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Abstract—The paper presents a method based on Markov deci-
sion processes to optimally schedule energy storage devices in
power distribution networks with renewable generation. The time
series of renewable generation is modeled as a Markov chain
which allows for the implementation of a stochastic dynamic pro-
gramming algorithm. The output of this algorithm is an optimal
scheduling policy for the storage device achieving the minimiza-
tion of an objective function including cost of energy and network
losses. Besides this, other properties, such as energy storage place-
ment and size, can be assessed and compared in optimized systems
with different layouts.

Index Terms—Energy storage, Markov processes, renewable
generation, stochastic dynamic programming.

NOMENCLATURE

t index of an epoch
γt load
π a control policy
at energy drawn from, or supplied to, the storage

device
bt state of charge
ct clearness
dt decision function from the state space to the action

space
E nominal capacity of the storage device
nclr number of clearness levels
nSOC number of states of charge
rt reward function
st system state
uπ
t (st) value-to-go at epoch t for policy π and current

system state st
wt system energy losses
zt price of energy

I. INTRODUCTION

T HE increasing presence of electrical storage systems in
power networks requires to optimize their management

[1], [2]. Network losses and the price of energy are two key
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factors that must be taken into account when solving this
decision problem at a minimum cost, with the additional com-
plication of randomness of both the power supply (especially if
provided by renewable sources) and the load.

There are several contributions to the coordinated manage-
ment of energy storage devices and renewable sources. [3]–[6]
consider the renewable generation profile as known with no
uncertainty. As for the algorithmic approach to storage manage-
ment optimization, [3], [4] use dynamic programming, whereas
in [5], [6] the optimization is performed simultaneously for all
decision epochs by means of mixed integer linear program-
ming and particle swarm optimization, respectively. However,
in order to include the intermittent nature of renewable energy
sources and the sequential character of the decision problem
in the analysis, a stochastic dynamic programming approach
is to be preferred. Therefore, in this work, the optimal stor-
age management policy (the optimal policy from now on) is
based on Markov decision processes (MDP, see [7]), assuming
a random renewable energy source connected to the grid and a
deterministic load profile. We solved a 24-hour finite-horizon
optimal policy problem, in which the solar energy produced
every 15-minute interval is obtained through a Markov chain
model of the clearness, as done by [8].

The Markov chain framework is attractive for storage man-
agement policy because the state of charge (SOC) at discrete
time steps can be regarded as a Markov chain. In fact, the SOC
at any time, given all the past SOCs, can be written as a function
of the previous SOC and some random variables which do not
depend on the past. The surrounding processes, which cause the
SOC to change, can be non-Markov, however a Markov chain
could approximate the true process satisfactorily enough. This
viewpoint is shared by other authors. For example in [9] an
MDP approach to the management of the batteries of a solar-
powered sensor network which maximizes the ability of the
sensor node to detect and transmit an event of interest, while
aiming at preserving the battery energy level, has been pro-
posed. In [10] an enhanced stochastic dynamic programming
for the minimization of electric vehicles’ charging costs in a
smart grid framework. The enhancement consists in the pos-
sibility of using a continuous space of decision variables. In
[11] authors addressed the problem of organizing energy stor-
age purchases (for households and data centres) to minimize
long-term energy costs under variable demands and prices in an
MDP framework. They found that the optimal policy has a two-
threshold structure, that is, the battery must be discharged when
the SOC is above a certain threshold and must be charged when
the SOC is below another threshold. They have also briefly
suggested how to incorporate a renewable energy source and
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battery replacement costs within the optimization problem, but
have not implemented the suggested solution. In [12] a sim-
plified solution to the same problem has been obtained, by
considering the price the only (Markovian) stochastic quantity
and by relaxing ramping constraints on storage charging and
discharging; they found an optimal policy based on a thresh-
old for the price of energy. The distinctive feature of the MDP
methodology is that it guarantees that no policy can obtain a
better performance under non-restrictive assumptions, as shown
for example by [7, Section IV.4]. Coming to the subject mat-
ter of this work, [13] have proven that a dynamic offset policy
for storage scheduling based on a MDP outperforms heuristic
methods, such as those aiming at maintaining a constant level
of the storage.

In [14], the authors addressed the day-ahead wind com-
mitment problem with storage, in a stochastic dynamic pro-
gramming framework. At each decision epoch, the wind farm
manager must pledge the electricity that the wind farm must
produce the next 24 hours, knowing the 24 hourly market prices
of electricity. It is assumed that the transition of the state vari-
able, which includes the wind as its only stochastic part, is
Markovian, reducing their problem to the MDP framework,
with a continuous state space and in high dimension. The pro-
posed solution is based on a discretization of the state-space
obtained from a finite sample of sequences of states over the
decision horizon and on a convex approximation of the value-
to-go function, so that it can be easily optimized for each state
of the system.

Our approach belongs to the same framework of [14], how-
ever it solves the storage scheduling optimization problem
exactly, because the state and action spaces are both discrete
and low dimensional: after executing the policy optimization,
one is left with a decision table which, for every decision epoch,
matches each state of the system (made up of both the actual
SOC of the storage device and the observed radiation) with
an optimal action, i.e., how much energy should be exchanged
between the grid and the storage device. The optimal policy is
associated with an expected revenue. Other differences can be
found in the emphasis given to the various facets of the prob-
lem. The renewable source is the solar energy, which, more than
wind, is correlated with the load, because most of the energy
demand occurs during daylight hours. The effect of this rela-
tionship will appear in the optimal storage scheduling solution,
in which the charge and discharge cycles tend to be anticyclic
with respect to the price of energy, in the test case we have
examined. Finally, we have also focused on the number of full
storage cycles, having found that the optimization with respect
to cost of energy and network losses has the side effect of reduc-
ing this number, in certain system configurations [15], while
the differences between the optimal cost and the cost associ-
ated with other solutions are not large, in absolute terms. Other
authors have also considered network losses as a performance
measure. For example, deterministic dynamic programming has
been used by [16] to define an optimal control strategy of
distributed energy storages controlled by a distribution sys-
tem operator. The optimality criterion is to minimize network
losses, which are then used to compare different distributed
energy storage placements and ratings.

The method illustrated in this article can be employed in at
least two ways. The first way as an analysis tool for use by a
utility company, for example for assessing what one can gain
by including a storage in the system, by comparing the optimal
revenue with the storage against that without it. In this case,
the Markov model of the clearness for representative periods in
the year is estimated from historical data. In the second way,
this method provides an actual decision tool for one-day-ahead
storage system management planning, where the Markov model
for the clearness would rather be obtained from weather fore-
casts for the next day. Here we have analysed the first usage,
evaluating the just mentioned optimal performance measures
(revenues and number of cycles) for different storage system
sizes.

The plan of the paper is as follows. In Section II we describe
the MDP framework applied to our problem, we define our
objective function and the action space, and we illustrate the
dynamic programming algorithm, which has been obtained by
joining a deterministic (during night hours) and a stochastic
part (during solar production hours). In Section III we explain
our case study, introducing the test network and the parame-
ter used for the solar radiation model based on the clearness. In
Section IV we describe our results. Section V contains conclud-
ing remarks, emphasising uses to which the algorithm could be
put to, other than simple storage scheduling.

II. THE SETUP FOR OPTIMAL POLICY FINDING

In this section we illustrate the main variables and the method
for finding an optimal policy.

As done by [8], the solar power at epoch t is expressed in
terms of the clearness ct, which is the square root of the ratio
between the observed radiation and the expected radiation. The
advantage of this approach is that daily and seasonal patterns in
both the mean and the variability of solar radiation are removed
and the clearness can be modelled as a stationary autoregres-
sive Gaussian time series, with a bimodal marginal distribution,
with one primary mode representing clear sky and a less peaked
secondary mode representing a range of cloud cover condi-
tions. From Glasbey’s model [8] we derived a Markov chain
discretizing the clearness to 14 levels, because conditions for
the existence of an optimal Markovian policy are more eas-
ily met when the state space is countable (see [7, Proposition
4.4.3]). The Markov model holds from 8 am to 4 pm.
During the remaining hours no production of solar energy is
assumed.

In the MDP framework one is required to specify a state
vector, an action space and a reward function. We denote the
state at epoch t as st = (ct, bt, γt, zt), where ct is the clear-
ness, bt is the SOC, γt is the load and zt is the price of energy.
The (discretized) action space is A: an action at ∈ A specifies
how much energy should be charged or discharged from the
storage. Prices and loads are assumed to be deterministic, in
order to reduce the numerical complexity of the algorithm and
to avoid the curse of dimensionality, whereas bt is stochastic,
but, given st, bt+1 is completely determined. The reward func-
tion rt(st, at) depends on both the state and the action. We will
consider two forms of reward functions: the first one takes into



account only energy losses (wt) in the network; the second one
contains the losses, but multiplied by the price of the energy.

rt(st, at) = −wt (1)

or

rt(st, at) = −ztwt. (2)

Then, for the period from 8 am to 4 pm, subdivided into
N − 1(= 32) 15-minute time intervals, an optimal finite-
horizon policy is readily obtained from the backward induction
algorithm: for every epoch t and every state st, the algorithm
provides a function which maps the state into the action space,
so that the expected total reward for the entire decision-making
horizon is maximal.

This optimal policy must be connected to the optimal policy
during the dark hours, that is, from 4 pm to 8 am the next day
in our case. As there are no stochastic sources in this period,
we have used deterministic dynamic programming, starting at
7:45 am and proceeding backwards until 4 pm the previous day,
moving across M − 1(= 64) 15-minute time intervals.

In a mathematical form, the above amounts to maximizing
an expected total reward

Es1

{
N−1∑
t=1

rt(st, at)

}
+

M−1∑
t=1

r̃t(s̃t, ãt) + r̃M (3)

for any initial state s1, with respect to the sequence of actions
(a1, . . . , aN−1, ã1, . . . , ãM−1), where the tilde accent identi-
fies the quantities subject to no stochastic input, and r̃M is the
constant terminal reward at 8 am the next day. Every action
in the action sequence is constrained in two ways: first, by
an upper and a lower SOC limit and by an upper limit on
the current flowing from and to the storage; second, by the
admissibility of the power flow. Details are given in Section III.

A. Formalization of the Optimization Problem

The state st is aleatory but observable and is function of
clearness, SOC of the storage device and power requested by
loads:

st = (ct, bt, γt) . (4)

Let at ∈ Ast be the action to be chosen at epoch t. As pre-
viously stated, a revenue rt = f (st, at) is associated to every
action at from state st.

Within every period the variables are assumed to be constant.
Under this hypothesis at epoch t the revenue can be calculated.

The action at makes the system go from state st to state st+1

and is chosen according to a transition kernel made up of four
terms:

pt (ct+1|ct) the probability that there is a certain clear-
ness ct+1, given that the clearness at epoch
t was ct;

pt (bt+1|at, st) the probability that the storage system
reaches the state of charge bt+1, given that
the starting state is st and the the control
action is at;

pt (γt+1|γt) the probability that the load has a certain
value γt+1, given that the load at epoch t
was γt;

pt (zt+1|zt) the probability that the energy price is zt+1,
given that the price at epoch t was zt.

Thus, the transition kernel, which is the probability that the
system goes from state st to state st+1 due to the application of
action at, can be written, in the most general form, as:

pt (st+1|st, at) = pt (ct+1|ct) pt (bt+1|at, ct, bt, γt)
pt (γt+1|γt) pt (zt+1|zt)

= pt (ct+1|ct) pt (bt+1|at, st)
pt (γt+1|γt) pt (zt+1|zt) . (5)

It should be noted that bt+1 is obtained as a deterministic func-
tion of (st, at), although the sequence bt itself is stochastic. In
fact, pt (bt+1|at, st) is one if bt+1 is the SOC implied by action
at and zero elsewhere. The load γt and the price zt are assumed
to be deterministic sequences. Thus, under these hypotheses the
transition kernel is only influenced by the clearness. Compared
to [14], although in our case decision epochs are at 15-minute
intervals, we operate under similar assumptions: the market
price is not random, the fixed load takes the place of committed
wind power, the solar power takes the place of the actual wind
power.

A control policy π ∈ Π is made up of the decision func-
tions dt : S �→ A, π = (d1, . . . , dN−1), where S is the state
space and A is the action space. A decision function dt indi-
cates, for every system state st, the value of the action at to be
taken.

The overall value of the control policy uπ
t (st) is the random

variable representing the expected revenue obtained by adopt-
ing control policy π for a finite-horizon problem starting at
epoch t with state st and ending at epoch N . The aim is to
find uπ

1 (s1). This is the so-called value-to-go, which represents
the expected reward of the chosen control policy π, given that
the initial state is s1. It can be derived by applying the backward
recursive formula, for t = N − 1, . . . , 1

uπ
t (st) = rt (st, dt (st))+

+ E{uπ
t+1 (st+1) |st, dt}

= rt (st, dt (st))+

+
∑

st+1∈S

pt (st+1|st, dt (st))uπ
t+1 (st+1) ,

uπ
N (sN ) = rN (sN ) . (6)

The reward rN (sN ) is the value-to-go resulting from the
sequence of actions taken during the dark hours.

B. Action Space

The energy stored in the battery at epoch t is Et = btE. If
control action at is taken, at epoch t+ 1 the total amount of
energy in the storage system is

Et+1 = Et + atE = (bt + at)E (7)



Fig. 1. Pseudo-code describing the deterministic dynamic programming algo-
rithm implemented for the presented application

Thus, the amount of energy drawn from, or supplied to, the
storage system is

at =
ΔEt

E
, (8)

which can be positive or negative and is bounded by the
physical and dynamical limits of the storage system. In gen-
eral, these limits depend on the current state of charge, at ∈[
amin (bt) , a

max (bt)
]
.

C. Algorithm

The optimization algorithm is divided in two stages: a deter-
ministic one, which runs during night-time hours, when there
is no PV production, and a stochastic stage, which runs when
there is PV production.

1) Deterministic: Recall that M − 1 is the total number of
“night-time” epochs, i.e., those hours when radiation is not
sufficient to produce a significant amount of energy. We rep-
resented this situation by setting the clearness to zero from
4 pm to 7:45 am the next day, thus obtaining 64 quarter-of-
an-hour decision epoch. Then, starting from 8 am—which is
the terminal time, indexed by M—the algorithm goes back to
4 pm. The pseudo-code is shown in Fig. 1, where the tilde
is used to distinguish the revenue, the exchanged energy, the
actions and the value-to-go of the deterministic part of the
algorithm.

2) Stochastic: For t = N the optimal value-to-go is evalu-
ated for every possible state sN

u∗
N (sN ) = r∗N (sN ) , ∀sN ∈ S. (9)

For t from N − 1 to 1 the current epoch index is decreased
by one unit and the optimal value of ut (st) is evaluated:

Fig. 2. Pseudo-code describing the stochastic dynamic programming algorithm
implemented for the presented application.

u∗
t (st) = max

a∈Ast

⎧⎨
⎩rt (st, a) +

+
∑

st+1∈S

pt (st+1|st, a)u∗
t+1 (st+1)

⎫⎬
⎭ . (10)

In general, there can be more than one value of a maximizing
(10): these values are collected in the set A∗

st,t. When t = 1
the value u∗

1 (s1)—i.e., the value-to-go associated with an opti-
mal control policy π∗—is obtained. In this case π∗ is a set of
sequences of decision functions such as (d∗1, . . . , d

∗
N−1), where

any d∗t selects a particular action from A∗
st,t.

The pseudo-code of the stochastic part of the algorithm is
shown in Fig. 2.

III. CASE STUDY

The test network used for the simulations is the European
medium voltage (MV) benchmark network of the CIGRÉ [17],
the single line diagram of which is depicted in Fig. 3. The
network is made up of two feeders, framed by dashed lines
in Fig. 3, both operating at 20 kV and fed by the high volt-
age grid by means of two separate 25 MVA-rated transformers.
The network is made up of 15 lines and 15 nodes and feeds
14 loads, both residential and commercial. It is worth noting
that the feeders can be connected by closing switch S1, thus
transforming the radial distribution configuration in a meshed
one. In the present simulations all switches (S1, S2, and S3) are



Fig. 3. Single line diagram of the MV feeders used for the simulation.

supposed to be closed. This configuration would guarantee, by
itself, a more balanced sharing of the power flows in the grid
and is one of the few structural countermeasures that a distribu-
tion system operator can exploit to avoid new installations when
coping with the growing impact of renewable energy sources.
For more detailed information concerning network parameters
and configuration refer to [17]. The network has been imple-
mented using MATPOWER [18]. The power flow algorithm
provided by this toolbox has been used.

The price used in the simulations is depicted in Fig. 4 and is
derived from the so-called PUN, the hourly-based Italian Power
Exchange clearing price as it comes from the day-ahead market
closure, in 2010. As reported in [3], the price profile has been
built using the median values of energy price for each hour and
can be considered a paradigm for energy price.

The clearness has been discretized to nclr = 14 classes. The
transition matrix for the clearness is reported in (11), shown at
the bottom of the page, where the generic entry (i, j) is pt (j|i).

Fig. 4. Mean energy price used in the simulation and derived from Italian
Power Exchange (IPEX) in 2010 [3].

Fig. 5. Graphical representation of the transition matrix for the clearness, as
reported in (11).

It is worth noting that each row of (11) sums up to 1. A graph-
ical representation of the transition matrix is reported in Fig. 5,
where white color is associated to 0 and black to 0.749, the
maximum value of the transition matrix (11). The stationary
distribution associated to the transition matrix for the clearness
is plotted in Fig. 6.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

72.8 25.1 1.10 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14.1 59.3 23.5 1.40 0.7 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.4 14.6 58.1 22.1 2.0 1.3 0.9 0.4 0.1 0.0 0.0 0.0 0.0 0.0
0.1 0.6 15.2 55.9 20.9 3.2 2.1 1.30 0.5 0.2 0.0 0.0 0.0 0.0
0.0 0.2 1.0 15.8 52.6 20.1 4.7 3.10 1.6 0.6 0.2 0.0 0.0 0.0
0.0 0.1 0.5 1.90 16.6 48.3 19.7 6.40 3.9 1.8 0.6 0.1 0.0 0.0
0.0 0.1 0.3 1.20 3.6 17.6 43.5 19.4 7.8 4.2 1.7 0.5 0.1 0.0
0.0 0.0 0.2 0.7 2.4 6.0 19.1 38.9 18.7 8.2 4.0 1.4 0.4 0.1
0.0 0.0 0.1 0.3 1.4 4.1 9.1 20.8 34.5 17.3 7.7 3.3 1.0 0.3
0.0 0.0 0.0 0.1 0.7 2.5 6.5 12.4 22.2 30.3 15.3 6.5 2.5 0.9
0.0 0.0 0.0 0.0 0.2 1.0 3.3 7.6 12.7 18.7 26.3 22.5 5.9 1.8
0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.9 1.9 2.9 10.2 74.9 7.8 0.8
0.0 0.0 0.0 0.0 0.0 0.1 0.5 1.90 4.6 8.2 15.6 41.8 21.4 5.9
0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.80 5.3 11.5 18.2 21.6 19.7 21.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× 10−2 (11)



Fig. 6. Stationary distribution of the clearness.

TABLE I
LAYOUT OF THE DIFFERENT ENERGY STORAGE SYSTEM SIZES

(ESSSS) USED IN THE SIMULATIONS

A 100 kWp-rated photovoltaic field is installed at bus 14.
This bus has been selected because Feeder 2 has a low
domestic-load density and can easily accommodate a large
stand-alone solar field.

The energy storage device has been modeled as a combina-
tion of parallel and series connections of 50 Ah, 3.2 V-rated
cells, in order to obtain the desired overall capacity. SOC has
been limited to span from 0.2 to 1 and has been discretized into
nSOC = 81 steps, each of which corresponds to a 1% variation
of the SOC. The feasibility of a transition from one SOC to
another is checked on the current involved in the transition. If
the current is lower than the rated current the transition is fea-
sible, if higher it is classified as unfeasible. For transitions in
the range of SOCs 0.8–1 the limit current is derated by a 25%
factor.

Different storage sizes–both energy and power—and differ-
ent placements have been simulated. In particular, three energy
sizes (i.e., 250 kWh, 500 kWh, and 1 MWh) have been tested.
For each of these sizes two power ratings (power corresponding
to full capacity and to half capacity) have been applied. A layout
of the different energy storage system sizes (ESSSs) is reported
in Tab. I. Moreover, each of these ESSSs have been connected
to every node (with the only exception on bus 2, which, despite
the graphical representation, does not supply any load).

IV. RESULTS

For every ESSS the optimal strategy (OPT) has been com-
puted and also a non-optimal solution has been derived, so
that one can appreciate the maximum amount of improvement

TABLE II
MEAN VALUES (IN PERCENTAGE) OF LOSSES REDUCTION (NEGATIVE

VALUES) OR INCREASE (POSITIVE VALUES) OVER 5000 DAYS SIMULATION

FOR OPTIMAL (OPT), RANDOM (RND) AND WORST (WRS) POLICIES USING

A REVENUE BASED ONLY ON LOSSES MINIMIZATION. MEAN VALUE OF

LOSSES WHEN NO STORAGE DEVICE IS INSTALLED IS 5.63 MWH.
MAXIMUM STANDARD DEVIATIONS ARE: OPT = 0.019,

RND = 0.696, AND WRS = 0.133

TABLE III
MEAN VALUES (IN PERCENTAGE) OF COST REDUCTION (NEGATIVE

VALUES) OR INCREASE (POSITIVE VALUES) OVER 5000 DAYS SIMULATION

FOR OPTIMAL (OPT), RANDOM (RND) AND WORST (WRS) POLICIES USING

A REVENUE BASED ON ENERGY PRICES. MEAN VALUE OF REVENUE WHEN

NO STORAGE DEVICE IS INSTALLED IS C393.66. MAXIMUM STANDARD

DEVIATIONS ARE: OPT = 0.018, RND = 0.709, WRS = 0.148

obtained from optimization. The non-optimal solution is the
worst policy (WRS), which minimizes the reward function. In
order to prove the effectiveness of the proposed algorithm, 5000
days of operation have been simulated, starting every day at
8 am. These days have been generated from the transition kernel
given in (11); the initial clearness was drawn from the station-
ary distribution of the Markov chain. Along with the optimal
and the worst policy, another policy (RND) has been derived.
It has been obtained through a random selection of the action
among the feasible ones.

The values of losses and cost reduction (or increase) are
shown in Tables II and III, respectively. In these tables the mean
values of percentage deviations of optimal, random and worst
policies with respect to the base case, i.e., when no storage
(NOSTG) is installed in the network, are reported. Values are
computed according to the equation



Fig. 7. SOC paths for one day of the simulations. In each plot the optimal policy (opt) is drawn with a solid blue line while the worst policy (wrs) is drawn
with a dashed red line. The solid black line in the left-hand side plots is the normalized PUN, superimposed in order to highlight the influence of energy price
on the policies. Top row: ESSS no. 6 = (1MWh, 1MW); (a) revenue based on energy price, (b) revenue based on losses minimization. Bottom row: ESSS
no. 1 = (250 kWh, 125 kW); (c) revenue based on energy price, (d) revenue based on losses minimization.

ȳalgo =
1

5000

5000∑
k=1

⎛
⎝
(
yalgo
k − ynostg

k

)
× 100

ynostg
k

⎞
⎠ ,

algo ∈ {opt, rnd,wrs} .
Maximum values of the standard deviations for each policy

are reported in the captions of the tables. From the anal-
ysis of the results, it emerged that, in this particular case,
the differences between best and worst policies in terms of
revenue—although the values of the revenue reached by opti-
mal policy are strictly higher than those obtained by the worst
policy—are not particularly striking. This fact is due to some
concurrent causes: 1) the overlap between load and PV pro-
duction, 2) the small size of the energy storage device with
respect to the overall consumption, and 3) the fact that energy
price is high during daylight hours, when PV production is
high. Moreover, the meshed grid, by itself, reduces energy
losses.

The most significant results are obtained when using a losses
reduction revenue function. The beneficial effect coming from a

correct usage of the storage system increase when going farther
from the HV/MV transformers and when using a high-capacity
and high-power storage system. Losses reduction comes to a
maximum figure of 1.62%. This value can be regarded as signif-
icant, as reported in [19, footnote no. 48, p. 27]. It is verified that
the random policy always lays in between the optimal and the
worst policy, thus confirming that every other possible manage-
ment strategy would lead to no better results than the optimal
one. It can be also noticed that only the optimal policy produces
a reduction, while random and worst policies do not only pro-
duce no beneficial effect but can even increase both losses and
costs.

Despite this little difference in the revenue, the optimal and
the worst policy are extremely different. In fact, the latter tends
to be the complement of the former. In order to highlight these
differences, SOC paths during the same day, but under different
hypotheses, are shown in Fig. 7. The day chosen is the no. 832,
which corresponds to the day with the lowest number of SOC
cycle of the worst algorithm for ESSS no. 6. The clearness
associated to this day is reported in Fig. 8.



Fig. 8. Clearness during day no. 832.

TABLE IV
MEAN OF SOC CYCLES OVER 5000 DAYS SIMULATION FOR OPTIMAL

(OPT), RANDOM (RND) AND WORST (WRS) POLICIES USING A REVENUE

BASED ONLY ON LOSSES MINIMIZATION. MAXIMUM STANDARD

DEVIATIONS ARE: OPT = 0.052, RND = 0.459, WRS = 0.270

As it can be noted in ESSS no. 6, i.e., “great size”, the
worst policy presents a great number of oscillations. These
oscillations are not present in the optimal policy. It is worth not-
ing that no regularization term has been added in the revenue in
order to obtain this behavior.

In Tables IV and V data regarding SOC cycles are shown.
SOC cycles are defined as∑N−1

t=1 |SOCt+1 − SOCt|
2 (SOCmax − SOCmin)

.

Compared to loss minimization, energy-price-based policy
increases the number of cycles, in both optimal and worst poli-
cies. In addition, energy-price-based policy obtains, for small
and medium ESSSs, lower standard deviation, i.e., the solu-
tion is “more stable” and less dependent on clearness. It can
be noted that, when connected to node 12, i.e., the one just after
the HV/MV transformer of Feeder 2, the optimal policy tends to
use the energy storage device less, with a mean number of SOC
cycles below 0.7 for the “great size” energy storage systems

TABLE V
MEAN OF SOC CYCLES OVER 5000 DAYS SIMULATION FOR OPTIMAL

(OPT), RANDOM (RND) AND WORST (WRS) POLICIES USING A REVENUE

BASED ON ENERGY PRICES. MAXIMUM STANDARD DEVIATIONS

ARE: OPT = 0.042, RND = 0.458, WRS = 0.208

and with both revenue functions. Also in the other ESSSs
the mean value of SOC cycles is lower compared to other
locations.

Looking at these data as a whole, some considerations can be
derived. The six ESSSs can be compared clustering them into
three orders of groups: 1) ESSSs with the same capacity (but
different power), e.g., (1–2), (3–4), and (5–6); 2) ESSSs with
the same power (but different capacity), e.g., (2–3) and (4–5);
and 3) ESSSs in which rated power is half (or equal to) the rated
capacity, e.g., (1–3–5) and (2–4–6). Let xi be the mean number
of SOC cycles for the i-th ESSS. From the first group, it can
be noted that, when doubling the power (ESSS i+ 1), it should
always be

xopt
i+1 > xopt

i . (12)

If not, it would mean that the optimal policy is not influenced
by a doubling of the rated power of the converter interfacing
the storage device to the grid. Thus, the same result would be
attained with smaller (and, possibly, cheaper) equipment. As an
example, this condition is verified in node 12 for ESSSs (1–2)
and in node 14 for ESSSs (5–6). From the second set, it can be
noted that, when doubling the capacity (ESSS i+ 1), it should
always be

xopt
i+1 ≥ xopt

i

2
. (13)

If not, it would mean that, despite doubling the capacity of
the storage device, the optimal policy would handle a smaller
amount of energy, thus demonstrating that the optimal policy
found for ESSS i, indeed, is not optimal. If (13) holds as an
equality, the conclusion that capacity-doubling is ineffective
could be inferred. As an example, this condition is verified in
node 12 for ESSSs (4–5). These conclusions could be useful
in determining sizing and placing of the energy storage device.
From the third group some considerations can be inferred by
comparing optimal and worst policies: when, moving from one



Fig. 9. Voltage profiles at bus no. 6 for day no. 3683 and ESSS no. 6 with storage system connected at bus 5. The optimization criteria is losses minimization.
(a) comparison between the optimal policy (solid blue line) and the base case with no storage (dashed red line); (b) comparison between the optimal policy (dashed
red line) and the worst policy (solid blue line).

ESSS to the next one, the difference between worst and optimal
policy is such that(

xwrs
i+2 − xopt

i+2

)− (
xwrs
i − xopt

i

)
> 0. (14)

This means that there is some sort of “regularity” in the optimal
policy. It can also be noted that in the set of ESSSs (1–3–5),
xwrs
1 − xopt

1 is, generally, negative. Thus, it can be inferred that
the combination of low capacity and low power is not suited for
this kind of application. The only exceptions are for node 12
in Tab. V and for nodes 12 and 13 in Tab. IV and derive from
network configuration and PV plant location.

Finally, a comparison between voltage profiles is shown in
Fig. 9. The voltage profiles of bus no. 6 for day no. 3683 and
ESSS no. 6 with storage system connected at bus 5 (optimiza-
tion only on losses). This particular ESSS, along with the place-
ment of the energy storage system has been chosen because it
gives the best result. The particular day is when the maximum
spread between highest and lowest voltage occurs, while the
bus selected is that which displays the minimum voltage. This
selection has been made because of the huge amount of data
(more than 37 million of voltage values for each optimization
criterion). It can be noticed that the optimal management of the
energy storage system enhance the voltage profiles.

V. CONCLUSION

The application of the MDP framework to the optimal
scheduling of a storage device in the presence of solar gener-
ation is a tool which can contribute effectively to network man-
agement. The superiority of this method is intrinsic, because it
takes into account the whole chain of consequences of every
possible action across the entire decisional horizon, instead
of considering only the here-and-now reward at every epoch.
The Markovian assumption for the clearness stochastic process
offers a simplified yet accurate enough representation of the
uncertainty of the solar source, so that the optimal strategy is
valid (on average) over all possible instances of the clearness
over a day and it can be applied to all days with a similar law

of the clearness pattern. Then, by estimating different transition
matrices for every season in the year from long enough series of
observed radiation data, a year-long optimal scheduling strategy
for the storage can be obtained.

The specific testing environment chosen for this article has
demonstrated that, although the improvement measured by the
selected objective function can be modest (be it in terms of net-
work losses or energy prices), this methodology can optimize
other features of the system, such as the number of cycles of the
storage, so that its life will be increased. Incidentally, the direct
usage of the number of cycles as objective function within this
framework would not be possible, because the optimization
algorithm is based on a chain of evaluations of reward functions
spanning only one epoch at a time. Then, either relying directly
on the main objective function or on performance measures
arising as by-products of the optimization, this methodology
could be used to assess the effectiveness of a range of system
layouts, such as the placement of the storage, its size and its
power rating.

Further work should consider different systems, such as net-
works equipped with a larger solar field or multiple storages.
A problem that could arise is that, after executing the policy
optimization for multiple layouts, it might not be easy to dis-
criminate among them, especially if the associated rewards are
close to each other. Therefore, appropriate choice criteria of the
reward function or of by-product performance measures should
be studied.
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