V.1. The above scheme enumerates all and only the
feasible policies consuming exactly the budget in which at most
one hc is fractional.

Proof: We need to prove that: (i) all the policies except
µc are integer, (i i) the budget is exactly consumed, and (i i i)
all and only the feasible policies are enumerated. The first two
points are trivial by construction (given that the policy of c is the
only potentially non–integer and is computed as the policy that
consumes the budget given the policies of all the other classes).
To prove the third point, we observe that I is always a well–
defined range. Indeed, �rc′(µ−c′)� returns the largest hc′ that
consumes exactly the remaining budget given the budget con-
sumed by all the classes preceding c′ in the lexicographic order.

Assigning a policy larger than min
{

K−1
ε
, �rc′(µ−c′)�

}
violates

the budget constraint or violates the deadline τ . If the policies
assigned to the previous classes are feasible, then �rc′(µ−c′)� is
always non–negative. As well, �rc′(µ−c′)� returns the small-
est hc′ that consumes exactly the remaining budget given
the budget consumed by all the classes preceding c′ in the
lexicographic order and assuming that the classes that suc-
ceed transmit all the slots. Assigning a policy smaller than

max
{

0,min{ K−1
ε
, 
rc′(µ−c′)�}

}
does not allow one to con-

sume entirely the budget. Thus, by construction, for each policy
assigned to class c′ belonging to I , it is always possible to find
a feasible policy for the succeeding classes. �

The number of policies enumerated by Algorithm 1 is
exponential in C , being O(( K−1

ε
)|C|−1). We state the follow-

ing result on the optimality loss of the solution found by
Algorithm 1.

Theorem V.2. Let F̃D be the value of the solution returned by
Algorithm 1 and F∗D the value of the optimal solution, then we
have

F̃D

F∗D
≥ 1− ( 1

2 )
K−1
ε

1− ( 1
2 )
|C| K−1

ε

.

Proof: Call µ∗ the optimal policy profile and call µ̃c
the policy profile in which h̃c′ = �h∗c′ � for all c′ 
= c and
h̃c = h∗c . Obviously, F∗D ≥ FD(µ̃c,

K−1
ε
) and F∗D ≥ F̃D ≥

maxc{FD(µ̃c,
K−1
ε
)}. This is because µ̃c is a feasible policy

profile in which at most one policy is fractional that is not
assured to consume exactly the budget. We can write a lower

bound for FD

(
µ̃c,

K−1
ε

)
as:

FD

(
µ̃c,

K − 1

ε

)
=

= 1−
∏
c′∈C

K−1
ε∏

k=0

X∗c′,k(λc′ε�, µ̃c) ≥ 1−
K−1
ε∏

k=0

X∗c,k(λcε�, µ̃c)

By using such lower bound over FD

(
µ̃c,

K−1
ε

)
, we can write:

F̃D

F∗D
≥ max

c

⎧⎨
⎩ 1−∏ K−1

ε

k=0 X∗c,k(λcε�,µ
∗)

1−∏c′∈C
∏ K−1

ε

k=0 X∗c′,k(λc′ε�,µ∗)

⎫⎬
⎭

since, given µ̃c and µ∗, we have h̃c = h∗c . Thus, we are
interested in:

min max
c

⎧⎨
⎩ 1−∏ K−1

ε

k=0 X∗c,k(λcε�,µ
∗)

1−∏c′∈C
∏ K−1

ε

k=0 X∗c′,k(λc′ε�,µ∗)

⎫⎬
⎭

where the minimization is over all the parameters. Although the
definition of X∗ is intricate, a bound can be derived disregard-
ing the exponential nature of all the X∗ and considering them as
arbitrary values in [0, 1]. In this case, for reasons of symmetry,
the values that minimize the maximum ratio prescribe X∗c,k = 1

2
for all c. This leads to the bound stated in the theorem. �

Notice that the theoretical lower bound does not depend on
whether the signaling costs are present. The worst case is when

K = 2 and |C | → ∞, obtaining a ratio of 1− 1
2

1
ε . However,

it can be observed that the worst case ratio goes to one expo-
nentially in 1

ε
. Thus we can obtain a good approximation ratio

with a small value of 1
ε
, e.g., the theoretical lower bound

over the approximation ratio is about 1− 10−4 when 1
ε
= 10.

Algorithm 1 is an approximation scheme (AS), given that the
ratio goes to one as ε goes to zero.

B. Polynomial-Time Approximation Algorithm

In this section, we discuss a heuristic approach to approx-
imate the optimal policy in polynomial time. We restrict our
attention to threshold policies and we devise an iterative method
that incrementally constructs the policy µ by increasing, at each
iteration, the threshold for some class. Algorithm 2, reports the
formal steps.

Algorithm 2. i–greedy construction

1: h1, . . . , h|C| ← 0
2: F∗ ← 0
3: while Constraint in Eq. (6) is satisfied do
4: for every class c do
5: ĥc ← hc +min{1, rc(µ−c)− hc}
6: δc ← Gi (F∗, h1, . . . , ĥc, . . . , h|C|)
7: hc∗ ← ĥc∗ , where c∗ = arg max

c∈C
{δc}

8: F∗ ← F∗ + δc∗

Since we focus only on threshold policies, the algorithm
assumes that µ is uniquely determined by class thresholds. So,
each time a modification is made to a threshold hc we implicitly
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assume that µ changed accordingly and vice versa. Algorithm 2
works on the same discrete–time representation we introduced
above, where each time slot has a temporal length of ε�. It
starts from an initial empty policy where thresholds are set to 0
for each class (Step 1). Then, at each iteration, it evaluates with
an objective function Gi each of a set of local modifications of
µ (Steps 5–6) and then applies the one maximizing such func-
tion (Steps 8–9). A local modification of µ involves a single
class c and is represented by an increment of hc of the quan-
tity min{1, rc(µ−c)− hc}, that is, one more slot or, in case the
residual budget would not be enough, the fractional part that
would deplete the budget. In general, the objective function Gi

is defined as a marginal gain between the current solution value
and the one obtained after a modification would be applied.
This is the reason why, besides class thresholds, Gi takes as
argument the value F∗. Such variable represents the current
solution value computed by iteratively adding up the marginal
gains of those modifications selected by the algorithm (Step 9).
We propose two different instantiations of the objective func-
tion that we will call G1 and G2 and we will speak of a first and
a second version of the algorithm, respectively. In each of the
two versions the computation of Gi will be doable in O(|C |)
time, thus the worst case time complexity of Algorithm 2 is
O( K−1

ε
|C |3).

First Version, Locally Optimizing FD: In the first version of
Algorithm 2, we define G1 in order to obtain the maximiza-
tion of the marginal gain of FD , i.e., the delivery probability.
Formally, we have that at Step 6 it holds that Gi = G1 where
G1(F∗, h1, . . . , h|C|) = FD(µ, (K − 1)/ε)− F∗. (Recall that
µ is assumed to be the unique policy obtained from thresholds
h1, . . . , h|C|). Under such definition, δc represents the benefit,
in terms of delivery probability, that an additional (integer or
fractional) time slot for class c would introduce at the current
iteration. By exploiting a result presented in [29] we are able to
provide a bound on the solution quality obtained with this ver-
sion of the greedy algorithm. The result we will exploit can be
formalized as follows (see [29] for a complete derivation).

Theorem V.3 [From [29]] Given a ground set�, a set function
� : 2�→ R, and a positive integer W ∈ N

+, let us consider
the problem of finding S∗ = arg maxS⊆�,|S|≤W {�(S)}. Then if
� is submodular, we have that for every integer 0 ≤ l ≤ W ,
�(Sl) ≥ (1− e−l/W )�(S∗), where Sl ∈ � is the set built after
l iterations of the following greedy element–selection rule

Si =
{
∅ if i=0

Si−1 ∪ arg maxs∈� �(Si−1 ∪ {s}) else
(7)

Theorem V.3 states that greedily maximizing a submodular
set function introduces a bounded suboptimality. Eventually,
the bound converges to (1− 1

e ) (≈ 0.63) when l = W , that
is, when the maximum number of selections allowed by the
cardinality constraint is made.

In order to apply the above result to Algorithm 2, we need to
show that the problem of finding an optimal integer policy can
be expressed as the maximization of a submodular set function
subject to a cardinality constraint. This similarity can be shown
by mapping our problem to the following set–based formal
interpretation. Let us assume that each element in the ground set

θ ∈ � is a pair (c, k) where c ∈ C and k ∈ {1, . . . , K−1
ε
}. That

is, each element of S prescribes that a specific class transmits in
a specific slot. Then, every subset S ⊆ � can be uniquely asso-
ciated with an integer (not necessarily threshold–based) policy
μS . Indeed, a unique correspondence between S and μS can be
obtained by the following construction rule:

μS
c (k) =

{
1 (c, k) ∈ S

0 else

Therefore, the objective function for a policy μS can be
rewritten as a set function by operating the following simple
assignment: �(S) = FD(µ

S, (K − 1)/ε).
The second necessary step is to derive a cardinality constraint

to define the problem’s feasibility region. In our problem, the
feasibility of a policy is determined by the budget limit, namely
by the constraint in Eq. (6). For this reason, ideally one would
like to find a W such that |S| > W if and only if μS violates the
constraint in Eq. (6). However, it can be easily shown that bud-
get feasibility cannot be directly expressed with a cardinality
constraint. The reason is straightforward. The budget of a pol-
icy does not solely depend on the number of transmitting slots,
but also on how those slots are distributed among the different
classes. Nevertheless, a necessary (not sufficient) cardinality
upper bound can be determined via the following theorem.

Theorem V.4. Any feasible threshold integer policy cannot
assign full probability of transmission to more than W =
min{maxc{rc(µ

∅)}, K−1
ε
}, where µ∅ is the empty policy.

Proof: Let us assume that ĉ = arg maxc{rc(µ
∅)}. Then,

consider a threshold policy μS where |S| > W . If μS is budget–
feasible then, by definition, the policy obtained in this way
should be feasible too: for every (c, k) ∈ S where c 
= ĉ substi-
tute (c, k) with (ĉ, hĉ + 1). However, by definition of W such a
policy cannot be budget–feasible. �

Under the above assumption, the optimal integer policy prob-
lem can be associated, up to a relaxation of the feasibility
constraint, with the maximization of the set function �(S),
subject to |S| ≤ W . By relaxing the cardinality constraint we
can still derive an approximation bound even though we can-
not guarantee its tightness. In the next step we show FD

submodularity.

Property V.5. The set function � is submodular w.r.t. �.

Proof: First, let us consider a setting with a single class.
From Property IV.2, we can focus only on threshold policies
and rewrite � as a function of h, namely the threshold value
(this value, in general, can be non–integer). Then it can be
easily shown that �(h) is a concave function since the Hessian
matrix has strictly negative eigenvalues. Given a function
f : N→ R

+, then f (|S|) is submodular on the subsets S of
an arbitrary set � if and only if f is concave [30]. We can
then conclude that � is submodular in the case of a single
class. Let us now show submodularity for the case with two
classes. Let us denoted with ��(S|e) the marginal gain of
� obtained by adding the element e to the set S, namely
adding a transmitting slot to some class to the policy μS . For
submodularity to hold, we need to show that for every Sa ,
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Sb, e such that Sa ⊆ Sb ⊂ � and e ∈ � \ Sb we have that
��(Sa |e) ≥ ��(Sb|e). By definition e adds a slot to a single
class, let us assume without loss of generality that this class
is c1. Also, let us denote with �ci our function computed as
if ci was the only present class. Then we have ��(Sa |e) =
[1− (1− (�c1(S)+��c1(Sa |e)))(1−�c2(S))]− [1− (1−
�c1(S))(1−�c2(S))] = (1−�c2(Sa))��c1(Sa |e) and,
analogously, ��(Sb|e) = (1−�c2(Sb))��c1(Sb|e). Since
��c1(Sa |e) ≥ ��c1(Sb|e) by submodularity of �c1 and
�c2(Sb) ≥ �c2(Sa) by �c2 monotonicity, we have that �
is submodular. The same reasoning can be extended to an
arbitrary number of classes. �

Theorem V.3 can be applied by showing that Algorithm 2
corresponds to the greedy element–selection rule reported in
Eq. (7). The rule of Eq. (7), when applied to the integer policy
problem, proceeds by locally optimal appends in the same way
that Algorithm 2 does. Hence, we have:

Theorem V.6. Let us denote with S∗ the policy returned by
Algorithm 1 and with S1

l the policy constructed by Algorithm 2
(version 1) after l iterations. We then have that FD(S1

l , K ) ≥
(1− e−l/W )FD(K , S∗).

Proof: The inequality stated in the theorem follows imme-
diately from the following two properties. First, by apply-
ing Theorem V.3 to Algorithm 2 (version 1) we have that
FD(S1

l , K ) ≥ (1− e−l/W )FD(S∗, K ). Second, since Ŝ∗ is the
optimal solution of a relaxed version of the integer policy
problem, it holds that FD(S∗, K ) ≤ FD(Ŝ∗, K ). �

The previous theorem, provides an online bound on the solu-
tion quality, being it dependent on the number of iterations
the algorithm will succeed in performing without violating the
actual budget constraint. An offline guarantee can be given by
computing the minimum number of slot sc to be assigned to
each class c. This number can be computed by setting μc′(i) =
1 ∀i 0 ≤ i ≤ K , c′ 
= c and computing the maximum number
of time slots during which c can transmit without saturating the
budget.

Corollary V.7. For any solution S1 obtained with Algorithm 2
(version 1) we have that:

FD(S
1, K ) ≥

(
1− e

− ∑
c∈C

sc/W
)

FD(S
∗, K ).

Second Version, Normalizing G1 with Budget Costs: The
second version of our algorithm adopts objective function G2,
obtained by normalizing G1 with the budget cost that a local
modification (the additional time slot) would introduce. As a
consequence, given a local modification of µ as defined above,
here δc represents a ratio between the marginal gain in the deliv-
ery probability obtained if applying such modification and the
additional transmission costs that would be paid. For simplicity,
we do not consider signaling costs, also because extending our
approximate analysis by including them does not seem straight-
forward. Under the assumption that no signaling costs are
present and that we deal with threshold policies, each transmis-
sion has an independent cost and the budget spent by a policy
S is given by ψ(S) = ∑

(c,k)∈S
ρc Nce−λc�(k−1)(1− e−λc�) and,

consequently, G2(µ) = G1(µ)
ψ({(c,hc+1)}) .

If we modify the rule in Eq. (7) by normalizing the objec-
tive function by the budget cost for each candidate element,
we can again show the equivalence between the new rule and
Algorithm 2 (version 2). As a consequence, we can again resort
to a result presented in [29] and provide a quality bound on the
solution obtained with the combination of the two versions of
Algorithm 2 when signaling costs are not considered.

Theorem V.8. If no signaling costs are present, then it holds
that

max{FD(Ŝ
1, K ), FD(Ŝ

2, K )}
≥ 1

2

(
1− 1

e

)
max

S⊆�:ψ(S)≤�
{FD(S, K )}

Proof: The proof follows immediately by the consider-
ation made above and a straightforward adaptation of results
presented in [29]. �

VI. EXTENSION TO MULTIHOP ROUTING

We initially describe how the formulation of the problem
changes in the case of �–hop routing with � ≥ 3. At first, we
need some assumptions about the functioning of the routing
protocol. More precisely, we assume that: during a time slot, if
a mobile node contacts both the source and other mobile nodes
carrying the packet, then the mobile node receives the packet
directly from the source, and, if a mobile node has received a
packet from another mobile node before contacting the source,
then the mobile node does not receive the packet also from the
source. Furthermore, as assumed in the case of two–hop rout-
ing, if a mobile node has dropped a packet, it will never get
the packet again in future. With multiple classes, we have two
different scenarios: the one in which a node of class c cannot
transmit the packet to a node of class c′ with c 
= c′ and the
one in which it can do. Our aim is to find the best (approxi-
mate) transmission policy of the source, given the transmission
policies of the mobile nodes (characterized by time–out tc).

We focus on the extension of Algorithm 2 (although also
the extension of Algorithm 1 is possible, it requires long cal-
culations and it is less significant requiring exponential time).
The extension can be simply obtained by providing a proce-
dure to calculate Xc,k necessary to compute objective function
F and a procedure to calculate the cost of a transmission pol-
icy. Indeed, the proof of submodularity and the bounds derived
in Section V-B hold also with �–hop routing.

We focus on the calculation of Xc,k . We initially describe
how, in the basic case of two–hop routing without time–out tc,
variable Xc,k can be computed. This is useful for presenting
the general case. We denote by Xc,k(i,µ) the probability that,
given µ, at slot k there are i nodes of class c directly infected
by the source. The term Xc,k(i,µ) can be computed as:

Xc,k(i,µ) =
i∑

h=0

Xc,k−1(h,µ)
(
1− Qc,k−1,k(µ)

)i−h

(
Qc,k−1,k(µ)

)n−h
(

Nc − h

i − h

)
It can be observed that the computation of Xc,k(i,µ) requires
time and space O(|C |Nc K ).
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We show now how, in the case of two–hop routing with time–
out tc, variables Xc,k and Yc,k can be computed. With abuse of
notation, we denote by Xc,k(i,µ|n) the term Xc,k(i,µ) when
the number of mobile nodes is n, potentially different from Nc.
We have:

Yc,k(i,µ) =

⎧⎪⎨
⎪⎩

Xc,k(i,µ|Nc) k ≤ tc
Nc−i∑
j=0

Xc,k−tc ( j,µ|Nc)Xc,tc (i,µ|Nc − j) tc < k

It can be observed that the computation of Yc,k(i,µ) requires
the computation of Xc,k(i,µ|n) for any n ∈ {1, . . . , Nc}, and
therefore it requires time and space O(|C |(Nc)

2 K ).
Now we focus on the case with �–hop routing. For the sake

of clarity, we present the case with only one class and without
time–out tc, the extension to the general case is discussed below.
Initially, denote by Zk(i1, i2, . . . , i�−1,µ) the probability that,
given µ, at slot k there are i1 nodes with a 1–hop infection,
i2 nodes with a two–hop infection, and so on. Variable Zk is
defined in Eq. (8), shown at the bottom of the page.

It can be observed that computing Zk(i1, i2, . . . , i�−1,µ)

requires time and space O((Nc)
�K ). The exponential size in

� cannot be circumvented, being necessary to keep trace of all
the possible configurations of mobile nodes at different hops
that are exponential in �. Then, Xk(i,µ) is:

Xk(i,µ)

=
i∑

i1=0

i−i1∑
i2=0

· · ·
i−∑�−3

w=1 iv∑
i�−2=0

Zk

(
i1, i2, . . . , i�−2, i −

�−2∑
w=1

iv,µ

)

where Qmob
k−1,k is the probability that two mobile nodes do not

have any contact between slots k − 1 and k. In case of �–hop
routing with |C | classes without time–out tc we need a struc-
ture Zc,k(i1, i2, . . . , i�−1,µ) of size O(|C |(Nc)

�K ) if a node
of class c cannot transmit to a node of class c′ with c 
= c′,
whereas we need a structure Zc,k(i1,1, . . . , i|C|,�−1,µ) of size
O(n|C|�K ) if a node of a given class c can transmit the packet
to nodes of different classes than c. Finally, when mobile nodes
have a time–out tc, it is necessary an extra multiplicative cost
of O(

∑
c Nc).

Finally, we now focus on the energy cost of a transmission
policy. The energy cost depends only on the number of mobile
nodes directly infected by the source. That is:

ρc

i∑
i1=0

i1

i−i1∑
i2=0

· · ·
i−∑�−3

w=1 iv∑
i�−2=0

Zk

(
i1, i2, . . . , i�−2, i −

�−2∑
w=1

iv,µ

)
.

Zk(i1, i2, . . . , i�−1,µ)

=
i1∑

h1=0

i2∑
h2=0

..

i�−1∑
h�−1=0

Zk−1(h1, h2, . . . , h�−1,µ) ·
(
1− Qk−1,k(µ)

)i1−h1
(
Qk−1,k(µ)

)n−i1−∑�−1
j=2 h j

(
Nc − i1 −∑�−1

j=2 h j

i1 − h1

)

·
�∏

w=2

(
1−

(
Qmob

k−1,k

)hw−1
)iw−hw (

Qmob
k−1,k

)Nc−∑w
v=1 iv

(
Nc −∑w−1

v=1 iv −∑�−1
v=w hv

iw − hw

)
(8)

TABLE II
PARAMETERS USED FOR EXPERIMENTS

The extension of Algorithm 2 to � hops is then easy and
involves only Steps 5 and 6. Informally, these steps are sub-
stituted as follows: given a class c, hc is increased by 1 and
both FD and the energy cost are computed as described above.
If the remaining budget is smaller than the cost of increasing hc

by 1, then hc is reduced to satisfy the budget by employing the
Newton algorithm. Finally, values δc and ĥc are returned.

VII. PERFORMANCE EVALUATION

A. Evaluation Setting

We generated instances by considering the discretized
parameter space of Tab. II. The reference scenario is an urban
area populated by mobile devices carried by pedestrians, bicy-
cles, vehicles equipped with heterogeneous transmission tech-
nologies (ZigBee, Bluetooth 4.0. and WiFi Direct). We derive
the values for ρ and β by considering the technical specifica-
tions of each technology and assuming an application scenario
with a 5kB packet and � = 10s. For simplicity, we assign the
same number of users to each class.

Unless differently specified, we consider up to 3 classes and
a discretization ε ∈ {1, 1/3, 1/5}. This represents a good trade-
off between accuracy and computational effort to evaluate our
algorithms as shown, see Fig. 1, by the theoretical lower bound
of the delivery probability (Theorem V.2) for different resolu-
tions and numbers of classes. As it can be seen, a maximum
resolution of ε = 1/5 is a reasonable choice to guarantee about
95% of the optimal solution quality without the burden of a
prohibitive number of time slots. On the other side, by adopt-
ing a maximum number of 3 classes we obtain a case which
is fairly close to the worst case (derived for an infinite num-
ber of classes) and that is computable by means of our grid
algorithm (recall that our grid search requires a computing time
exponential in the number of classes).
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Fig. 1. Theoretical lower bound over solution’s quality (Theorem V.2).

We use the following benchmarks for evaluating our algo-
rithms in two–hop routing scenarios.

1) Greedy on Arrival Rate: it sorts the classes in descend-
ing order of λc, then it allocates all the possible budget to the
classes from the first one to the last one. The rationale is that
we expect that the larger the arrival rate the larger the delivery
probability. The complexity of this algorithm is low: the policy
can be found by solving at most |C | equations.

2) Class-Independent Policies: it searches for the optimal
solution of an over–constrained problem in which the policies
related to all the classes are the same, formally μ(k) = μc(k)
for all c, and, when the policy is probabilistic, then either the
source transmits to all the classes or it does not transmit at all.
This leads to a new formulation of the budget constraint:∑

c∈C

ρc Nc · (1− Qc,0,K (μ))

+
∑
ω∈�

K−1∑
k=0

βω

(
1− (1− μ(k))|Cω|

)
≤ �

By Property IV.1, the optimal policy is such that the budget� is
completely consumed and therefore the above inequality holds
with equality. Therefore, the optimization problem reduces to
the problem of finding the policy that completely consumes the
budget. Formally, interpreting the (class–independent) thresh-
old h as a continuous variable, we can write:

g(h) =
∑
c∈C

ρc Nc · (1− e−λc�h)+
∑
ω∈�

βω�h�

+
∑
ω∈�

βω

(
1− (1− h + �h�)|Cω|

)
−� = 0

Function g is a single–variable function strictly monotonically
decreasing in h and infinitely differentiable. Such a function
admits only one zero, and therefore the above equation admits
only one solution. Such a solution can be found (approxi-
mately) by using the Newton method that, due to the function
property holding in this case, has a quadratic convergence speed
(the number of correct digits roughly doubles in every itera-
tion). Thus, we obtain an approximate solution of high quality
within very short time.

3) Upper Bound Over the Optimal Value: an upper bound
over the value of the optimal solution can be found by using
a variation of the algorithm described in Section V-A. More
precisely, we use Algorithm 1 to enumerate all the policies con-
suming entirely the budget and we change each policy rounding

Fig. 2. Performance at different hops of Greedy construction (1). At left: deliv-
ery probability. At right: delivery probability divided by expected number of
transmissions in the network.

each hc to the smallest integer and then adding 1 for every
c. Notice that these new policies violate the budget constraint.
Among all these policies we find the one maximizing the deliv-
ery probability. Its value is an upper bound over the value of
the optimal policy. In the following, we denote this value as
U B. The proof sketch follows. Call µ∗ the optimal policy pro-
file with (potentially fractional) thresholds h∗c . Call µ̂ a generic
policy profile obtained as described above. It can be easily
observed (it follows from the fact that, fixed the policies of
all the classes but one, the policy of the remaining class that
consumes entirely the budget is always one) that there alway
exists a policy profile µ̂ such that ĥc ≥ h∗c for all c. Therefore,
given that the objective function is strictly monotone in hc, the
objective value of µ̂ is strictly better than the value µ∗.

4) Fluid Approximation: We use the approach described in
[2] based on fluid approximation to derive approximate routing
policies.

B. Comparing l-hops Routing Policies

We apply our greedy algorithms when the number of hops
is in {1, 2, 3, 4, 5, epidemic} to the simulation setting described
above restricting the number of classes to be one. In this case,
our algorithms return optimal solutions. We evaluate how the
delivery probability and the ratio between delivery probability
and the number of expected transmissions in the network vary
as the number of hops varies. The first index provides a measure
of the improvement of the objective function, while the second
index provides a measure of efficiency between objective func-
tion and consumed energy. In all our simulations, we observed
that the delivery probability increases in the number of hops and
the increment decreases exponentially in the number of hops,
achieving asymptotically the epidemic routing, while the ratio
between delivery probability and expected number of transmis-
sions decreases in the number of hops. We report the data of
the most significant simulation in Fig. 2, in which we use WiFi
Direct, bicycles, L = 500m, K = 25 and a variable number of
nodes. This shows that two–hop routing provides the best trade-
off between delivery probability and energy consumption, with
a ratio of almost 5 w.r.t. the epidemic routing and a ratio of
about 2 w.r.t. three–hop routing. From here on, we focus our
performance evaluation on two–hop routing protocol.

C. Algorithms Performance Analysis With Two Hops

Fig. 3 reports how FD/U B varies as the values of the param-
eters τ, L , Nc vary as summarized in Table II, |C | ∈ {1, 2, 3},
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Fig. 3. Average FD/U B w.r.t. different parameters at 1
ε = 5.

and 1
ε
= 5. For each parameter, we average FD/U B over the

other instances sharing the same value for that parameter. It can
be observed that grid search and greedy constructions obtain
a remarkably better performance in each case when compared
with the benchmarking greedy algorithms based on the arrival
rate and the class–independent one. Not exploiting the knowl-
edge about the different classes and solely considering the
arrival rate turned out to achieve very similar performances.
By increasing the value of τ , it can be seen how this gap with
the benchmarks shrinks, suggesting the intuition that when the
deadline for packet delivery is large even simplistic policies are
able to obtain good delivery probabilities. Another aspect that
can be observed is that greedy constructions revealed to be quite
effective for the tested cases, since they were able to obtain high
performances comparable to the grid search. By increasing the
value of L , it can be seen how this gap with the benchmarks
increases, instead the gap keeps to be approximately constant
as Nc and |C | vary. Interestingly, the approximation ratio of
our algorithms is almost constant (i.e., > 99%) w.r.t. all the
parameters values.

A more detailed overview on how the performance (mea-
sured again as FD/U B) varies with ε at different values of τ
is shown by the boxplots of Fig. 4. These graphs show the sim-
ilarity in performance between the grid search and the greedy
constructions algorithms. These last ones obtained worse per-
formances for a limited number of outlier instances. Also it
is evident how having finer resolutions remarkably improves
the solution quality. As shown by the boxplots, the levels of
statistical significance corroborate our claims.

The above results suggest that greedy constructions seem
to be quite effective approaches to approximate the optimal
policy requiring, at the same time, much lower computational
effort than the grid search. In Fig. 5a, we show a compari-
son between computational times obtained with the grid search
and the greedy construction algorithms respectively. In partic-
ular, we evaluated the algorithms’ scalability when the number
of classes grows. To obtain these results we fixed the values
of some parameters (ε = 1/3, τ = 100, Nc = 10, L = 500)
and we generated random mobility profiles and transmis-
sion technologies by uniformly sampling from the following
intervals: Rc ∈ [15, 50], vc ∈ [1, 15], ρi ∈ [0.05, 0.25], βc ∈
[3× 10−7, 8× 10−7]. It is easy to see how grid search shows
an exponential growth in time, while greedy construction
proved to be much more efficient even for larger number of
classes. Considering a deadline of 1 hour, grid search was not
able to compute a solution for more than 4 classes, while greedy

construction managed to compute solution up to 800 classes.
Notice that the time needed on average to find the best policy
(i.e., 10s with |C | ≤ 10 and 100s with |C | ≤ 100) may be, in
some scenarios, excessively long. Thus, to have a more accurate
estimate of the overhead in real–world system, we implemented
our approximation algorithms in C language, obtaining a com-
pression of about 100 times (as observed in the literature
for MATLAB vs. C for a number of applications). Such an
overhead is compliant with the most application of DTNs.

Finally, we evaluate the accuracy of the fluid approxima-
tion approach. For each simulation setting described above,
we run our approximation algorithms and the fluid approxi-
mation algorithm and we compare the solutions in terms of
average FD . In our results, we excluded the basic settings
with |C | = 1, in which the fluid approximation is optimal as
our approximation algorithms. As in other applications, fluid
approximation provides an accurate approximation when the
number of users/mobile nodes is large. More precisely, on aver-
age over the number of classes, the error (in percentage) of
the fluid approximation w.r.t. our greedy algorithms behaves
as 6.44+ 31.01 exp[−0.135

∑
c Nc] with a confidence bound

of 95%, providing thus an average error from about 35% for
few mobile nodes to about 5% for 100 mobile nodes. This sug-
gests that with 100 mobile nodes or less our algorithms, besides
introducing suitability for any number of hops, can provide an
important improvement w.r.t. the state of the art.

D. Two-Hop Routing Analysis

We now focus on how two–hop routing policies computed
with our most viable method (greedy constructions) behave
w.r.t. absolute and relative temporal deadlines, that is τ and
the time to live tc for a particular class c. Indeed, together
with budget requirements, temporal deadlines turned out to be
the most sensible parameters, namely dimensions along which
performance exposed remarkable variations.

Fig. 5b depicts how the delivery probability varies as τ is
set to increasing values for a number of budget settings. For
such experiments we considered again three different classes
(ZigBee, Bluetooth 4.0, and WiFi Direct associated with mobil-
ity profile in increasing speed as per Table II) with the same
number of nodes (20), no packet discarding and the same rel-
ative budget scale we used in the previous section. The trends
confirm the intuition by suggesting that strict delivery deadlines
are a critical factor in worsening the expected performance of
the computed policy. On the other side, the influence exercised
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Fig. 4. Boxplots showing FD/U B w.r.t. τ for different algorithms.

Fig. 5. Time (in seconds) scalability with the number of classes (a).FD w.r.t. deadline (b) and packet’s time to live (c) under different budget constraints.

by the budget seems to muffle as its value becomes higher and
higher.

In Fig. 5c we assess the impact of the packet’s time to live on
the delivery probability. In this experiment we used the same
three classes as before but we enabled the packet discarding
behavior setting a given tc equal for all the classes. We set
τ/� = 50 in order to disable packet discarding when tc = 50.
What can be observed from the figure is a trend similar to
the one observed for the delivery deadline with the following

interesting difference. Here variations on the budget constraint
seem to have a slightly stronger impact than before, suggest-
ing that when nodes start to drop packets having extra units
of budget can introduce non–negligible improvements in the
performance.

Fig. 6a and 6b depict a qualitative evaluation of the poli-
cies returned by our algorithms. The same three classes as
before are considered before and, for clarity, we selected an
instance where τ/� = 10 (similar trends could be observed in
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Fig. 6. Policy thresholds with different upper bounds on budget (a) and for different time to live values for one class (b). Comparisons with other routing
schemes (c).

any other setting). In Fig. 6a, we consider a reference value for
the budget upper bound � and we show how the thresholds of
the optimal policy (obtained with grid search) are distributed
across the three different technologies. It can be observed how,
by increasing the budget, the optimal policy tends to schedule
transmissions with all the three technologies. When the budget
gets smaller and smaller, then the policy tries to rely more on
those technologies that have a longer communication range.

In Fig. 6b we show how policies change as different time
to live values are adopted. We set tc2 = 4 for the class adopt-
ing Bluetooth 4.0 technology and tc3 = 2 for that using WiFi
Direct. The time to live for the class using ZigBee varies as
shown in the picture. As it can be seen, such class is not
even exploited by the policy when its time to live is small, the
other two classes are preferred. Interestingly, WiFi is assigned
a higher threshold even though it has the lowest time to live
(higher transmission range and node velocity provide some
kind of overcompensation). As tc increases, ZigBee starts to
be included in the classes used by the policy until it is com-
pletely preferred over Bluetooth 4.0. Such trend demonstrates
how there are settings where less profitable classes (in terms
of speed and transmission range) can be preferred over bet-
ter ones due to a particular configuration of the time to live
values.

E. Comparison With State-of-the-Art Techniques

We complement the previous qualitative observations with a
comparative analysis of our method against a number of rout-
ing schemes proposed in literature that operate under the same
assumption of no a priori mobility knowledge we took in this
work. We selected ONE (Opportunistic Network Environment
simulator) [4] to run our simulations as it offers embedded
support to simulate realistic wireless technologies, as well
as built-in modules running state-of-the-art routing schemes.
Since we are interested in comparing the proposed approach
against state-of-the-art alternatives, we focus here on results
obtained with a specific setting of the reference scenario param-
eters; even if the simulation results might obviously change in
the absolute value if changing the simulation environment (i.e.,
considering different mobility models), the proposed simulation

campaign is indeed insightful to showcase the relative perfor-
mances trends of the considered delay tolerant routing tech-
niques. In detail, we consider three different classes of nodes.
For simplicity we assume that each class has the same num-
ber of nodes and the same mobility profile with average speed
of 6m/s. Transmission technologies are ZigBee, Buetooth 4.0,
and WiFi Direct for each class respectively (see Table II for the
associated parameters). The source node energy budget is set
by taking as a reference the battery of a smartphone (approx.
5.45W h) and by considering an application layer consuming
no more than the 30% of the total energy with a daily maxi-
mum load of 20Mb of data. Assuming that a single application
packet has a size of 5kb we obtain a budget of 1.4715J for
each packet delivery. Each packet has to be delivered within
15 minutes from its creation at the source and each mobile
node (excluding source and destination) has a local timeout
of 5 minutes. Nodes move randomly in a free environment
of radius of 700m. We consider different number of nodes
N ∈ {10, 15, 20, 25, 30} (recall that each class has the same
number of nodes so each experiment has 3N + 2 total nodes
populating the environment). For each N we generate 100 dif-
ferent random joint mobility patterns in which we assess the
delivery of a single packet at the destination node with different
routing schemes. We consider:
• 2–Hop greedy construction (1): the method studied in this

work where Alg. 2 with G1 is adopted to compute the
multi–class transmission policy for the source node;

• spray and wait: a bounded–copy, multi–hop routing
scheme where copies are forwarded at each encounter
(see [31]); the number of copies present in the network
is bounded by a parameter k that we set at the source as
the maximum number of packet transmissions given the
total energy budget;

• first contact: a single copy, multi–hop, routing scheme
where nodes forward the packet to the first encountered
node;

• direct delivery: a single copy, single–hop, routing scheme
where delivery can be performed only directly from the
source;

• epidemic: multi–copy, multi–hop routing scheme where
the packet is forwarded at every encounter.
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Results of our simulations are reported in Fig. 6c. The epi-
demic protocol achieves, as expected, the best performance at
the cost of a very large number of transmission in the network.
Our method was able to outperform others for increasing num-
ber of nodes confirming the core motivation of this work, i.e.,
that trying to optimize the energy budget with a threshold pol-
icy can be profitable both in terms of delivery ratio and of spent
energy. In particular, our approach was able to differentiate
transmissions to different classes of nodes in a more opti-
mized way, trying to concentrate more transmissions towards
the classes most likely to be in the position of deliver the packet
in the current remaining time. Direct delivery and first contact
can be considered as baselines for this evaluation. The appar-
ently counterintuitive better performance of direct delivery over
first contact is due to the presence of the local timeout in mobile
nodes (recall that, the local timeout at the source node is, by
definition, the packet’s time to live).

VIII. CONCLUSIONS

We studied two–hop routing for Delay Tolerant Networks
with heterogeneous technologies considering the signaling cost
of the routing process. We formulated an optimization problem
to derive the optimal two–hop policies and we designed and
experimentally efficient approximation algorithms with theo-
retical bounds. Finally, we thoroughly evaluated our algorithms
in realistic network settings in terms of approximation ratio
and compute time as the parameters change. We experimen-
tally showed that for all the generated instances our algorithms
have an approximation ratio larger than 99% and that they scale
linearly as the values of the parameters increase and therefore
they can be applied with realistically large instances.
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