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Abstract Coordinated multirobot exploration involves

autonomous discovering and mapping of the features

of initially unknown environments by using multiple

robots. Autonomously exploring mobile robots are usu-

ally driven, both in selecting locations to visit and in

assigning them to robots, by knowledge of the already

explored portions of the environment, often represented

in a metric map. In the literature, some works addressed

the use of semantic knowledge in exploration, which,

embedded in a semantic map, associates spatial con-

cepts (like ‘rooms’ and ‘corridors’) with metric entities,

showing its effectiveness in improving the total area ex-

plored by robots. In this paper, we build on these results

and propose a system that exploits semantic informa-

tion to push robots to explore relevant areas of initially

unknown environments, according to a priori informa-
tion provided by human users. Discovery of relevant

areas is significant in some search and rescue settings,

in which human rescuers can instruct robots to search

for victims in specific areas, for example in cubicles if a

disaster happened in an office building during working
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hours. We propose to speed up the exploration of spe-

cific areas by using semantic information both to select

locations to visit and to determine the number of robots

to allocate to those locations. In this way, for example,

more robots could be assigned to a candidate location

in a corridor, so the attached rooms can be explored

faster. We tested our semantic-based multirobot explo-

ration system within a reliable robot simulator and we

evaluated its performance in realistic search and res-

cue indoor settings with respect to state-of-the-art ap-

proaches.

Keywords Coordinated multirobot exploration ·
Semantic map · Search and rescue

1 Introduction

Coordinated multirobot exploration (Burgard et al, 2005)

autonomously discovers features of initially unknown

environments by using mobile robots equipped with

sensors. Exploration is fundamental in tasks like map

building (Thrun, 2002) and search and rescue (Tadokoro,

2010). Decisions about where to go next and about

which robot goes where are crucial in coordinated mul-

tirobot exploration and are usually made according to

information extracted from the known portion of the

environment, represented in a metric map that robots

incrementally build. A metric map represents the spa-

tial features of the environment, like the position of

obstacles. In the last years, several methods have been

proposed to build semantic maps of environments (like

(Wolf and Sukhatme, 2008) and (Mozos et al, 2005)),

which label some spatial elements with high-level hu-

man concepts. For example, areas of a metric map can

be labeled as ‘corridor’ or ‘room’, thus providing knowl-

edge about the structure of the environment. Despite
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the great effort in constructing semantic maps, the study

of their use for exploration is still rather limited.

In this paper, we contribute to this study by present-

ing a coordinated multirobot exploration system that

operates in search and rescue settings and that exploits

semantic labels to explore relevant areas of environ-

ments. A relevant area is defined as a portion of the

environment that is considered of interest according to

what human users communicate to the system. Our sys-

tem is composed of multiple robots equipped with laser

range scanners that operate according to the following

steps: they (a) perceive the surrounding environment,

(b) integrate the perceived data within a metric and a

semantic map representing the environment known so

far, (c) decide where to go next and who goes where,

and (d) go to the assigned target locations and start

again from (a). In this work, we focus on the decision

making (step (c)).

Some works (e.g., (Calisi et al, 2009; Stachniss et al,

2008)) have already addressed the problem of exploit-

ing semantic knowledge to improve exploration, finding

out that the use of semantic information can reduce the

time required to cover a given amount of area and can

increase the total amount of area mapped by robots in

a given time interval. In this paper, we extend these

results by showing that semantic knowledge can also

be used to significantly improve the exploration of rel-

evant areas of indoor environments. We assume that a

priori and reliable information about the areas of the

environment that are considered relevant is available,

for example, provided by humans. This assumption is

of interest in realistic scenarios. In a search and rescue

setting, the a priori information could be the possible

location of victims or the preferred areas to search first,

given by human rescuers. For example, if a disaster hap-

pens during office hours, victims are most likely located

in the offices, and, thus, robots should focus on search-

ing small-size rooms. If it happens during lunch time,

robots should head to large-size rooms, like a canteen.

In the following of this paper, we consider two kinds of

a priori information about victim location: victims in

small rooms and victims in big rooms. However, our ap-

proach can be applied to more general settings with ar-

bitrary a priori information coming from human users.

We propose to exploit semantic information to select

interesting locations to visit and, differently from the

literature, to assign more robots to a single location.

For example, in an indoor environment, if a location

lies in an area labeled as ‘corridor’, then that area could

be privileged by sending there several robots, so that

rooms, typically attached to corridors, can be explored

faster.

Our system originally addresses the following prob-

lem: To what extent is it possible and convenient to ex-

ploit semantic information to efficiently explore areas

(of an initially unknown environment) that are con-

sidered relevant? To the best of our knowledge, none

of the works present in the literature has addressed

such research question. The main original contribution

of this paper is thus a system that exploits semantic

information to improve exploration of relevant areas.

Specifically, we propose a method for evaluating can-

didate locations, which is a variant of that presented

in (Basilico and Amigoni, 2011), and a method for allo-

cating robots to candidate locations. The contributions

of this paper significantly extend the preliminary results

in (Cipolleschi et al, 2013) and include a more com-

plete experimental analysis of the behavior and benefits

of the proposed multirobot system, also involving ad-

ditional experiments using state-of-the-art approaches

for comparison and the deployment of more robots.

This paper is structured as follows. The next sec-

tion surveys the methods that have been proposed to

perform the decision making step (c) in the context of

coordinated multirobot exploration. Section 3 presents

the proposed multirobot exploration system. Section 4

shows extensive experimental simulated activities with

the aim to display the effectiveness of the proposed ap-

proach. Finally, Section 5 concludes the paper.

2 Related work

Robotic exploration is the task in which mobile robots,

equipped with on-board sensors, are employed in the it-
erative online process presented in the previous section

with the goal to discover (initially unknown) features

in environments. The mainstream approach to robotic

exploration (Yamauchi, 1998) identifies some candidate

locations on the frontiers between known (already ex-

plored) and unknown portions of the environment, eval-

uates them, and assigns them to robots, iteratively. In

this paper, we are interested in problems of searching

targets in an initially unknown environment, by using

multiple mobile robots, with a semantic map and some

a priori reliable information about the location of the

targets (e.g., victims most likely located in offices of a

building), which is provided by humans. In addressing

these issues, and in order to clearly present our contri-

bution, we tear apart the aspects of evaluating the can-

didate locations (exploration strategy) and of allocating

robots to candidate locations (coordination method).

In the following, we present a representative sample

of the several exploration strategies and coordination

methods (focusing on those using semantic information
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for speeding up autonomous exploration of initially un-

known environments) presented in literature.

2.1 Exploration strategies

In the literature, exploration strategies usually employ

a utility function that combines different criteria, which

characterize each candidate location, to assess the good-

ness of different candidate locations. Most of the criteria

considered by exploration strategies are only relative to

metric information, namely information that can be de-

rived from metric maps that robots build. For example,

the robotic exploration system of Gonzáles-Baños and

Latombe (2002) combines, in an exponential function,

the distance between a robot r and a candidate loca-

tion p and the expected amount of information that r

can acquire at p (measured as the maximum amount

of unknown area visible from p). A system using the

same two criteria, but combining them in a linear func-

tion, is that of Burgard et al (2005). The system pro-

posed by Basilico and Amigoni (2011) adds a criterion

that measures the probability that r, once in p, can

communicate with a fixed base station (like Visser and

Slamet (2008)), and combines all the criteria using a

theoretically-grounded approach.

Only few exploration systems use semantic informa-

tion to evaluate candidate locations and assign them to

the robots. An early attempt in this direction is that

of Kuipers and Byun (1981), in which candidate loca-

tions with a large distinctiveness (e.g., located at the in-

tersections of corridors) are privileged. Specifically, the

authors, without explicitly considering semantic infor-

mation, use a geometric measure, which derives from

finding points that are equally-distant to close obsta-

cles, and apply a hill-climbing control strategy to find

the robot’s exploration path, so that distinctiveness is

maximized. They show the goodness of the exploration

path found through a qualitative analysis of the solu-

tion obtained during simulations.

The work in (Stachniss et al, 2008) exploits the

knowledge on the structure of an indoor environment

(represented as a hidden Markov model) to drive robots

to select, first, candidate locations that are in corridors.

For each robot r and each candidate location p, the dif-

ference between the initial utility of p (which is equal

for all frontiers and is initialized at 1, not considering

any features of p) and the distance between the cur-

rent position of r and p is calculated. The initial utility

of candidate locations that are in corridors is multi-

plied by γ (set to 5 in the experimental activity). Then

the method greedily allocates the candidate locations to

the robots by selecting the pair r and p that maximizes

the above difference. Experimental results (performed

in simulation) show that the approach is effective in

decreasing the time required to explore some environ-

ments with respect to an approach that does not update

the initial utility of corridors.

Another work that uses semantic information to im-

prove exploration is presented in (Calisi et al, 2009). In

this case, contextual information related to the mis-

sion (e.g., the relative importance of a goal with re-

spect to another goal), to the environment (e.g., the

presence of rooms and corridors and the difficulty for

traversing a given area and for detecting victims in

that area), and to the agents (e.g., the presence of loop

closures for improving localization of robots) is repre-

sented by a prolog rule-based system and exploited

to enhance the performance of a robotic system oper-

ating in a search and rescue scenario. The experiments

(performed in simulation) use a single robot and show

that the proposed approach can significantly increase

the area mapped by the robot within 15 minutes.

Another system that exploits the structure of the

environment for determining the best candidate loca-

tions and assigning them to the robots is presented

in (Wurm et al, 2008). The known portion of the map

of the environment is segmented and a single robot is

assigned to (one of the frontiers of) each segment. The

utility function used to assign a robot r to a frontier

p considers the distance from the current position of

r to p. Experimental results in simulation show that

the approach can significantly reduce the overall explo-

ration time for realistic environments with respect to a

closest-frontier approach that assigns to each robot the

closest candidate location. Also, the authors validated

the method with two real robots in an environment,

qualitatively analyzing the paths they follow.

All these works that embed semantic information

in the exploration strategy show that the total area ex-

plored in a given time interval can be improved by using

semantic information, but do not exploit semantic in-

formation to push robots to explore areas that are rele-

vant, according to a priori information available from,

for example, human rescuers. Moreover, all these ap-

proaches use a utility function that considers basically

just the cost to reach a candidate location. Amigoni

(2008) experimentally showed that, in some common

settings, exploration strategies that balance utility and

cost tend to have better performance than those that

use only cost.

Since in this paper we are assuming that some a

priori information is available about relevant areas, the

above works are not directly comparable with our ap-

proach, in terms of the relevant areas explored. How-

ever, in our experimental simulated activities, we will

compare the proposed exploration strategy with that
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proposed by Basilico and Amigoni (2011), which has

been experimentally proven to perform well in search

and rescue scenarios, but do not consider any seman-

tic information. In this paper, we aim at showing that,

when a priori knowledge on victims’ locations is avail-

able (i.e., preferred areas to visit are specified), the use

of semantic information could improve also the per-

formance of exploration of relevant areas of the envi-

ronment, besides the total explored area, as shown by

the works presented above (like (Stachniss et al, 2008)

or (Calisi et al, 2009)).

2.2 Coordination methods

Coordination between multiple exploring robots, namely

assigning robots to candidate locations, is achieved in

different ways in the literature.

A series of works ((Burgard et al, 2000, 2005; Stach-

niss et al, 2008) and, partially, (Fox et al, 2006)) pro-

pose an interesting approach in which the coordination

method is embedded within the exploration strategy. In

particular, the utility value of a candidate location is re-

duced according to the number of robots that can view

it, in order to discourage the assignment of more robots

to the same candidate location. Experimental results

show that this coordinated behavior has better perfor-

mance than uncoordinated behavior (in which differ-

ent robots can select the same location to reach) and

slightly worse performance than a method that finds

the optimal allocation over all possible permutations

of candidate locations to robots, where the optimality

criterion depends on the difference between utility and

cost of visiting the candidate locations.

Several other works (e.g., (Simmons et al, 2000; Zlot

et al, 2002)) are based on market mechanisms. Specif-

ically, coordination of mobile robots is performed by a

central executive that, beyond collecting local maps and

combining them into a single global map, manages an

auction-like mechanism by asking bids to the robots and

assigning tasks (i.e., locations to reach) according to the

received bids. Bids contain information about expected

utility for pairs robot-location; utility are calculated by

the exploration strategy adopted. Experimental results

show that the auction-based coordination methods (as

expected) outperform the uncoordinated methods. An

extension of such works is the approach of Hawley and

Butler (2013), who propose an auction-based coordina-

tion method not only for task assignment, but also for

coalition formation, when there are more robots than

candidate locations.

All of the presented approaches for coordination at-

tempt to spread the robots around the environment.

The (often) implicit assumption is that the exploration

problem is considered to involve, according to the clas-

sification in (Gerkey and Mataric, 2004), single-task

robots (ST) and single-robot tasks (SR), where the task

is to reach a candidate location. ST means that each

robot executes one task at a time and SR means that

each task requires one robot. Thus, all the above works

act basically as ST-SR.

In this paper, we attempt to overcome the ST-SR

assumption by allocating more robots to the same can-

didate locations according to a multi-robot tasks (MR)

paradigm. Specifically, we aim at showing that seman-

tic information enables the possibility to determine the

ideal number of robots to send to a specific area so that

exploration can proceed faster and more effectively.

3 A Semantic-based multirobot exploration

system

In this section, we present our proposed exploration sys-

tem that exploits semantic information. Specifically, af-

ter a brief system overview, we go into the details of the

exploration strategy and the coordination method we

designed for the semantic-based multirobot exploration

system.

3.1 System overview

The robotic platform used is a Pioneer P3AT equipped

with a sonar ring and two laser range scanners, mounted

at the same height and back-to-back for covering a 360◦

area around the robot with radius R = 20 m and an-

gular resolution at 1◦.

Each robot builds a two-dimensional occupancy grid

map of the explored environment. Each cell is either

known, if the robot perceived the corresponding area,

or unknown. Known cells can be free or occupied (by

obstacles). The map of the environment is maintained

by a base station, whose position is fixed in the environ-

ment, and to which robots send their maps every 2.5 s.

We assume that communication is error-free and un-

limited in range and bandwidth (effects of more realis-

tic communication models on exploration are discussed

in (Tuna et al, 2012)). Our exploration system is largely

independent of the mapping system employed to incre-

mentally build the grid map. In our experiments, we

use a simple scan matching method, inspired to that

in (Lu and Milios, 1997), in which a new acquired scan

is aligned with the current map (using odometry as ini-

tial guess) and the occupancy grid is updated corre-

spondingly. Since we are not interested in analyzing the

quality of the resulting map, we assume that the map-

ping module is error-free. Given the grid map, clusters
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of (adjacent) free cells that are on the frontier between

known and unknown parts of the map are extracted.

For each cluster, the free cell belonging to that cluster

and closest to its centroid is considered as a candidate

location to reach. Paths are planned using A* on the

grid map. Sonars are used for obstacle detection during

navigation.

We assume that the system has a semantic map that

labels each free cell of the grid map with its room type

(i.e., labels ‘corridor’, ‘small room’, ‘medium room’, ‘big

room’) and with the number of doorways present in the

room in which the cell is located. This semantic map

can be built exploiting any available method (e.g., (Mo-

zos et al, 2005)). However, in this paper we assume the

semantic map as available, because we are only inter-

ested in its use. In practice, we manually annotate with

semantic labels the portions of the simulated environ-

ments used for the experimental activities. Note that

the proposed approach can be, in principle, applied to

any number of semantic labels, different from the four

we consider.

3.2 MCDM-based exploration strategy

Our Multi-Criteria Decision Making (MCDM) explo-

ration strategy uses several criteria to evaluate the good-

ness of a candidate location. More formally, the explo-

ration strategy is used to estimate the utility u(p, r) of

every candidate location p for all robots r. It combines

the following criteria:

– A(p) is the expected amount of free area beyond the

frontier of p computed as the length (in cells) of the

frontier. The larger its value, the more information

is expected to be acquired from p.

– d(p, r) is the Euclidean distance between p and cur-

rent position of r. Using Euclidean distance instead

of actual distance calculated by path planner drasti-

cally reduces the computational effort in calculating

this criterion without affecting too much the esti-

mated utility u(p, r), as some preliminary experi-

ments we performed have shown.

– b(p, r) is an estimate of the energy spent by r for

reaching p, calculated considering a very simple model,

in which the power consumption is related to the

time required for reaching p, computed according to

the path that r should follow and according to lin-

ear and angular velocities of the robots. The larger

its value, the smaller the amount of residual energy

in the battery (0 = full, 1 = empty).

All these criteria can be calculated from the robots’

status and from the metric grid map.

In addition to the above criteria, other criteria em-

ploying information from semantic map are considered:

– S(p) is the relevance of p (from 0, not relevant, to

1, relevant), calculated according to the semantic

label of p and the a priori knowledge on victims’

locations. For example, if it is known that victims

are most likely in big rooms, and p is labeled as

‘big room’, S(p) = 1, while if p is labeled as ‘small

room’, and under the same hypothesis about the

location of victims, S(p) = 0. If p is labeled as ‘cor-

ridor’, regardless the hypothesis on victims’ loca-

tions, S(p) = 0.15, as corridors are usually impor-

tant to reach relevant rooms. The values for S(p)

have been manually set to obtain good performance

after experiments with different combinations of val-

ues. In our preliminary tests, different value combi-

nations (e.g., range [0.10, 0.50] for S(p) with p in

corridors), that maintain relevance of corridors and

of rooms according to the hypothesis on victims’ lo-

cation, have been experimentally demonstrated to

have similar performance.

– ND(p) is the number of doors in the room where p is

located. This criterion evaluates the connectivity of

a room with other rooms. The idea is that a highly-

connected room should be visited to ease finding

relevant rooms.

We assume that semantic labeling used to calculate the

criteria S(p) and ND(p) is perfect. This assumption will

be relaxed later to experimentally verify the robustness

of the approach. Note that, in order to apply our ap-

proach to other semantic labels and other kinds of a

priori information, criterion S() should be changed.

All the criteria N = {A, d, b, S,ND} are combined

using the MCDM approach introduced in (Basilico and

Amigoni, 2011), to which we refer for a complete de-

scription; here we just summarize the main features.

We selected the MCDM approach because it is theoret-

ically grounded and allows to easily integrate several

criteria in a utility function. Consider a set of candi-

date locations P (i.e., the cells closest to the centroids

of their frontiers at some time during exploration), a

set of robots R, and a set of criteria N . Call uj(p, r)

the utility value for candidate location p ∈ P and robot

r ∈ R according to criterion j ∈ N . The larger uj(p, r),

the better the pair p and r according to j. To apply

MCDM, utilities need to be normalized to a common

scale I = [0, 1]. We use a linear relative normalization

for each uj . With a slight abuse of notation, we call

u(j), with (j) ∈ N , the j-th criterion according to an in-

creasing ordering with respect to utilities: for candidate

location p and robot r, u(1)(p, r) ≤ . . . ≤ u(n)(p, r) ≤ 1,

where n = |N | (we assume u(0)(p, r) = 0). The MCDM
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S
-M

C
D

M

criteria µ() criteria µ() criteria µ()
A 0.09 d, b 0.09 A, b 0.15
d 0.09 d, S 0.8 d, b, S 0.8
b 0.02 b, S 0.6 A,S 0.65
S 0.5 A, d, b 0.3 A, d, b, S 0.8
ND 0.3 A, d, S 0.8
A, d 0.3 A, b, S 0.65

D
-M

C
D

M

criteria µ()
A 0.4
d 0.4
b 0.2
A, d 0.95
A, b 0.7
d, b 0.4

Table 1 Weights of MCDM-based exploration strategies.

strategy integrates the criteria in N with the following

function:

u(p, r) =

n∑
j=1

(u(j)(p, r)− u(j−1)(p, r))µ(A(j)), (1)

where µ : 2N → [0, 1] (2N is the power set of set

N) are weights, and the set A(j) is defined as A(j) =

{i ∈ N |u(j)(p, r) ≤ ui(p, r) ≤ u(n)(p, r)}. Specifically,

µ({∅}) = 0, µ(N) = 1, and, if N ′ ⊂ N ′′ ⊂ N , then

µ(N ′) ≤ µ(N ′′). That is, µ is a normalized fuzzy mea-

sure on the set of criteria N that will be used to as-

sociate a weight to each group of criteria. The weights

specified by the definition of µ describe the relation-

ships between criteria. Criteria belonging to a group

G ⊆ N are said to be redundant if µ(G) <
∑
i∈G µ(i),

synergic if µ(G) >
∑
i∈G µ(i), and independent oth-

erwise. Namely, Equation (1) provides a sort of “dis-

torted” weighted average that accounts for synergies

and redundancies between criteria.

In MCDM, beyond selecting the set of criteria N ,

we need to define weights µ for each subset of criteria.

For our semantically-informed exploration strategy (S-

MCDM ), we use the criteria N = {A, d, b, S,ND} de-

fined above and the weights reported in Table 1 (left).

The weights of the subsets of criteria not reported in the

table are calculated by summing the weights of the indi-

vidual criteria. Note that in selecting these weights, we

have chosen values reasonably (e.g., criteria d() and A()

have the same importance, so their weights are equal).

Moreover, criteria d() and b() are redundant (both pre-

fer candidate locations close to the robot and a can-

didate location satisfies both criteria well or both not

well) and so µ({d, b}) < µ({d}) + µ({b}). Criteria A()

and d() are instead synergic (one prefers candidate lo-

cations on long frontiers while the other one prefers

candidate locations close to the robot and a candidate

location can satisfy one criterion well and the other

one not well) and so µ({A, d}) > µ({A}) + µ({d}).
Values of weights have been set to obtain good per-

formance, according to criteria importance and rela-

tions (Basilico and Amigoni, 2011). Slightly varying the

selected weights values (±10%), we experimentally ob-

tained similar performance. Principled methods for se-

lecting weights are discussed in (Basilico and Amigoni,

2011).

For comparing the performance of S-MCDM, we

chose a state-of-the-art exploration strategy. Specifi-

cally, we defined another MCDM-based exploration strat-

egy (called in the following Default MCDM, or D-MCDM ),

whose criteria set is N = {A, d, b}, similarly to (Basil-

ico and Amigoni, 2011), and with weights reported in

Table 1 (right). As discussed in Section 2 and to the

best of our knowledge, no exploration strategy that fo-

cuses on relevant areas is available. Furthermore, the

work of Calisi et al (2009) is not easily configurable

in our setting, as prolog rules should be set. Nev-

ertheless, the D-MCDM exploration strategy has been

shown by Basilico and Amigoni (2011) to be very effec-

tive in exploring environments (in particular, it outper-

formed the exploration strategies proposed by Visser

and Slamet (2008) and Amigoni and Caglioti (2010)).

3.3 ST-MR coordination method

Coordination methods are used to assign candidate lo-

cations to robots. The mechanism we use is market-

based (Zlot et al, 2002). The base station regularly sets

up auctions in which candidate locations (generated on

current frontiers as discussed before) are auctioned to

the robots, which bid on them. This process allocates

candidate locations p to robots r attempting to maxi-

mize the sum of utilities u(p, r). In our system, the co-

ordination method can allocate multiple robots (MR)

to the same candidate locations. For example, allocat-

ing two robots to the same candidate location in a big

room could speed up the exploration of the room, over-

coming potential negative effects due to the initially

overlapping views of the two robots.

We employ a fuzzy-based function i(p) that com-

putes the ideal number of robots (1, 2, or 3, in our

experiments) that should be assigned to a candidate

location p, according to the semantic label given to p

and to some other features. In particular, if p is located

in a room (‘small room’, ‘medium room’, or ‘big room’),

the features considered are the room area, the free area

percentage of the total area in the room (visibility), the

number of doors, and the already perceived area of the

room. Note that an estimate of the already perceived

area of a room can be computed by having a knowledge

base that associates the semantic labels of rooms to the

corresponding average area (see, e.g., the work of Lu-

perto et al (2013)). Fig. 1 illustrates the membership

functions for the input features and for the output for

p in a room that we have used for experiments we show

in the next section. When slightly varying the selected

fuzzy values (±10%), we experimentally obtained sim-

ilar performance. Given p, if the room in which p is

located is large, the number of its doors is large, its
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visibility is large, and the amount of already perceived

area is small, then more robots are allocated to p. An-

other example of the rules for determining the ideal

number of robots i(p) to be allocated to p (in a room)

is reported in Algorithm 1.

1 if RoomSize is SMALL and #Doors is HIGH and Visibility
is LOW and AlreadyPercArea is MEDIUM then #Robots
is MEDIUM ;

2 if RoomSize is BIG and #Doors is LOW and Visibility is
LOW and AlreadyPercArea is HIGH then #Robots is
LOW ;

3 if RoomSize is BIG and #Doors is MEDIUM and
Visibility is MEDIUM and AlreadyPercArea is LOW then
#Robots is HIGH ;

Algorithm 1: Sample of rules for calculating the

ideal number of robots that can be allocated to p

(in a room).

Similarly, if p is located in a corridor (label ‘corri-

dor’), the features considered are the size of the corri-

dor, the number of doors, the number of intersecting

corridors, and the already perceived area of the corri-

dor. The membership functions and the rules are similar

to those for the room case, as shown in Fig. 2 and in

Algorithm 2. Note that, in order to use our approach

with different semantic labels, membership functions

and rules for calculating i(p) should be changed.

1 if CorridorSize is SMALL and #Doors is HIGH and
#IntersectingCorridors is MEDIUM and AlreadyPercArea
is MEDIUM then #Robots is LOW ;

2 if CorridorSize is SMALL and #Doors is MEDIUM and
#IntersectingCorridors is LOW and AlreadyPercArea is
LOW then #Robots is MEDIUM ;

3 if CorridorSize is MEDIUM and #Doors is MEDIUM and
#IntersectingCorridors is MEDIUM and AlreadyPercArea
is LOW then #Robots is HIGH ;

4 if CorridorSize is BIG and #Doors is HIGH and
#IntersectingCorridors is MEDIUM and AlreadyPercArea
is LOW then #Robots is VERY HIGH ;

Algorithm 2: Sample of rules for calculating the

ideal number of robots that can be allocated to p

(in a corridor).

Each robot r evaluates all candidate locations p, as

auctioned by the base station every 5 s or when re-

quested by a robot that has reached its assigned loca-

tion, according to the exploration strategy, and submits

bids u(p, r) accordingly. We propose two coordination

methods executed by the base station to allocate candi-

date locations to robots. The first coordination method

(MRv1 ) works as reported in Algorithm 3. Basically,

MRv1 greedily allocates the best pair (p∗, r∗), avoiding

to allocate p∗ to more than i(p∗) robots.

The second coordination method, called MRv2, is

similar to MRv1, but, after each allocation of a robot

1 collect bids u(p, r), which are calculated using (1);
2 while ∃ robot r not allocated and candidate location p do
3 find the pair (p∗, r∗): (p∗, r∗) = arg maxp,r u(p, r);
4 allocate p∗ to r∗;
5 if i(p∗) is equal to the number of robots already assigned

to p∗ then
6 eliminate p∗;

end
7 eliminate robot r∗;

end

Algorithm 3: MRv1.

Fig. 3 Discount factor vs. the number of robots already al-
located to p, when i(p) = 3.

to a p∗ (step 4), it discounts the utility of p∗ for other

robots, according to the number of robots already allo-

cated to p∗ (similarly to (Stachniss et al, 2008)). Fig. 3

shows the discount factor we employ that decreases lin-

early until the number of allocated robots is less than

or equal to i(p∗), and then decays exponentially. The

rationale is that assigning to p∗ less robots than i(p∗)

could be a necessity (e.g., there are not enough robots)

and that assigning to p∗ more robots than i(p∗) is not

useful to speed up exploration.

The two proposed ST-MR coordination methods are

experimentally compared to a standard coordination

method (ST-SR) (Zlot et al, 2002), which allocates just

one robot to a candidate location in a greedy fashion.

Namely, it runs MRv1 with i(p) = 1 for every p.

4 Experimental activity

This section, first, shows the experimental setup in which

we tested our proposed semantic-based exploration sys-

tem. Then, we show some preliminary experiments to

support the choice of the state-of-the-art exploration

strategy against which our system is compared, and we

present extensive experimental results that validate the

system. Further, we present additional experiments for

showing the robustness of our proposed system, for ex-

ample by relaxing the assumption on the perfect seman-

tic knowledge and by adopting a different termination

criterion. Finally, we discuss the obtained results.
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(a) (b) (c)

(d) (e)

Fig. 1 Membership functions for the input features (a-d) and for the output (e), when p is in a room.

(a) (b) (c)

(d) (e)

Fig. 2 Membership functions for the input features (a-d) and for the output (e), when p is in a corridor.

4.1 Experimental setup

In order to perform replicable tests under controlled

conditions, we use a robot simulator. We selected US-

ARSim (Carpin et al, 2007), because it is a realistic

and reliable 3D robot simulator. The multirobot system

controller software we developed and the experimental

data are publicly available at http://sourceforge.

net/projects/polimirobocup.

We report simulated experiments conducted in two

indoor environments, called office and mall (Fig. 4),

where robots start from fixed starting locations with-

out any initial knowledge about the structure of the

environment. The cells of the test environments are

manually labeled as ‘corridor’, ‘small room’, ‘medium

room’, or ‘big room’ according to the size of the rooms

they belong to. Label distributions are reported in Ta-

bles 2 and 3. The office environment is part of the

vasche library floor1 taken by Radish repository (Howard

and Roy, 2003), and is characterized mainly by the pres-

ence of small and medium rooms (as we can see from

Table 2, the number of small and medium rooms is

almost the 86% of the total number of rooms in the en-

vironment). The mall environment is a floor of a (real)

mall, and is characterized by the presence of very big
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(a) Office (b) Mall

Fig. 4 Test environments. Green stars represent initial positions for the robots in the configurations with 4 robots, red crosses
refer to the addition of two robots (6 robots), and blue points to the addition of further two robots (8 robots).

Type Number of cells % of the environment area Number of rooms
Corridors 2493 30% -

Small rooms 756 9% 21
Medium rooms 2835 34% 42

Big rooms 2304 27% 10

Table 2 Number of cells, percentage of the area of the envi-
ronment, and number of rooms of each semantic label (room
type) for the office environment.

Type Number of cells % of the environment area Number of rooms
Corridors 1449 18% -

Small rooms 1332 16% 37
Medium rooms 2088 25% 31

Big rooms 3393 41% 9

Table 3 Number of cells, percentage of the area of the envi-
ronment, and number of rooms of each semantic label (room
type) for the mall environment.

rooms. Table 3 shows that the number of big rooms is

almost the 12% of the total number of rooms in the

environment, but they occupy 41% of the total area of

the environment. Some obstacles (shown as short line

segments in Fig. 4) have been added to the rooms to

make the exploration task more difficult. We consider

structured indoor environments because many seman-

tic maps have been built for indoor environments and

search and rescue scenarios are often indoor (like those

of the Virtual Robot Competition of the RoboCup Res-

cue Simulation League).

We consider teams of 4, 6, and 8 robots and two

a priori hypotheses (assumed to be correct) on vic-

tims’ location, namely victims in big rooms and victims

in small rooms. We define a configuration as an envi-

ronment (office or mall), a number of robots (4, 6, or

8), an exploration strategy (the state-of-the-art explo-

ration strategy D-MCDM or our proposed semantic-

based exploration strategy S-MCDM, as described in

Section 3.2), a coordination method (the state-of-the-

art coordination method SR or our proposed coordina-

tion methods MRv1 or MRv2, shown in Section 3.3),

and an hypothesis on the victims’ location (in big or

small rooms). For each configuration, we execute 10

runs of 20 minutes each.

In a search and rescue setting, the goal is to ex-

plore an initially unknown environment for finding the

largest number of human victims within a short time.

Assuming a priori knowledge about the relevant area in

which victims are supposed to be, and assuming that

victims are uniformly distributed in such relevant ar-

eas, the problem of maximizing the number of victims

found in a given time interval is equivalent to the prob-

lem of maximizing the amount of relevant area covered

by robots’ sensors in the same interval. Thus, we as-

sess our system performance by measuring the amount

of relevant area (area of small or of big rooms, accord-

ing to the victims’ location hypothesis) explored, every

1 minute of exploration. We typically report data at

the end of runs (after 20 minutes), but, for some con-

figurations, we report graphs of data over 20 minutes.

This measure is particularly relevant in the context of

search and rescue, as time is limited, and we want to

explore as quickly as possible the relevant parts of an

environment. We report also some results about the to-

tal explored area so that it is possible to compare our

proposed method with other approaches that do not

consider relevant area.

4.2 Preliminary experiments

We start with some preliminary experiments that sup-

port our choice of D-MCDM as representative state-

of-the-art exploration strategy. In particular, we com-

pare the state-of-the-art exploration strategy D-MCDM

with other two exploration strategies, namely, a random

one (Random, which selects the next candidate location

at random) and one that only minimizes the distance

(Distance), as in (Wurm et al, 2008). In all cases, the co-
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Office Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 747.3(112.5) 1473.9(202.7) 80.4(22.4) 276.2(83.9)

MRv1 953.8(111.4) 1729.9(81.9) 103.1(22.7) 224.6(73.1)
MRv2 921.6(130.3) 1773.8(65.4) 112.9(24.4) 272.1(52.1)

#Robots = 6
SR 1024.6(220.7) 1603.2(59.1) 127.6(38.5) 235.7(43.1)

MRv1 1123.6(143.6) 1851.3(7.8) 148.6(21.2) 400.5(100.4)
MRv2 1164.9(94.2) 1856.7(36.3) 162.5(22.2) 429.0(83.8)

#Robots = 8
SR 1222.6(133.0) 1653.5(129.2) 170.3(43.0) 312.0(28.1)

MRv1 1379.8(122.8) 1877.6(62.6) 186.2(31.7) 496.3(101.8)
MRv2 1284.9(144.5) 1854.3(80.3) 185.6(42.7) 454.3(125.2)

Table 4 Results (average and standard deviation) of ex-
plored relevant area (m2) for the office environment, after
20 minutes of exploration. B indicates victims most likely are
in big rooms, S in small rooms.

ordination method is the most used in the state of the

art, namely SR. We found, according to Basilico and

Amigoni (2011), who found the same outcome for other

environments, that D-MCDM performs better than the

other two exploration strategies. For example, Fig. 5

shows that, in the case of office environment, 6 robots,

SR coordination method, D-MCDM outperforms Ran-

dom and performs relatively better than Distance, in

terms of total explored area (measured in m2). This

provides a justification of the choice of using D-MCDM

as baseline exploration strategy for comparing our pro-

posed exploration strategy.

0 10 20
0

2000

4000

6000

time step

 

 
D−MCDM SR
Random SR
Distance SR

Fig. 5 Total explored area (m2) over 20 minutes, in office
environment, by 6 robots, with Random, Distance, and D-
MCDM exploration strategies and SR coordination method.

4.3 Results for the office and the mall environments

Table 4 reports experimental results for the office envi-

ronment. The values reported in each entry are the av-

erage and the standard deviation (in parentheses) over

the 10 runs of the corresponding configuration.

With all the three coordination methods, our pro-

posed semantic-based exploration strategy S-MCDM

performs better than the state-of-the-art exploration

strategy D-MCDM, and differences are statistically sig-

nificant, according to an ANOVA analysis with a thresh-

old for significance p-value < 0.05 (Pestman, 1998).

Office Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 2372.7(240.1) 3424.4(316.1) 2372.7(240.1) 3956.6(556.5)

MRv1 2753.4(199.9) 3305.3(268.9) 2753.4(199.9) 3667.1(597.4)
MRv2 2855.0(285.2) 3616.0(219.4) 2885.0(285.2) 3683.0(441.0)

#Robots = 6
SR 3060.3(408.1) 3958.0(187.9) 3060.3(408.1) 3895.1(528.1)

MRv1 3361.4(339.3) 4333.1(187.0) 3361.4(339.3) 5094.0(194.8)
MRv2 3536.0(158.2) 4408.0(282.2) 3536.0(158.2) 5200.4(278.9)

#Robots = 8
SR 3612.8(324.0) 4350.6(313.5) 3612.8(324.0) 4677.6(526.5)

MRv1 3996.5(267.9) 4856.2(524.0) 3966.5(267.9) 5424.5(264.6)
MRv2 3853.8(358.2) 4786.8(486.7) 3853.8(358.2) 5251.2(528.2)

Table 5 Results (average and standard deviation) of total
explored area (m2) for the office environment, after 20 min-
utes of exploration. B indicates victims most likely are in big
rooms, S in small rooms.

Mall Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 265.4(212.9) 1868.0(160.1) 567.0(66.6) 737.3(61.9)

MRv1 517.3(164.6) 1785.2(232.5) 615.9(24.2) 836.4(94.4)
MRv2 380.3(67.7) 1780.7(233.8) 633.4(37.7) 809.3(104.2)

#Robots = 6
SR 634.4(209.3) 1978.6(200.0) 638.1(74.4) 888.0(72.6)

MRv1 574.2(73.8) 2151.7(228.8) 702.3(52.5) 1018.3(93.3)
MRv2 545.2(129.4) 2105.3(241.4) 701.7(18.8) 983.9(76.7)

#Robots = 8
SR 768.6(190.1) 2050.0(189.3) 708.8(56.4) 953.3(97.4)

MRv1 606.5(207.5) 2304.5(161.6) 755.9(44.0) 1149.5(95.9)
MRv2 540.7(139.5) 2336.9(214.5) 751.8(56.8) 1046.5(80.4)

Table 6 Results (average and standard deviation) of ex-
plored relevant area (m2) for the mall environment, after 20
minutes of exploration. B indicates victims most likely are in
big rooms, S in small rooms.

Mall Exploration
Coord. D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4
SR 2480.5(463.5) 5229.9(114.4) 2480.5(463.5) 2605.9(251.1)

MRv1 2668.0(156.7) 4501.1(541.3) 2668.0(156.7) 2802.9(427.3)
MRv2 2542.8(54.3) 4765.6(546.2) 2542.8(54.3) 2797.7(530.4)

#Robots = 6
SR 3164.2(478.1) 5222.3(508.8) 3164.2(478.1) 3355.1(451.2)

MRv1 2990.1(262.1) 5449.9(349.4) 2990.1(262.1) 3706.4(436.7)
MRv2 2941.1(198.6) 5214.6(581.0) 2941.1(198.6) 3536.6(363.2)

#Robots = 8
SR 3756.9(425.0) 5625.6(243.2) 3756.9(425.0) 3956.6(465.4)

MRv1 3446.9(406.9) 5846.5(235.7) 3446.9(406.9) 4255.4(406.0)
MRv2 3326.0(324.7) 5765.0(269.8) 3326.0(324.7) 3903.4(379.6)

Table 7 Results (average and standard deviation) of total
explored area (m2) for the mall environment, after 20 min-
utes of exploration. B indicates victims most likely are in big
rooms, S in small rooms.

For example, the difference between the relevant area

mapped at 20 minutes with S-MCDM and D-MCDM, in

the case of victims in big rooms, with SR and 6 robots,

is statistically significant (p-value= 2.42 · 10−7). Fig. 6

illustrates the evolution of the explored relevant area

over 20 minutes in the setting just discussed. We can

observe that at the beginning the trend is almost the

same for both exploration strategies. This could be ex-

plained by the fact that the 6 robots start from posi-

tions that are close to some big rooms and so also D-

MCDM chooses candidate locations in big rooms. After

10 minutes, S-MCDM outperforms D-MCDM, indicat-

ing that, when there are more candidate locations in

different rooms that could be selected by the robots,

the benefits of using a semantic-based exploration are

more evident.

Note that, similar trends are also valid for the hypoth-

esis of victims in small rooms and, also in this case, the

difference between the relevant area mapped at 20 min-

utes with the two exploration strategies is statistically

significant (p-value= 1.34 · 10−5).

For both exploration strategies, the coordination meth-

ods MRv1 and MRv2 that exploit semantic informa-
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Fig. 6 Explored relevant area (m2) over 20 minutes, in office
environment, by 6 robots, with SR coordination method, in
the case of victims in big rooms.

tion appear to perform relatively better than the state-

of-the-art coordination method SR, and differences are

statistically significant (for instance, for MRv2 vs. SR

p-value= 9.24 · 10−10 with S-MCDM, considering the

hypothesis of victims in big rooms and 6 robots). Fig. 7

shows the explored relevant area considering the latter

setting over 20 minutes. We can observe that MRv1

and MRv2 have similar trends and that they perform

better than SR. This can be explained by the fact that,

although there can be some initial drawbacks in send-

ing more robots to the same candidate location, due to

sensing overlaps, in the long term, there seems to be a

benefit.
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Fig. 7 Explored relevant area (m2) over 20 minutes, in of-
fice environment, by 6 robots, with S-MCDM, in the case of
victims in big rooms.

Only considering 4 robots, in the case of victims

in small rooms, SR seems to have better results than

MRv1 and MRv2, even if not statistically significant

(e.g., in this setting, with S-MCDM, for SR vs. MRv2,

p-value= 0.80). This similar performance of SR and

MRv1/MRv2 can be explained noting that, when the

number of robots is small, the exploration becomes un-

balanced if more robots are assigned to the same can-

didate location.

Another consideration from Table 4 is that, as ex-

pected, increasing the number of robots, the amount of

explored relevant area increases (apart from one degen-

erate case with SR and S-MCDM considering victims

in small rooms and increasing robots from 4 to 6), even

if the increase is not statistically significant. Note that

the standard deviation of the results in Table 4 is high

in the case of victims in small rooms. This could be

due to the fact that, since robots should focus on small

rooms, the space in which robots can move is small and,

so, errors in the movements of the robots have greater

influence in these experiments. Indeed, we observed in

the experiments that, for example, robots can spend

some time to enter in a small room.

Table 5 shows the total amount of explored area

(as opposite to the amount of relevant area considered

so far) for the office environment. The total amount

of explored area increases from D-MCDM to S-MCDM

in the case of victims in big rooms. For example, with

6 robots and SR, the total amount of explored area

changes from 3115.6 (367.0) m2 to 3958.0 (187.9) m2,

with a statistically significant difference (p-value= 5.91·
10−6). Fig. 8 shows the trend over 20 minutes of such

setting. This performance increase could be due to the

fact that robots are encouraged to explore big rooms,

from where it is possible to easily explore large portions

of the environment.
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Fig. 8 Explored total area (m2) over 20 minutes, in office
environment, by 6 robots, with SR coordination method, in
the case of victims in big rooms.

In the case of victims in small rooms the total amount

of explored area is more or less the same for D-MCDM

and S-MCDM. The total amount of explored area is

similar for all coordination methods. Note that the dis-

tance traveled by the robots does not change much over

all the experiments (see, for example, Fig. 9). This fact

shows that the difference in the amount of (relevant

or total) explored area does not depend on the fact

that the robots may be stuck, but almost exclusively
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on the exploration strategy and the coordination meth-

ods adopted.
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Fig. 9 Sum of the traveled distances (m) over 20 minutes,
in office environment, by 8 robots, considering S-MCDM, in
the case of victims in big rooms.

The difference in the performance of the exploration

strategies can be further analyzed by looking at how

they evaluate candidate locations in different rooms.

As explained in Section 3.2, this evaluation for our pro-

posed exploration strategy S-MCDM changes according

to the semantic labels of the cells and to the hypoth-

esis on the victims locations (criterion S()), while the

state-of-the-art exploration strategy D-MCDM evalu-

ates candidate locations in different rooms more uni-

formly. Fig. 10 illustrates this behavior in the case of

6 robots, SR coordination method, and victims most

likely located in big rooms. This different evaluation

of the candidate locations determines the number of

assigned candidate locations in different rooms for D-

MCDM and S-MCDM. Including semantic information

in the exploration strategy effectively allows the robots

to focus on candidate locations in the relevant areas, ne-

glecting those in the irrelevant ones. Fig. 11(a) shows

that, in the case of 6 robots, SR coordination method,

and victims most likely located in big rooms, the num-

ber of candidate locations in big rooms assigned to

the robots using S-MCDM is greater than the one in

the case of D-MCDM. Fig. 11(b) illustrates that, in

the same last setting, almost no candidate locations in

small rooms are assigned to the robots in the case of

S-MCDM.

Tables 6 and 7 show experimental results for the

mall environment and report the explored relevant area

and explored total area, respectively. All the above ob-

servations hold also in this environment. The only dif-

ference is relative to the case of the state-of-the-art ex-

ploration strategy D-MCDM and victims in big rooms,

for which the relevant and total explored areas obtained

by our proposed coordination methods MRv1 and MRv2

worsen with respect to those obtained by the coordina-
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Fig. 10 Evaluation of the candidate locations (on a rela-
tive scale, average over all the candidate locations evaluated
by the robots over 20 minutes) that are located in small,
medium, big rooms and corridors, in office environment, with
6 robots, considering SR and the hypothesis of victims in big
rooms.
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Fig. 11 The number of assigned candidate locations in big
rooms (a) and in small rooms (b) over 20 minutes, in office
environment, to 6 robots, considering SR and the hypothesis
of victims in big rooms.

tion method from the literature SR, and only with 8

robots the difference between SR and MRv2 is statisti-

cally significant (p-value= 0.01). This could imply that

the joint use of a coordination method that uses seman-

tic information and an exploration strategy that does

not can be inefficient.
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4.4 Robustness

We experimentally verified that our results are still valid

varying starting locations and the number of the robots

(10 or 12). For example, Fig. 12 shows that increasing

the number of robots, the explored relevant area in-

creases. As shown in the figure, the trends for the differ-

ent combinations of exploration strategy/coordination

method are rather similar to those we already discussed.
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Fig. 12 The explored relevant area (m2) over 10 minutes,
in office environment, by 10 (a) and 12 (b) robots, with the
hypothesis of victims in big rooms.

We now relax the assumption of perfect semantic

information, as our system strongly relies on it. Specifi-

cally, we consider two imperfect semantic mapping mod-

ules, which make errors in assigning labels to rooms

(and to cells within rooms):

– randomly according to an error rate (0.1 or 0.2 of

the number of classifications), as in (Stachniss et al,

2008);

– depending on the percentage of the area actually

discovered. If a candidate location p is located in a

room, whose fraction of already explored area is less

than a pre-defined threshold (0.2 or 0.4), the seman-

tic mapping module classifies p randomly (with uni-

form probability) over the available semantic labels.

Otherwise, the semantic mapping module correctly

classifies p.

We tested the system with randomly assigned seman-

tic labels in the office environment and with victims

located in big rooms. Fig. 13 shows the amount of rel-

evant area explored over 20 minutes by 6 robots, with

the random semantic mapping module. The explored

relevant area diminishes compared to the case of a per-

fect semantic mapping module. However, the combi-

nation of our proposed exploration strategy S-MCDM

and coordination method MRv1 allows to have a better

performance compared to the state-of-the-art combina-

tion of exploration strategy D-MCDM and coordination

method SR (at the end of 20 minutes, this difference be-

tween S-MCDM + MRv1 and D-MCDM + SR is statis-

tically significant with p-value= 1.02·10−4). Comparing

trends of the results obtained by using MRv1, we can

observe that the performance degrades, when the er-

ror rate increases. This can be explained by the fact

that our proposed coordination method assigns more

robots to a candidate location in a big room or a corri-

dor, but, with an imperfect oracle, the risk is to assign

more robots to areas that could be explored by only

one robot. Note that in Fig. 13(a), after about 15 min-

utes, the performance when error rate is 0.2 becomes

slightly better than that when error rate is 0.1 and this

could be due to the randomness in the errors, although

the difference is not statistically significant (e.g., look-

ing at the performance at the end of the exploration:

p-value= 0.2718).

Fig. 14(a) shows the amount of relevant area ex-

plored over 20 minutes, with the more realistic seman-

tic mapping module that assigns a random label to a

room if it is known less than a threshold. The perfor-

mance does not degrade very much with respect to the

performance obtained by our system with perfect se-

mantic information, and S-MCDM still performs bet-

ter than D-MCDM. For example, at 20 minutes, with

S-MCDM and realistic semantic mapping with thresh-

old 0.4, the explored relevant area is 1321.8 (310.2)

m2, while with D-MCDM and perfect semantic infor-

mation, the explored relevant area is 1024.6 (220.7)

m2 (p-value= 0.02). The same trend is observed con-

sidering coordination methods (see Fig. 14(b)). The

combination of S-MCDM and MRv1 with threshold

0.4 is still better than the state-of-the-art combina-

tion of D-MCDM and SR with perfect semantic infor-

mation (1629.9 (120.8) m2 vs. 1024.6 (220.7) m2, p-

value= 5.0 · 10−7).

Finally, we tested the performance of our system

by setting as termination criterion a given percentage

of relevant area to be mapped (instead of the 20 min-

utes timeout), as in (Wurm et al, 2008). In this case,
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(a) Exploration strategies.
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(b) Coordination methods.

Fig. 13 Explored relevant area (m2) over 20 minutes, in of-
fice environment, by 6 robots with random semantic mapping.

the system performance could be evaluated according

to the time spent for accomplishing the mission. This

experiment was carried out on a portion of the mall

environment, with 8 robots with the goal of mapping

90% of the relevant area (victims located in big rooms).

Fig. 15 shows that our proposed semantic-based explo-

ration system with S-MCDM and MRv1 terminates ear-

lier (around 20 minutes) than the state-of-the-art com-

bination of D-MCDM and SR (around 29 minutes).

4.5 Discussion

In summary, results show that our semantically-informed

exploration strategy largely outperforms a state-of-the-

art exploration strategy in discovering areas of interest

in the office and the mall environments. This can be ex-

plained by the fact that the exploration strategies that

do not consider semantic information evaluate candi-

date locations only according to their metric features,

independently of their interest for the possible presence

of victims. Another relevant result is that both MRv1

and MRv2 coordination methods, which use semantic

information to determine the number of robots to send

to a candidate location, have better performance com-

pared to the state-of-the-art coordination method SR.
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(a) Exploration strategies.
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(b) Coordination methods.

Fig. 14 Explored relevant area (m2) over 20 minutes, in of-
fice environment, by 6 robots with realistic semantic mapping.
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Fig. 15 Explored relevant area (m2), in mall environment,
by 8 robots with a different termination criterion (90% of the
relevant area).

This behavior is more evident with the hypothesis of

victims in big rooms, because MRv1 and MRv2 directly

accelerate the exploration of big rooms, as more robots

are sent to such rooms. The result is valid in the hy-

pothesis of victims in small rooms as well but, in this

case, the reason seems to be that MRv1 and MRv2

send more robots in corridors, to which several rooms

are connected and can be easily accessed. However,

no statistically significant trend can be observed when

comparing MRv1 and MRv2. In addition, our exper-

imental results suggest that the coordination method
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has comparatively less impact on the performance than

the exploration strategy. This is in line with the results

obtained by Amigoni et al (2012), for different search

and rescue settings. Note also that our semantically-

informed approach generally performs better than tra-

ditional approaches independently of the percentage of

relevant area over total area. However, with few relevant

areas (e.g., big rooms in office, Fig. 4(a)), the advantage

in using semantic information in coordination is more

evident. With many relevant areas that are easily ac-

cessible from the starting positions of the robots (e.g.,

small rooms in mall, Fig. 4(b)), using semantically-

informed coordination is less effective (robots can be

simply spread using traditional approaches with good

chances of visiting relevant areas). Finally, our system

proved to be enough robust to random errors in seman-

tic labeling of the areas of the test environments.

5 Conclusions

In this paper, we have presented a semantic-based mul-

tirobot exploration approach for search and rescue that

considers a priori information about the location of vic-

tims in order to focus on relevant areas. We have shown

how to exploit knowledge of semantic map in both ex-

ploration strategy and coordination method. Experi-

mental results obtained in two realistic test environ-

ments show that the proposed semantically-informed

approach obtains significantly better performance than

state-of-the-art approaches in exploring relevant areas

and also, as previous work already pointed out, in ex-

ploring total area.

Future work will address the further assessment of

the proposed system considering real robots with noisy

communication and mapping. Furthermore, it could be

interesting to change at runtime the information about

relevant areas. In addition, we could find an automated

way to compute some of the parameters used in our

system. For example, the membership functions of the

proposed coordination method can be set according to

the specific building typology (e.g., being a school), on

the basis of the results of Luperto et al (2013). More-

over, they could be set looking at the robots’ capa-

bilities (e.g., if sensor range is R = 5 m instead of

R = 20 m, then the curves for RoomSize in Fig. 1

should be shifted to the left). It could be interesting

also to extend this work by considering distribution of

probability about the location of the victims, starting

from results of Aydemir et al (2013). Moreover, a deeper

study of the impact of knowledge provided by semantic

maps for exploration will be performed. A direction of

interest is the investigation of multi-task (MT) coordi-

nation methods (i.e., each robot plans how to reach a

sequence of candidate locations) or path optimization,

starting from results of Tovar et al (2006).
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