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Necessary and Sufficient Conditions for the Noninvertibility of Fundamental
Solution Matrices of a Discontinuous System∗

Federico Bizzarri†, Alessandro Colombo‡, Fabio Dercole‡, and Giancarlo Storti Gajani‡

Abstract. In discontinuous systems, the fundamental solution matrix of the linearized dynamics about a ref-
erence trajectory can be noninvertible. This feature can be exploited, for instance, to design robust
control algorithms, to synchronize a network, or to stabilize otherwise unstable or chaotic dynamics.
In this paper we classify all the phenomena that cause rank defect in the fundamental solution ma-
trix of a generic discontinuous system. We relate these phenomena to simple geometric conditions at
a point of vector field switching, sliding, or impact, and we derive necessary and sufficient conditions
for the rank defect. This constitutes a valuable tool to detect flow noninvertibility or to purpose-
fully include it in the design of a system. In terms of Lyapunov exponents, the singularity of the
fundamental solution matrix means that an infinitesimal sphere of initial perturbations is mapped
onto a lower-dimensional ellipsoid. This consequently reduces the number of finite exponents and,
most remarkably, makes them depend on the full history of the reference trajectory used for the
computation. We introduce a numerical procedure which allows the computation of the Lyapunov
exponents by resorting to a properly reduced variational system. The validity of the approach is
verified in two examples.
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1. Introduction. Discontinuous systems are commonly used in several fields of science and
engineering, e.g., in mechanics, to model impacts and friction [12]; in analog-digital electronics
[8], to model switches [7, 9, 16, 29]; in many control systems [38]; in ecology, to model optimal
foraging behaviors [24, 25]; in evolutionary biology, to describe evolutionary reversals induced
by switching in the underlying ecological regime [22, 23]; in neuroscience, to take neuron firing
and reset into account [40]; in biological and medical systems [1]; and in the social sciences
and finance, to mimic decision processes and behavioral strategies [19, 14].

In the presence of discontinuities the forward or backward evolution of a given initial
condition may not be unique. Forward-time nonuniqueness, which is typically a conse-
quence of an extreme sensitivity of the modelled phenomenon, poses numerous problems
in terms of the analysis of a system, first and foremost regarding the definition of a so-

∗Received by the editors February 28, 2014; accepted for publication (in revised form) by H. Dankowicz October
7, 2015; published electronically January 26, 2016.

http://www.siam.org/journals/siads/15-1/95903.html
†Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milano, Italy, and

Advanced Research Center on Electronic Systems for Information and Communication Technologies E. De Castro
(ARCES), University of Bologna, 40125 Bologna, Italy (federico.bizzarri@polimi.it).

‡Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milano, Italy
(alessandro.colombo@polimi.it, fabio.dercole@polimi.it, giancarlo.stortigajani@polimi.it). The work of the third au-
thor was supported by the Italian Ministry for University and Research (under contract FIRB RBFR08TIA4).

84

http://www.siam.org/journals/siads/15-1/95903.html
mailto:federico.bizzarri@polimi.it
mailto:alessandro.colombo@polimi.it
mailto:fabio.dercole@polimi.it
mailto:giancarlo.stortigajani@polimi.it


NONINVERTIBILITY IN DISCONTINUOUS SYSTEMS 85

lution. Noninvertibility—the infinitely fast convergence of multiple trajectories—is, on the
other hand, a relatively innocuous and sometimes useful feature, used, for example, as a
means to simplify the analysis through dimension reduction [13], to design robust control laws
such as in sliding-mode control [51], or to ensure the synchronization of a network [45] or the
regularization of otherwise chaotic dynamics [42].

Restricting to the cases where forward-time uniqueness is ensured, in this paper we dis-
cuss the necessary and sufficient conditions for noninvertibility of the linearized dynamics of
a discontinuous system about a reference trajectory. The result is a set of simple rules, char-
acterized both algebraically and geometrically, to detect noninvertibility, providing a useful
tool for the designer who wishes to exploit it. Since the invertibility of a nonlinear system is a
local property of a trajectory, a local, variational analysis is best suited for the task at hand.
We thus develop our discussion around the concept of a fundamental solution matrix, that
is, the first-order expansion of the dynamics of perturbations around the reference trajectory.
As a by-product of these results, the discussion is naturally extended to Lyapunov exponents
(LEs) as a means to measure the average exponential rates of expansion or contraction of
infinitesimal perturbations inside and transverse to the system’s attractors. Unlike in smooth
systems, where the LEs computed along trajectories converging to the same attractor (almost
everywhere) coincide with the attractor’s exponents, in discontinuous systems the history of
the discontinuities crossed by a trajectory may affect the resulting LEs, which are therefore a
property of the whole trajectory and not just of its limit set.

The computation of the fundamental solution matrix and of the LEs for model-explicit,
nonlinear, and finite-dimensional dynamical systems is based on numerical procedures that
require the system to be ruled by a sufficiently smooth vector field [31]. In particular, the
computation is based on the integration of a variational system, describing the linearized
evolution of a perturbation around the reference trajectory, and requires the system’s Jacobian
to be continuous. When a model is discontinuous, for example, to represent a sudden change
in the dynamics or a fast process such as a mechanical impact, or because nonlinear laws have
been approximated by piecewise linear ones, the standard approaches cannot be applied.

Extensions of the basic algorithm for the computation of the fundamental solution matrix
and of the LEs to several classes of discontinuous systems have been proposed, starting with
Müller [46] in 1995. Müller considered generic n-dimensional vector fields switching when the
system state transversely intersects (n − 1)-dimensional smooth manifolds in state space, by
introducing linear corrections in the linearized equations at the times of switching of the refer-
ence trajectory. This approach was applied, for instance, by Hinrichs, Oestreich, and Popp [37]
in 1997. Müller did not consider the possibility of sliding along the switching manifolds or of
impacts, i.e., jumps in state space induced by impulsive behavior of the system equations.

Müller’s corrections belong to the more general framework of discontinuity mappings, in-
troduced by Aizerman and Gantmakher in 1958 [2] and Filippov in 1960 [32] (see also the
1988 book by Filippov [33]) and generalized to full nonlinearity by Nordmark in 1991 [47]. A
discontinuity mapping provides the correction that must be applied to all perturbations of a
reference trajectory, at a point of discontinuity,1 in order to integrate them as if they were

1In what follows we will refer to “time of discontinuity” and “point of discontinuity” of a given trajec-
tory or to “discontinuity manifold” without distinction between switching and impacting phenomena. The
discontinuity may occur in the vector field (switching) as well as in the state of the system (impact).
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reaching the discontinuity all at the same time. The Jacobian of the discontinuity mapping
at the point of discontinuity of the reference trajectory is the correction factor resetting the
state of the variational system at the time of discontinuity. This Jacobian is known in the lit-
erature of piecewise smooth systems as the saltation matrix [28]. Analogous corrections were
implemented by de Souza and Caldas [21] for mechanical systems with impacts and, more
recently, by Zhou et al. [54] for a particular type of resetting impact typical in neuroscience.
Finally, Dieci and Lopez [30] discussed the variational system for piecewise-smooth discon-
tinuous systems (so-called Filippov systems), also in the presence of sliding. The saltation
matrix at the onset of sliding is singular, and this makes the fundamental solution matrix sin-
gular as well. The singularity of the fundamental solution matrix means that an infinitesimal
n-dimensional sphere of initial perturbations is mapped onto a lower-dimensional ellipsoid;
viz., some perturbation dimensions are lost. Dieci and Lopez showed that multiple sliding
segments on (n− 1)-dimensional manifolds generically induce a loss of one dimension only, so
that one LE is expected to diverge to −∞, whereas in general m dimensions are lost when
sliding on an (n−m)-dimensional manifold.

In order to discuss the mathematical intricacies of the fundamental solution matrix and
LEs of discontinuous systems in the greatest possible generality, we have set our paper in
the framework of hybrid systems. These are continuous time evolution processes interfaced
with discrete time decision processes [11]. They can easily be used to describe most of the
discontinuous models mentioned above and have been shown to be equivalent to a number of
other relevant discontinuous system formalisms [36].

Specifically, we classify all the phenomena that can cause rank defect of a saltation matrix
in a generic hybrid system. This includes systems that may exhibit vector field switching,
sliding, impacts, tangencies of the vector fields with the discontinuity manifold (with some
restrictions, as we see in the next paragraph), and singular reset maps at impact. For each
scenario we provide means to determine the rank defect that is generically expected. We
adapt the most popular algorithm for LE computation (discrete QR [31]) to handle singular
fundamental solution matrices.

We do not discuss the theoretical problems related to the definition of solutions of the
hybrid system [28], and we assume solutions to be uniquely defined forward in time. This
clearly excludes some relevant cases, for instance, those where a discontinuity causes infinite
expansion (escaping) and generates multiple solutions for a given initial condition [41, 18,
17]. Analogously, we do not consider the cases where the reference trajectory reaches the
discontinuity manifold tangentially [27] (though we allow it to leave the manifold tangentially),
those where it reaches simultaneously two or more manifolds [39, 26, 50, 15], and those in
which it reaches a manifold infinite times in a finite amount of time [53]. In these cases, the
discontinuity mapping may not be differentiable, and the saltation matrix may be undefined.
As a consequence, the usual definitions of the fundamental solution matrix and LEs cannot
be used. Suitable indicators for the expansion or contraction of infinitesimal perturbations
should then be defined based on a nonlinear approximation of the hybrid dynamics. It is
worth noting that the evolution of a single perturbation in the case of simultaneous multiple
contacts of the reference trajectory has been considered by Dieci and Lopez [30] and later
extended [10] to n canonical perturbations to obtain a heuristic computation of Lyapunov
indicators.
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The paper is organized as follows. In section 2 the concept of the fundamental solution
matrix for a hybrid system and the role played by the saltation matrices at the discontinuities
are recalled. Section 3 contains the main theoretical results and classifies the cases leading
to a singular saltation matrix, while section 4 particularizes the results for Filippov systems.
Section 5 presents our (discrete QR) procedure for LEs computation in detail. The proposed
algorithm is applied in section 6 in two case studies. Conclusions and further directions of
research are discussed in section 7.

In the following, we use boldface letters for column vectors, the superscript “T” for trans-
position, and a subscript “x” for differentiation with respect to x. Hx(x), H : X ⊆ R

n → R,
is a row vector. I is the identity matrix, whereas kerA and imA denote the null space and
the image of matrix A.

2. The fundamental solution matrix in a hybrid system. Let us consider a dynamical
system whose dynamics is described by

(2.1) ẋ(t) = f(x(t)),

where x(t) ∈ X ⊆ R
n and f : X → R

n is a smooth vector field. Given the initial condition
x0 at time t0, we call ϕ(x0, t, t0) : Rn × R × R → R

n the flow of x0 at time t, i.e., x(t) =
ϕ(x0, t, t0). Given a reference initial condition x0 := x(t0) and its forward-time trajectory
x(t), the fundamental solution matrix ψ(t, t0) is defined as the unique matrix that satisfies
the relation

(2.2) x′(t)− x(t) = ψ(t, t0)(x
′(t0)− x0) +O(‖x′(t0)− x0‖2)

for any possible infinitesimal perturbation x′(t0) of x0. The fundamental solution matrix is
therefore associated with the reference trajectory originating at x(t0). For the smooth system
(2.1), it is obtained as the solution of the matrix initial value problem

(2.3) ψ̇(t, t0) = J(x(t))ψ(t, t0), ψ(t0, t0) = I,

where J(x(t)) is the Jacobian of f at x(t).
In order to define the fundamental solution matrix of a hybrid system’s trajectory, we

formally define hybrid systems as follows.
Definition 2.1. A hybrid system is a tuple {X,Q,F,G,R}, where X ⊆ R

n is the space of
the continuous variables x; Q ⊆ N is a set of values for the discrete variable q; F : X×Q→ R

n

is a collection of smooth vector fields Fq; G ⊂ X ×Q is a collection of discontinuity sets (or
guards), each composed of possibly intersecting (n − 1)-dimensional smooth manifolds in X;
and R : G→ X ×Q is a collection of reset maps.

The vector fields describe the continuous dynamics of the state, while the reset maps
trigger discontinuous transitions in the state and in the vector field itself, whenever the state
hits a discontinuity set. Let us denote by Gq ⊂ X and Rq : Gq → X, respectively, the
collection of discontinuity manifolds and the X-component of the reset map corresponding to
a specific value of the discrete variable q. The map Rq needs to be defined only at points
x that belong to Gq. However, many of the results that follow use the differential Rq,x(x),
and in order to compute this differential we must consider a smooth extension of Rq to an
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open neighborhood of x ∈ Gq. As we will see in Corollary 3.6, all our results are completely
independent of the choice of extension, so we can assume without loss of generality that such
an extension is given. Let us also partition Gq into the subset Ξq of points belonging to only
one smooth discontinuity manifold and the subset Υq of points belonging to the intersection
of two or more manifolds.

Definition 2.2. A trajectory of a hybrid system with initial conditions (x0, q) ∈ X × Q is
an integral x(t) of the vector field Fq up to the time t̄, where x̄ := x(t̄) ∈ Gq. Upon hitting
the discontinuity set, the state (x, q) is reset according to the reset map (Rq(x̄), q

′) = R(x̄, q),
and the integration proceeds following the new vector field Fq′ .

To obtain a sensible definition of the fundamental solution matrix we need to assume
some restrictions on the geometry of the reference trajectory at the points of discontinuity.
These restrictions are collected in assumptions (H.0), (H.1), and (H.2) which follow. First, as
anticipated in the introduction, we assume uniqueness of the (hybrid)-flow in forward time:
(H.0) The hybrid-flow ϕ(x′(t0), t, t0) for x′(t0) in a neighborhood of the reference initial

condition x0 is a single-valued function of t for all t ≥ t0.
Second, when an infinite number of resets occur in a finite time, Definition 2.2 cannot be
applied. Extensions of Definitions 2.1 and 2.2 that can overcome this obstacle are studied in
the hybrid systems literature [49] but fall outside the scope of this paper. In what follows, we
limit our analysis to
(H.1) trajectories undergoing a finite number of resets in any finite time interval.

Third, we assume a transversality condition on the points of intersection of the reference
trajectory with the discontinuity:
(H.2) Trajectory x(t) never reaches Υq ⊂ Gq, and it reaches Ξq ⊂ Gq transversely.
Indeed, at a point of discontinuity the matrix function J(x(t)) is discontinuous, and a straight-
forward solution of (2.3) in the sense of Carathéodory (i.e., a continuous function ψ(t, t0) whose
time derivative satisfies (2.3) almost everywhere) does not satisfy (2.2): the vector field switch-
ing and/or the state impact causes a sudden jump in the entries of the matrix ψ. However,
when the hybrid-flow ϕ(x0, t, t0) is differentiable in x0 for almost every t, letting

ψ−(t̄, t0) := limt→t̄− ψ(t, t0),

ψ+(t̄, t0) := limt→t̄+ ψ(t, t0),

the matrix ψ+(t̄, t0) can be expressed as a linear map of ψ−(t̄, t0), which allows the writing of
(2.3) as an equation piecewise-smooth in t. The hybrid-flow may not be differentiable in x0 for
t > t̄ if the trajectory x(t) is tangent to the discontinuity manifold at x̄, or if it simultaneously
reaches two or more manifolds at t̄ (i.e., if x̄ ∈ Υq).

2 In these two cases we lose the traditional
concept of fundamental solution matrix [30]. In contrast, if these two cases are excluded, that
is, provided that (H.2) holds, Aizerman and Gantmakher [2] observed that the differentiability
of the flow in x0 is ensured.

In general, it is not easy to prove that assumptions (H.0)–(H.2) hold globally for a given
system. However, all assumptions can be easily checked to hold in a neighborhood of a

2Seminal results concerning discontinuous systems, in which the trajectories intersect several surfaces of
discontinuity at the same time, can be found in [39].
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specific trajectory, numerically or analytically computed. We assume throughout the paper
that (H.0)–(H.2) hold in a neighborhood of the reference trajectory.

Representing the discontinuity set as the zero set of a smooth function H : X → R with
Hx(x̄) 	= 0,3 the saltation matrix is given by

(2.4) S := Rq,x(x̄) +
Fq′(Rq(x̄))−Rq,x(x̄)Fq(x̄)

Hx(x̄)Fq(x̄)
Hx(x̄)

(a proof of (2.4) can be found in [28]; note that we have Hx(x̄)Fq(x̄) 	= 0 by the transversality
assumption (H.2)). It is then possible to write

(2.5) ψ+(t̄, t0) = Sψ−(t̄, t0).

Unlike in smooth systems, where the group structure of the flow ensures invertibility of the
fundamental solution matrix, in a hybrid system formalized as in Definition 2.1, the hybrid-
flow under (H.0)–(H.2) forms a semigroup (solutions are not necessarily unique backward in
time), and the fundamental solution matrix need not be invertible, due to the singularity
of one or more of the saltation matrices along the trajectory x(t). The rank defect of the
elements at the left- and right-hand sides of (2.5) obey the following general rule (which we
report without proof).

Proposition 2.3. Given two matrices A,B ∈ R
n×n and such that dimker A = s > 0 and

dimker B = r ≥ 0, dimkerAB = r +m, where m := dim(ker A ∩ imB) ≤ s.
Therefore, when at time t̄ the reference trajectory crosses a discontinuity with a saltation

matrix S with rank defect s, the rank defects of ψ−(t̄, t0) and ψ+(t̄, t0) are r ≥ 0 and r+m ≤
r + s, respectively. When several singular saltation matrices are encountered, what typically
matters is the saltation matrix with largest rank defect. This follows from the following
proposition.

Proposition 2.4. Assuming

dim(kerSk ∩ imψ−(t̄k, t0)) = max{0,dim(kerSk) + dim(imψ−(t̄k, t0))− n},

where Sk, k = 1, 2, . . . , are the saltation matrices encountered along the reference trajectory
from x0 to x(t) at times t̄k, we have that

dimkerψ(t, t0) = max
k

dimkerSk.

Proof. For each k, let

sk := dimkerSk and rk := dimkerψ−(t̄k, t0).

Then, by the proposition’s assumption,

mk := dim
(
kerSk ∩ imψ−(t̄k, t0)

)
= max{0, sk + (n− rk)− n = sk − rk},

3Note that the discontinuity set Gq is a collection of possibly intersecting (n− 1)-dimensional smooth
manifolds. However, by hypothesis (H.2), for every x ∈ Ξq , the manifold is smooth in a sufficiently small
neighborhood of x.
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so that by Proposition 2.3 and since r1 = 0 we have dimkerψ+(t̄k, t0) = maxi∈{1,...,k} si.
Note that the assumption in Proposition 2.4 is the standard transversality condition for

two subspaces in an ambient space of dimension n, and it is, as such, typically satisfied.
However, higher rank defects can occur in special cases, when kerSk and imψ−(t̄k, t0) are in
nongeneric (i.e., not transverse) position. One such case is described at the end of section 4.

3. Singularity of the saltation matrix. In this section, we provide necessary and sufficient
conditions for the singularity of the saltation matrix S in (2.4), we discuss their geometric
meaning, and we characterize, case by case, the corresponding null space of S.

Consider a trajectory x(t) reaching Ξq transversely at point x̄ (recall hypothesis (H.2)).
The discontinuity set Ξq locally forms an (n − 1)-dimensional smooth manifold, which we
denote H, described by the zero set of the function H. Let H′ be the image of H through the
reset map Rq. Note that the tangent space to H′ at Rq(x̄) is the image through Rq,x(x̄) of the
tangent space toH at x̄. Thus, vectors tangent toH′ at Rq(x̄) necessarily belong to imRq,x(x̄).
When Rq,x(x̄) is singular, we use p := dimkerRq,x(x̄) and pH := dim(kerRq,x(x̄)∩kerHx(x̄)),
so that dimH′ = dimH− pH is equal to n− p if kerRq,x(x̄) 	⊂ kerHx(x̄) (because necessarily
pH = p− 1), and is n− 1− p otherwise (because obviously pH = p).

We have the following result.4

Theorem 3.1. The matrix S in (2.4) is singular if and only if at least one of the following
conditions is satisfied:

(i) Fq′(Rq(x̄)) is tangent to H′ at Rq(x̄);
(ii) dimH′ < dimH.
Note that the case in whichRq(x̄) is an equilibrium of the vector field Fq′ (i.e., Fq′(Rq(x̄)) =

0) is included in case (i), while the case Fq(x̄) = 0 is excluded by (H.2). To prove the above
theorem, we reformulate conditions (i) and (ii) algebraically in Lemmas 3.3 and 3.4, and we
use the following result (Proposition 3.2.1 in [34]).

Proposition 3.2. If b ∈ imA, then there exists a unique vector w such that

w ∈ imAT , Aw = b.

It can be found as the solution of the nonsingular system

[
A Z ′

ZT 0

] [
w
r

]
=

[
b
0

]
,

where the columns of the matrices Z and Z ′ form a base of kerA and kerAT , respectively.
Note that in the above proposition r = 0 always, and that we can equivalently write

w = A†b, where A† is the Moore–Penrose pseudoinverse of A [4].
Lemma 3.3. Case (i) in Theorem 3.1 is equivalent to the following mutually exclusive sets

of conditions:
(i.a) (i.a.1) dimkerRq,x(x̄) = 0,

(i.a.2) Hx(x̄)Rq,x(x̄)
−1Fq′(Rq(x̄)) = 0;

(i.b) (i.b.1) kerRq,x(x̄) 	⊂ kerHx(x̄),
(i.b.2) Fq′(Rq(x̄)) ∈ imRq,x(x̄);

4Hypotheses (H.0)–(H.2) are assumed to hold in a neighborhood of the reference trajectory x(t).
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(i.c) (i.c.1) dimkerRq,x(x̄) > 0,
(i.c.2) kerRq,x(x̄) ⊂ kerHx(x̄),
(i.c.3) Fq′(Rq(x̄)) ∈ imRq,x(x̄),
(i.c.4) wTFq′(Rq(x̄)) = 0,
where w is defined in Proposition 3.2, using A = Rq,x(x̄)

T and b = Hx(x̄)
T .

Proof. We first prove that each of the sets (i.a), (i.b), (i.c) implies case (i); then we prove
the converse.

(i.a): Under (i.a.1) the matrix Rq,x(x̄) is invertible, and H′ is (n − 1)-dimensional and
defined by {x : H ′(x) := H(R−1

q (x)) = 0}. The direction orthogonal to H′ at Rq(x̄) is
therefore given by the nonzero vector H ′

x(Rq(x̄)) = Hx(x̄)(Rq,x(x̄))
−1, so that (i.a.2) implies

the tangency.
(i.b): When Rq,x(x̄) is singular under (i.b.1), we have dimH′ = n − p, and the tangent

space to H′ at Rq(x̄) is imRq,x(x̄). In fact, given any u ∈ imRq,x(x̄) and w such that
u = Rq,x(x̄)w, there always exist wH tangent to H at x̄ and z ∈ kerRq,x(x̄) such that
w = wH + z (kerRq,x(x̄) and kerHx(x̄) span R

n by (i.b.1)). Hence, u is the image of wH
through Rq,x(x̄); i.e., it is tangent to H′ at Rq(x̄). Case (i) then follows from (i.b.2).

(i.c): Note that (i.c.2) implies Hx(x̄)
T ∈ imRq,x(x̄)

T (the null space of a matrix is or-
thogonal to the image of its transpose); thus by Proposition 3.2 there exists a unique vector
w ∈ imRq,x(x̄) such that Rq,x(x̄)

Tw = Hx(x̄)
T . This implies

wT
HRq,x(x̄)

Tw = 0

for all wH tangent to H at x̄, and

wT
HRq,x(x̄)

Tw′ 	= 0

for all w′ linearly independent from w and in imRq,x(x̄); i.e., the tangent space to H′ at
Rq(x̄) is the orthogonal complement of w in imRq,x. By (i.c.3) and (i.c.4), it follows that
Fq′(Rq(x̄)) is tangent to H′ at Rq(x̄).

We can now prove that case (i) implies one and only one of (i.a), (i.b), (i.c). We proceed
by partitioning the possible cases into three sets:

(A) dimkerRq,x(x̄) = 0;
(B) kerRq,x(x̄) 	⊂ kerHx(x̄);
(C) (C.1) dimkerRq,x(x̄) > 0,

(C.2) kerRq,x(x̄) ⊂ kerHx(x̄).
As we see next, the sets above respectively imply (i.a), (i.b), (i.c), and since the union of (A),
(B), (C) covers all possible cases, these implications complete our proof.

(A): The condition is the same as (i.a.1), while (i.a.2) follows by the same argument
expressed in the implication (i.a) above.

(B): The condition is the same as (i.b.1). Then, by the same argument expressed in the
implication (i.b) above, the tangent space to H′ at Rq(x̄) is imRq,x(x̄), so that (i) implies
(i.b.2), hence (i.b).

(C): (C.1) and (C.2) are the same as (i.c.1) and (i.c.2). Then, by the same argument
expressed in the implication (i.c) above, the tangent space to H′ at Rq(x̄) is composed of the
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vectors wH′ ∈ imRq,x(x̄) that are orthogonal to w in (i.c.4), so that Fq′(Rq(x̄)) must satisfy
(i.c.3) and (i.c.4), hence (i.c).

Lemma 3.4. Case (ii) in Theorem 3.1 is equivalent to the following condition:
(ii) pH > 0.
Proof. dimH′ = n−1− pH, whereas dimH = n−1.
Note that conditions (i.c.1) and (i.c.2) in Lemma 3.3 imply case (ii).
Proof of Theorem 3.1. We first prove that each of the sets (i.a), (i.b), (i.c), and (ii) implies

the singularity of S; then we prove that the singularity of S implies at least one of the sets
(i.a), (i.b), (i.c), and (ii).

To simplify the calculations, let us define

(3.1)

A := Rq,x(x̄),

u := Fq′(Rq(x̄))−Rq,x(x̄)Fq(x̄),

v :=
Hx(x̄)

T

Hx(x̄)Fq(x̄)
,

where Hx(x̄)Fq(x̄) 	= 0 under the hypothesis (H.2). The conditions of Lemmas 3.3 and 3.4 in
this notation become
(i.a) (i.a.1) dimkerA = 0,

(i.a.2) vTA−1u = −1;
(i.b) (i.b.1) kerA 	⊂ kervT ,

(i.b.2) u ∈ imA;
(i.c) (i.c.1) dimkerA > 0,

(i.c.2) kerA ⊂ kervT ,
(i.c.3) u ∈ imA,
(i.c.4) vTA†u = −1;

(ii) dim(kerA ∩ kervT ) > 0,
while (2.4) becomes

S := A+ uvT .

The translation is trivial except for (i.c.4), which we derive as follows. Starting fromwTFq′(Rq(x̄))
= 0, substituting w = (Rq,x(x̄)

T )†Hx(x̄)
T , and using (3.1), we obtain

wTFq′(Rq(x̄)) = Hx(x̄)Rq,x(x̄)
†Fq′(Rq(x̄))

(3.1)
= Hx(x̄)Fq(x̄)

(
vTA†u+ vTA†AFq(x̄)

)
= 0.

Then, noting that A†A is an orthogonal projector onto imAT , i.e., A†AFq(x̄) = Fq(x̄) − z,
where z is the component of Fq(x̄) in kerA, and using (3.1) once again, we obtain

vTA†u+ vTA†AFq(x̄)
(3.1), A†AFq∈imAT

= vTA†u+ 1− vT z = 0,

where we have dropped the term Hx(x̄)Fq(x̄) by (H.2). The translation is completed by noting
that, by (i.c.2), we have vT z = 0.

(i.a): (i.a.2) implies u 	= 0. Hence, the vector z := A−1u is well defined and nonzero, and,
using again (i.a.2), we have

Sz = AA−1u+ uvTA−1u = 0;
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i.e., z ∈ kerS and S is singular.
(i.b): Condition (i.b.1) implies dimkerA > 0. If u = 0, then S = A is singular. Otherwise,

by (i.b.2) and Proposition 3.2 there exists a unique w ∈ imAT (i.e., orthogonal to kerA) such
that Aw = u. By (i.b.1) we can take z ∈ kerA, z /∈ kervT such that vT (w′ + z) = −1. We
have S(w + z) = Aw + uvT (w + z) = u− u = 0; i.e., (w + z) ∈ kerS.

(i.c): If u = 0, then S = A is singular by (i.c.1), with kerS = kerA. Otherwise, by (i.c.3)
and Proposition 3.2 there exists w = A†u. We have Sw = AA†u + uvTA†u; using (i.c.3),
(i.c.4), and the fact that AA† is an orthogonal projector onto imA, Sw = u − u = 0; i.e.,
w ∈ kerS.

(ii): If u = 0, then by (2.4), S = A is singular with kerS = kerA. Otherwise, the
implication follows from (ii) by taking z ∈ kerA ∩ kervT .

We can now prove that dimkerS > 0 implies at least one of the sets (i.a), (i.b), (i.c), and
(ii). We proceed by partitioning the possible cases into four sets:

(I) (I.1) dimkerA = 0;
(II) (II.1) dimkerA > 0,

(II.2) dim(kerA ∩ kerS) = 0,
(II.3) u 	= 0;

(III) (III.1) dim(kerA ∩ kerS) > 0,
(III.2) u 	= 0;

(IV) (IV.1) dimkerA > 0,
(IV.2) u = 0.

As we see next, each of the sets above implies at least one of (i.a), (i.b), (i.c), (ii), and since
the union of (I)–(IV) covers all possible cases, these implications complete our proof.

(I): (I.1) is equal to (i.a.1). Together with dimkerS > 0, they imply the existence of z 	= 0
such that

Az+ uvT z = 0, with vT z 	= 0.

Left-multiplying the above equation by vTA−1, we obtain

vT z+
(
vTA−1u

)
vT z = 0,

which implies (i.a.2) and hence (i.a).
(II): By (II.1) and (II.2), given 0 	= z ∈ kerA, we have Sz = uvT z 	= 0, so that u 	= 0

((II.3) is superfluous) and vT z 	= 0, the latter being equivalent to (i.b.1). Moreover, taking
0 	= z ∈ kerS, we have Sz = Az+ uvT z = 0 with 0 	= Az ∈ imA by (II.2), so that the latter
equation implies (i.b.2), hence (i.b).

(III): By (III.1), given 0 	= z ∈ (kerA ∩ kerS), we have Sz = uvT z = 0, with u 	= 0 by
(III.2), so that we have vT z = 0, which implies case (ii).

(IV): (IV.2) means that

(3.2) Fq′(Rq(x̄)) = AFq(x̄).

Let us consider separately the case where Fq′(Rq(x̄)) is tangent to H′ at Rq(x̄) (including
the case Fq′(Rq(x̄)) = 0), and the case where Fq′(Rq(x̄)) 	= 0 is transverse to H′ at Rq(x̄).
In the first case we have (3.2) together with Fq′(Rq(x̄)) = AwH, with wH tangent to H
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Table 1
Each row describes a possible combination of the cases in Lemmas 3.3 and 3.4, distinguishing u = 0 from

u �= 0. The dimension s and a base of kerS are reported. Notation: p := dimkerRq,x(x̄) is ≥ 1 whenever
used (p ≥ 2 in rows 3 and 5); pH := dim(kerRq,x(x̄) ∩ kerHx(x̄)); z1, . . . , zp is a base of kerRq,x(x̄), with
z1, . . . , zp−1 ∈ kerHx(x̄); u := Fq′(Rq(x̄))−Rq,x(x̄)Fq(x̄); z := (Hx(x̄)Rq,x(x̄)

†u+Hx(x̄)Fq(x̄))/(Hx(x̄)zp)zp.

(i.a) (i.b) (i.c) (ii) u=0 s kerS
� 1 Rq,x(x̄)

−1u

� 1 Rq,x(x̄)
†u− z

� � p z1, . . . , zp−1, Rq,x(x̄)
†u− z

� � 1 z1

� � � p z1, . . . , zp

� � p+ 1 z1, . . . , zp, Rq,x(x̄)
†u

� � � p z1, . . . , zp

� pH z1, . . . , zpH
� � p z1, . . . , zp

at x̄; therefore 0 = A(Fq(x̄) − wH); i.e, Fq(x̄) − wH ∈ kerA. By the hypothesis (H.2),
Fq(x̄) −wH /∈ kerv, i.e., (i.b.1), whereas (i.b.2) is trivially satisfied by (3.2), hence (i.b). In
the second case, Fq′(Rq(x̄)) ∈ imA is not tangent to H′ at Rq(x̄), so that we have (i.c.1) (by
(IV.1)) and (i.c.2) (otherwise imA would be all tangent to H′ at Rq(x̄)). Conditions (i.c.1)
and (i.c.2) imply (ii).

Corollary 3.5. The rank defect s of S and a base of kerS for each case in Lemmas 3.3 and
3.4 are as shown in Table 1.

Proof. Condition (i.a.1) excludes (i.b), (i.c.), (ii), and u = 0, and the first row of the table
follows from the computation of ker S in the implication (i.a) in the proof of Theorem 3.1.

Rows 4, 5, 7, 9 pertain to the case u = 0. Here S = Rq,x(x̄), and regardless of which set
of conditions is satisfied, we have that kerS = kerRq,x(x̄).

Let’s now restrict our attention to the cases u 	= 0. (i.b) can occur together with (ii), or
alone. If (i.b) and not (ii) (row 2), then from the proof of Theorem 3.1 (implication (i.b)), we
have that kerS is one-dimensional and spanned by vector w+ z, where z ∈ kerA is such that
vT (w+z) = −1. Imposing this condition and letting z := ζzp, we obtain ζ = −(vTw1)/(v

T zp).
Substituting (3.1) into this expression, we obtain the expression of z in the caption of Table 1.

If (i.b) and (ii) (row 3), the vector w + z found above together with all vectors in
kerRq,x(x̄) ∩ kerHx(x) form a base of kerS.

Case (i.c) (row 6) always implies (ii). From the proof of Theorem 3.1 (implication (i.c)),
we have that kerS is spanned by a base of kerRq,x(x̄) and by vector w.

Condition (ii) may also occur alone (row 8) when Fq′(Rq(x̄)) is not tangent to H′ at Rq(x̄).
In this case kerS = kerRq,x(x̄) ∩ kerHx(x̄).

Corollary 3.6. Let R′
q and R′′

q be two different smooth extensions of the same reset map Rq

to an open neighborhood of x ∈ Gq. The ranks of the saltation matrices based on R′
q and R′′

q

at x are the same.
In other words, as we expected, the rank property of the saltation matrix depends on

the properties of Rq : Gq → X but not of its smooth extension, even though the algebraic
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formula of the saltation matrix uses the differential Rq,x(x) and therefore requires the choice
of a smooth extension of Rq to an open neighborhood in X.

Finally, we make a remark about the case Fq′(Rq(x̄)) = 0.
Corollary 3.7. If Rq(x̄) is an equilibrium of the vector field Fq′ , then the matrix S in (2.4)

is singular.

4. The special case of the Filippov systems. Case (i.a) in Theorem 3.1 is particularly
significant for a special class of discontinuous systems known as the Filippov (or piecewise
smooth) systems [33]. A Filippov system is a collection of vector fields Fq defined on domains
Dq ⊂ R

n separated by a set of (possibly intersecting) (n− 1)-dimensional smooth manifolds.
A solution of a Filippov system is any absolutely continuous function that satisfies almost
everywhere the differential inclusion

(4.1) ẋ ∈ conv(Fq1(x), . . . , Fqn(x)),

where conv is the convex hull and Dq1 , . . . ,Dqn is the set of domains that intersect every
arbitrary small neighborhood of x. By the above definition, a given initial condition x may
admit multiple solutions, whenever the differential inclusion (4.1) admits multiple trajectories
starting at x, and solutions may belong to the interior of a domain or they may slide along a
boundary between two or more domains when this is consistent with (4.1). More precisely, if
the convex hull of Fq1 , . . . , Fqn has no intersection with the tangent space to the boundary, the
only admissible solution of (4.1) is one that crosses the boundary. If the convex hull intersects
the tangent space to the boundary, but all vector fields locally point out of their respective
domains, then locally solutions of (4.1) are bound to slide on the boundary. If the convex hull
intersects the tangent space to the boundary, and some of the vector fields locally point inside
their domain, then (4.1) admits both solutions that slide along the boundary and solutions
that leave the boundary and enter one of the neighboring domains. Discontinuity boundaries
are consequently partitioned into crossing, sliding, and escaping regions.

In light of Definition 2.1, Filippov systems are a particular type of hybrid systems, where
a value of the discrete variable q is assigned to each of the smooth domains of the Filippov
system as well as to each of the sliding regions. For each q, the discontinuity set Gq collects
all the discontinuity manifolds triggering a switch of the vector field; e.g., the manifold where
one of the hybrid-flows is tangent to a discontinuity manifold marks the exit from a sliding
region, thus triggering the switch from a sliding to a regular vector field. The switch is defined
by the reset map (Rq(x̄), q

′) = R(x̄, q), whose X-component Rq is always the identity. The
existence of multiple solutions calls for a more general notion of trajectory than the one given
in Definition 2.2, but as long as we keep away from the escaping regions, Definition 2.2 can
be applied.

From Theorem 3.1 (case (i)) and Corollary 3.5 we have the following.5

Corollary 4.1. Given a Filippov system with unique forward-time solutions, the saltation
matrix upon entering at x̄ an (n−1)-dimensional sliding region is singular, with rank defect 1
and null space spanned by F1(x̄)−F2(x̄), F1 and F2 being the vector fields defined on the two
sides of the sliding region. The saltation matrix upon exiting the sliding region is the identity.

5Hypotheses (H.0)–(H.2) are assumed to hold in a neighborhood of the system’s reference trajectory.
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Σ

x0
x(t)

Figure 1. A three-dimensional example of the first-order deformation of the sphere Σ (left) into an ellipsoid
(right). The vectors of a generic base of R3 tend to align, as t → ∞, with the principal axis of the ellipsoid.

Proof. The first part of the statement follows by applying Theorem 3.1 (case (i)), and
Corollary 3.5. For the second part, note that on exiting sliding, we have Fq′(Rq(x̄)) −
Rq,x(x̄)Fq(x̄) = 0 in (2.4).

Our analysis extends some known results obtained by Dieci and Lopez in 2011 [30] for
the case of Filippov systems. Case (i.a) of Theorem 3.1 generalizes their Lemma 2.3. More-
over, Theorem 2.8 in [30] states that if a trajectory satisfying our hypotheses (H.1) and (H.2)
encounters several distinct (n − 1)-dimensional sliding regions, the resulting fundamental so-
lution matrix generically has rank defect 1. This directly follows from our Proposition 2.4 and
Corollary 4.1.

Another interesting case occurs when a trajectory, already sliding on an (n−1)-dimensional
discontinuity manifold H1 along the vector field Fq, reaches the intersection between two such
manifolds at some x̄ and begins sliding in the (n − 2)-dimensional intersection along the
vector field Fq′ (see “From one surface to the intersection” on page 945 in [30]). According
to Corollary 4.1, the null space of the saltation matrix S encountered at x̄ is spanned by
Fq′(x̄) − Fq(x̄), which is tangent to H1 (both vectors Fq′(x̄) and Fq(x̄) are tangent to H1

at x̄). If dimkerψ−(t̄, t0) = 1, then imψ−(t̄, t0) can be shown to be the tangent space
to H1 at x̄. Therefore we have kerS ⊂ imψ−(t̄, t0), so that according to Proposition 2.3,
dimkerψ+(t̄, t0) = 2. This is an example where the transversality assumption of Proposition
2.4 is broken.

5. Numerical computation of the Lyapunov exponents in a hybrid system. Let us first
review the concept of Lyapunov exponents (LEs) in a smooth system such as (2.1). Consider
a sphere Σ centered at x0 (see Figure 1 (left)). The image of any point x′(t0) ∈ Σ under the
flow at some t > t0 is given to first order by

x′(t) = x(t) + ψ(t, t0)(x
′(t0)− x0),

where ψ(t, t0) is the fundamental solution matrix defined by (2.2). Since the above system is
linear, the sphere is mapped to first order onto an ellipsoid (see Figure 1 (right)). Assuming
the radius of the sphere at time t0 to be 1, the lengths of the principal axes of the ellipsoid at
time t are the singular values σ1(t) ≥ σ2(t) ≥ · · · ≥ σn(t) of the matrix ψ(t, t0). The ith LE λi
of the reference trajectory x(t) measures the average exponential growth of the ith principal
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axis of the ellipsoid:

(5.1) λi := lim
t→∞

1

t
ln σi(t), i = 1, . . . , n.

The computation of the LEs is based on the computation of the fundamental solution
matrix ψ(t, t0). The most popular numerical methods are variations of the discrete QR algo-
rithm [5, 6, 52, 48], which we briefly recall here in continuous time. The idea is to work on a
set T of time instants {t0, t1, t2, . . .}, tj > tj−1, and compute the fundamental solution matrix
ψ(t, tj−1) in each time interval [tj−1, tj ], j ≥ 1. This is done by simulating the linearized dy-
namics ψ̇(j)(t, tj−1) = J(x(t))ψ(j)(t, tj−1) starting from the initial condition ψ(j)(tj−1, tj−1) =
Q(j−1) obtained for j ≥ 2 from the decomposition ψ(j−1)(tj−1, tj−2) = Q(j−1)R(j−1), with
Q(0) = R(0) = I. Then, by the initial condition ψ(tj−1, tj−1) = I used in the definition
(2.3), we obtain ψ(t, tj−1)Q

(j−1) = ψ(j)(t, tj−1) for t ∈ [tj−1, tj ], and the composition of the
fundamental solution matrices gives

(5.2) ψ(tj , t0) =

j∏
k=1

ψ(tj−k+1, tj−k) = Q(j)
j∏

k=1

R(j−k+1).

The n LEs associated to the reference trajectory x(t) are approximated by

λi = lim
j→∞

1

tj − t0

j∑
k=1

ln|R(k)
i,i |.

Accurately performing QR decomposition (typically resorting to the Gram–Schmidt algo-
rithm) is extremely important from a numerical standpoint, since the magnitude of each of the
columns of ψ(t, t0) tends to diverge/vanish if the column is associated to a positive/negative
LE [52]. The repeated reorthonormalization of the fundamental matrix allows us to avoid
numerical cancellations.

Let us now focus on the case of a hybrid system (under hypotheses (H.0)–(H.2)). Consider
the first singularity reached by the reference trajectory x(t) at time t = t̄ ∈ [tj−1, tj ]; i.e., a
singular saltation matrix S with dimkerS = s > 0 is encountered at time t = t̄, the rank of
ψ(j)(t̄, tj−1) is n, and dimkerSψ(j)(t̄, tj−1) = s according to Proposition 2.3. We then insert t̄
as the jth time instant in the set T and evaluate the QR decomposition of the singular matrix
Sψ(j)(t̄, tj−1). This produces an upper triangular matrix R̄ with a bottom-right s× s block of
null elements and a matrix Q̄ = [q̄1| · · · |q̄n−s| · · · ] with the first n− s columns orthonormal.
The LEs corresponding to the s null elements of the diagonal of R̄ are set to −∞, whereas
only the n− s columns [q̄1| · · · |q̄n−s] of Q̄ (those corresponding to nonzero diagonal elements
of R̄) are used to initialize the following reduced variational problem:

(5.3)
ψ̇
(j+1)
R (t, t̄) = J(x(t))ψ

(j+1)
R (t, t̄),

ψ
(j+1)
R (t̄, t̄) = [q̄1| · · · |q̄n−s],

where ψ
(j+1)
R (t, t̄) is an n× (n− s) matrix. The computation of the remaining n− s LEs can

now be restarted using the solution of (5.3) along the trajectory x(t) (analogously to what has
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been done in the literature on DAEs; see, e.g., [43, 44]). Further intersections of discontinuity
sets characterized by singular saltation matrices may induce further losses in the dimension of
the ellipsoid. When this happens, the dimension of the reduced variational system is adjusted
accordingly.

It is worth remarking that, in a hybrid system, the LEs computed along a trajectory
do not necessarily coincide with those of the attractor reached by the trajectory. This is
a well-known property of some atypical trajectories in a smooth system (consider, e.g., the
stable manifolds of the infinitely many saddle cycles embedded in chaotic attractors), but in
a hybrid system the phenomenon can happen for typical trajectories, that is, starting from
open sets of initial conditions within the basin of attraction. Indeed, even if the attractor does
not intersect any discontinuity set, trajectories from further away in the basin of attraction
can encounter discontinuities. Some of the LEs of these trajectories may then be at −∞,
while the others coincide with some of the attractor’s LEs. An example of this is presented in
section 6.1, where the LEs of trajectories converging to a three-dimensional chaotic attractor
lose, due to a discontinuity, the finite negative exponent of the attractor.

6. Examples.

6.1. Tritrophic food chain with conditional harvesting of the superpredator. We con-
sider a tritrophic food chain model [35, 3]. The quantities x1, x2, and x3 represent the
abundances of the prey, predator, and superpredator, respectively. The dynamics of the food
chain in the absence of harvesting is governed by the equations

(6.1) F1(x) :=

⎛
⎜⎜⎜⎜⎜⎝

rx1

(
1− x1

K

)
− a1x1x2

1 + a1b1x1

e1
a1x1x2

1 + a1b1x1
−m1x2 −

a2x2x3
1 + a2b2x2

e2
a2x2x3

1 + a2b2x2
−m2x3

⎞
⎟⎟⎟⎟⎟⎠
.

We assume that harvesting is allowed when the superpredator abundance is above a threshold
x̄3. This introduces an additional term −Γx3 in the equation of ẋ3 when x3 > x̄3.

Such a system is typically modelled as a Filippov system, with the vector field above
threshold given by

(6.2) F2(x1, x2, x3) := F1(x1, x2, x3) +

⎛
⎝ 0

0
−Γx3

⎞
⎠ .

It is easy to show that sliding is always possible on the manifold H := {x : x3 − x̄3 = 0},
provided that x ∈ H belongs to the set A := {x : F1,3(x) > 0 and F2,3(x) < 0}, Fi,j

being the jth component of Fi; i.e., the sliding region is the set {x : x ∈ H ∩ A}. The
flow crosses from below H in {x : x ∈ H\A, F1,3(x) > 0} and crosses from above H in
{x : x ∈ H\A, F1,3(x) < 0}.

We can write the model as a hybrid system using three domains, describing dynamics below
threshold (domain 1), above threshold (domain 2), and sliding (domain 3). In domain 1, the
vector field is (6.1), the discontinuity set is G1 = {x : x ∈ H, F1,3(x) > 0}, and the reset
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(a) (b)

Figure 2. A projection on the (x2, x3) plane of the chaotic attractor exhibited by the tritrophic food chain
model with conditional harvesting of the superpredator. (a) Γ = 0.01, x̄3 = 13, the attractor is internal to
region 1 with no harvesting. (b) Γ = 0.01, x̄3 = 12, the attractor involves repeated sliding. Other parameters
as in (6.3).

map is R(x, 1) = (x, 2) when x ∈ H\A, R(x, 1) = (x, 3) otherwise. In domain 2, the vector
field is (6.2), the discontinuity set is G2 = {x : x ∈ H, F2,3(x) < 0}, and the reset map is
R(x, 2) = (x, 1) when x ∈ H\A, and R(x, 2) = (x, 3) otherwise. When the system is sliding
(domain 3), the vector field is

F3(x1, x2, x3) :=

⎛
⎜⎜⎜⎝

rx1

(
1− x1

K

)
− a1x1x2

1 + a1b1x1

e1
a1x1x2

1 + a1b1x1
−m1x2 −

a2x2x3
1 + a2b2x2

0

⎞
⎟⎟⎟⎠ ,

the discontinuity set is G3 = {x : F1,3(x) = 0 or F2,3(x) = 0}, and the reset map is R(x, 3) =
(x, 1) when F1,3(x) = 0, and R(x, 3) = (x, 2) otherwise.

We set the system parameters as in Belykh, Piccardi, and Rinaldi [3], i.e.,

r = 1.15, K = 1.07,

a1 = 5, b1 = 0.6, m1 = 0.4, e1 = 1,(6.3)

a2 = 0.1, b2 = 20, m2 = 0.0037, e2 = 1,

and use harvesting Γ = 0.01. If the harvesting threshold x̄3 is sufficiently high (e.g., x̄3 = 13),
the flow of F1 is characterized by the well-known tea-cup chaotic attractor (see Figure 2(a)),
characterized by LEs {λ1 ≈ 0.0052, λ2 = 0, λ3 ≈ −0.945}. As expected from our discussion in
section 5, the trajectories reaching the attractor after a transient sliding (see, e.g., the gray
orbit in Figure 2(a)) lose the negative exponent, which is pushed to −∞, while the other
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(a) (b)

Figure 3. The rates of convergence of the two nondegenerate LEs. (a) The computation starts at x0 =
(1, 0.5, 12)T and t0 = 0. At t = t̄ ≈ 4.4344 the trajectory first reaches the sliding region, and the corresponding
saltation matrix is singular. (b) x0 = (1, 0.5, 11)T , t0 = 0, t̄ ≈ 4.2000. Parameter values as in Figure 2.

two exponents converge to the positive and zero exponents of the attractor (see Figure 3(a)).
The fact that the most negative exponent of the attractor is the one lost in the trajectories
is typical for transient sliding, since the perturbation directions which are not eliminated by
the discontinuity tend to align with the leading exponents of the attractor.

Reducing the harvesting threshold x̄3, the chaotic attractor eventually grazes the discon-
tinuity manifold H and then becomes a sliding chaotic attractor (e.g., for x̄3 = 12 in Figure
2(b)). Now, even starting the computation from an initial condition on the attractor, a sin-
gular saltation matrix is encountered at the first onset of sliding at time t = t̄, setting one
exponent to −∞. As expected generically, all the subsequent sliding segments of the reference
trajectory imply no further rank loss in the fundamental solution matrix, which remains of
rank 2 for t > t̄. The two remaining finite LEs are the positive one (giving the chaoticity of
the attractor) and the null one (see Figure 3(b)). Note that the largest exponent is smaller
than it was before the chaotic attractor hit the discontinuity. This suggests that the discon-
tinuity has a stabilizing effect also in the directions not directly absorbed by the null space
of the saltation matrix. This is further supported by reducing the harvesting threshold x̄3
even more. Though we don’t show this in the plots, a further reduction of x̄3 suppresses the
chaotic dynamics, which is reduced to a stable limit cycle.

6.2. Vertical hopper. Consider the vertical hopper depicted in Figure 4(a), first proposed
by Dankowicz and Piiroinen [20] and later used by Burden, Revzen, and Sastry [13]. The mass
M is suspended above the mass m through an actuated linear spring with elastic constant
k and nominal length l0 + sin(wt)a/k. This could model, for instance, a series elastic linear
actuator driven by a periodic control signal. The lower mass is subject to viscous drag with
coefficient b, and the whole system is subject to gravity. The impacts of the mass m with
the ground are assumed perfectly inelastic (i.e., the mass sticks to the ground upon impact).
When m is on the ground, the dynamics of the system is given by the equations

(6.4) F1(x) =

⎛
⎜⎜⎜⎜⎜⎝

x2
k(l0−x1)+a sin(wx5)−Mg

M

0
0
1

⎞
⎟⎟⎟⎟⎟⎠
,
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M

m

g

(a) (b)

Figure 4. A sketch of the vertical hopper (a). The rates of convergence of the nondegenerate LEs λ2 and
λ3 (b). The λ1 null exponent is not shown. The computation started at x0 = (1.88, 1.96, 1, 1, 0)T and t0 = 0.
At t = t̄ ≈ 2.3201 a singular transition matrix is met for the first time.

where x1 and x3 are the distances of the masses M and m from the ground, whereas x2 and
x4 are their velocities. In (6.4) the system has been made time invariant by introducing the
phase variable x5. The hopper loses contact with the ground when the system reaches H1 :=
{x : k(x1 − l0)− a sin(wx5)−mg = 0}; the x component of the reset map is R(x, 1) = (x, 2).

Once contact with the ground is lost, the system obeys the equations

(6.5) F2(x) =

⎛
⎜⎜⎜⎜⎜⎝

x2
k(l0+x3−x1)+a sin(wx5)−Mg

M
x4

k(x1−l0−x3)−a sin(wx5)−bx4−gm
m

1

⎞
⎟⎟⎟⎟⎟⎠

until the trajectory reaches H2 := {x : x3 = 0}. The corresponding reset map is

R(x, 2) =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
0
x5

⎞
⎟⎟⎟⎟⎠ , 1

⎞
⎟⎟⎟⎟⎠ .

The variable x5 is reset to 0 by the map when a trajectory reaches the manifold H3 := {x :
H3(x) = x5 − 2π/ω = 0}, so we must introduce a third reset map:

(6.6) R(x, q) =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

x1
x2
x3
x4
0

⎞
⎟⎟⎟⎟⎠ , q

⎞
⎟⎟⎟⎟⎠ .

The hopper can thus be modelled as a hybrid system with two regions D1 and D2, and q in
(6.6) is 1 or 2 depending on the current region of x. In D1 the vector field is (6.4), and the
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discontinuity set is G1 = H1 ∪ H3; in D2 the vector field is (6.5), and the discontinuity set
is G2 = H2 ∪ H3. When the system evolves in D2, and G2 is reached on H2, it is easy to
verify that case (ii) of Theorem 3.1 is satisfied. With reference to the notation of Table 1,
we have kerR2,x ⊂ kerH2,x

6 (case (i.c) of Lemma 3.3), and u 	= 0. As a consequence, the
corresponding saltation matrix S2 is singular with dimkerS2 = dimkerR2,x+1 = 2. All other
saltation matrices are invertible.

With parameters (m,M, k, b, l0, a, w, g) = (1, 2, 10, 5, 2, 20, 2π, 2) the above system exhibits
a limit cycle (numerically found in [13]). The LEs are depicted in Figure 4(b). As expected,
two exponents are infinitely negative, one is equal to zero, and the remaining two are equal
and negative (λ2 = λ3 ≈ −0.298).

7. Conclusions. Using the hybrid systems formalism, we have identified the necessary and
sufficient conditions for noninvertibility of the fundamental solution matrix in a discontinuous
system. We have excluded from our analysis only the cases where the hybrid-flow is not
uniquely defined and those where a trajectory reaches a discontinuity set tangentially or
where it reaches a corner of the discontinuity set, since in these cases, which are nevertheless
nongeneric, we lose the traditional concept of fundamental solution matrix. A comprehensive
study of the invertibility conditions for the aforementioned nongeneric cases would require the
analysis of an inordinate number of different local configurations, which we leave for future
research.

Noninvertibility of the fundamental solution matrix of a reference trajectory implies that
the trajectory is infinitely attractive, meaning that some or all perturbations are absorbed in
finite time rather than dying out asymptotically. This feature can be used as a means for
dimension reduction, as a tool to achieve finite-time convergence, or to stabilize otherwise
unstable dynamics. Our result is especially valuable in the light of Theorem 3.1, which states
that noninvertibility occurs if and only if one of two simple geometric conditions is verified.
This simplifies the task of checking invertibility and of designing systems where a singular
fundamental solution matrix is needed. Condition (i) of Theorem 3.1—tangency between
a discontinuity manifold and the flow departing from it—is always verified at the onset of
sliding in a piecewise smooth discontinuous system. Since these systems appear frequently
in mechanics and control theory, we have devoted a section to discussing this special case.
Condition (ii)—singularity of an impacting map regulating jumps in state space—is typical
of mechanical impacts with no restitution.

A section has been devoted to the relation between flow noninvertibility and LEs. Unlike in
smooth systems, where the LEs computed along trajectories converging to the same attractor
(almost everywhere) coincide with the attractor’s exponents, in hybrid systems there can be
open sets of initial conditions for which some of the attractor’s exponents (typically the most
negative) are “invisible” and replaced with −∞ by the infinite attractiveness of the trajectory.
The full history of the discontinuities crossed by a trajectory thus matters, and the resulting
LEs are a property of the whole trajectory, rather than of its limit set.

Finally, a numerical procedure which allows the computation of the LEs of a noninvertible
flow by resorting to a properly reduced variational system has been presented and applied in
two examples.

6Note that in this particular example kerR2,x and kerH2x do not depend on the discontinuity point.
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