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Abstract—In this letter, a new optimization algorithm, the Mod-
ified compact Genetic Algorithm (M-cGA) is introduced and ap-
plied to the synthesis of thinned arrays. The M-cGA has been de-
rived from the compact Genetic Algorithm (cGA), properly mod-
ified and improved by implementing more than one probability
vector (PV) and adding suitable learning scheme between these
PVs. The so-obtained algorithm has been applied to the optimized
synthesis of different-size linear and planar thinned arrays: In all
the considered cases, it outperforms not only the cGA, but also
the other optimization schemes previously applied to this kind of
problem, both in terms of goodness of the solution (minimization
of the peak sidelobe level) and of computational cost.
Index Terms—Antenna, compact genetic algorithm, optimiza-

tion algorithm, thinned array.

I. INTRODUCTION

I N RECENT years, thinned arrays have attracted significant
attention from researchers because of their advantages such

as the reduction of the array weight and of the complexity of 
the feeding network, thus resulting in an overall cost reduction. 
However, array thinning has also some disadvantages, the main 
of which is the decreasing of the maximum gain value, which 
corresponds to an increase of the sidelobe level (SLL) with re-
spect to a fully populated array with the same equivalent size [1].
To circumvent this drawback, several techniques have been 

proposed, aimed to find the best location of the active elements 
inside the array grid [2]–[12]. Deterministic approaches have 
been first adopted, but they did not show significant improve-
ments with respect to the random element placement [2], [3]. 
Recently, dynamic program [4] and stochastic optimization 
techniques, including Genetic Algorithm (GA) [5], simu-
lated annealing (SA) [6], [7], and Ant Colony Optimization 
(ACO) [8], [9], have been applied to the  optimization of thinned  
array. The obtained results are remarkable, even if they could 
be further improved.
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The combination of deterministic approaches and stochastic
optimization have been proposed exploiting the available
knowledge of Different Sets (DS) or Almost Different Sets
using GA [10]–[12]. These combinations proved that this
procedure is very effective most of the times. However, the op-
erations performed by the optimizer still presents the inherent
disadvantage of stochastic based optimization, i.e., the process
convergence can be really slow, with a resulting increase of its
computational cost.
In [13], the previous hybrid approach has been extended to

planar thinned arrays, while in [14] the synthesis of these last
have been carried out by the combination of others optimization
algorithm (PSO) and combinatorial method. Also, [15] deals
with the synthesis of planar thinned arrays, proposing two tech-
niques that are the hybridization of a deterministic approach (the
density tapering), in one case with the random location of the el-
ements, in the other with the iterative Fourier Transform. This
last is instead used alone for the design of large planar arrays
in [16].
In this framework, the compact Genetic Algorithm

(cGA) [17] seemed to be a good candidate for the optimized
synthesis of thinned arrays. The authors have recently intro-
duced an improved version, named Modified cGA (M-cGA),
with the aim of overcoming the limitation of the former
one [18]. Some preliminary results have been presented in
[19] and [20], showing that M-cGA provided good solutions
with a reduced computational cost, i.e., it converged faster. In
view of these encouraging results on its application to different
test functions and simple electromagnetic problems, the use
of M-cGA was further investigated: In this letter, the results
of its application to the optimization of several, different-size
linear and planar thinned arrays are reported and compared to
the results obtained with other approaches. The letter is struc-
tured as follows. In Section II, the compact genetic algorithm
(cGA) is briefly introduced, followed by the description of the
M-cGA; in Section III, the results of the optimization of planar
and linear thinned arrays are shown, while in Section IV, some
conclusions are drawn.

II. MODIFIED COMPACT GENETIC ALGORITHM

Despite its name, the compact Genetic Algorithm, first pre-
sented in [17], belongs to the Estimation Distribution Algo-
rithms since, in order to get the distribution of good solutions, it
uses a probability vector (PV) to represent a possible solution;
this PV is managed in place of the population of entities typical
of Evolutionary Algorithms. The length of the PV corresponds
to the number of variables of the problem, and the value of
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Fig. 1. Pseudocode of the cGA.

the PV elements represents the probability of a variable to get
a particular value. A full treatment of the method can be found
in [17] and [21], but for the sake of clarity and uniformity of
notation, it is briefly summarized in Section II-A.

A. Compact Genetic Algorithm
The pseudocode of the cGA is shown in Fig. 1. Initially, each

element of the PV is set equal to 0.5, assuming a uniform distri-
bution for each one. At the following step, two individuals are
generated from each element of the current PV. They compete
with each other, and the winner is responsible for updating the
corresponding PV’s element: Its value is increased or decreased
by a factor (where is the population size) according to the
value of the winner. In the standard implementation of cGA, this
competition is of deterministic type, i.e., the winner is the indi-
vidual with the lower cost, when facing aminimization problem,
and vice versa. The cGA will stop when all the PV’s elements
are equal to 0 or 1, i.e., the optimal solution is found.
A first variation of the standard cGA has already been intro-

duced in [17] by increasing the number of generated offspring
and applying a different kind of competition, as the tournament
one, i.e., simulating higher selection pressure. This modifica-
tion, however, has a high computational cost since it needs to
store and evaluate a considerable number of individuals.
In [21], Ahn proposed new versions of cGA introducing

elitism. He created two different approaches, i.e., the persistent
elitism cGA (pe-cGA) and the nonpersistent elitism cGA
(ne-cGA). The elitism-based cGAs outperform the original
cGA in term of function evaluations, but they do not perform
better in term of solution quality.

B. Modified Compact Genetic Algorithm
The idea behind the M-cGA is to enhance the exploration

capability of the cGA, which tends to stagnate, by adding one
of the operators typical of the stochastic algorithms. Therefore,

Fig. 2. New updating rules for the M-cGA.

starting from the ne-cGA, the Modified cGA was implemented
by introducing more PVs and integrating a learning scheme in
the update procedure. In Fig. 2, the new “step 4” of the M-cGA
is reported, which describes the updating procedure, different
from that of the standard cGA. In fact, in M-cGA, each element
of each PV is updated according to the rule used in the standard
cGA, which represents its self-knowledge, but it is also influ-
enced by the elements of the other PVs, i.e., by a global knowl-
edge, and in particular by the best element among those of all the
PVs. This concept is taken from the well-known Particle Swarm
Optimization (PSO) [22]. The new global update, in particular,
depends on the learning factor , introduced in [18], which is
taken from the velocity update rule of PSO. In preliminary sim-
ulations, we found that the value typically used in PSO ( )
is suitable also in the M-cGA case.
In this way, it is possible to enhance the exploration properties

of the algorithm and increase the ability to avoid local optimum,
with a reduced increase of the computational cost: In fact, the
number of operations performed by the M-cGA is equal to that
carried on by the cGA, just multiplied by the number of PVs,
which is generally very small (2–6).

III. THINNED ARRAY SYNTHESIS
In view of the preliminary results reported in [18]–[20], the

application of the M-cGA to thinned array has been further
investigated. Several configurations of both linear and planar
thinned arrays have been considered. The performance of the
M-cGA has been compared to results available in literature, ob-
tained by other approaches on the same configurations. They
have been compared both in terms of their capability to obtain
a good solution, i.e., a configuration that minimizes the peak
sidelobe level (PSL), and of their computational cost. In all the
considered situations, the M-cGA uses 4 PVs, and the reported
results are the average values over 50 independent trials.

A. Synthesis of Linear Thinned Array
For what concerns linear arrays, five different configurations

have been considered: arrays with 96, 198, and 502 elements,



TABLE I
AVERAGE PSL [dB] OBTAINED WITH DIFFERENT METHODS FOR ARRAYS

WITH THE 50% OF THE ELEMENTS SWITCHED OFF

Fig. 3. Function evaluation of different thinned arrays.

50% of which is turned on; a 198-element array, with 79 ele-
ments switched off; and an array with 200 elements, 46 of which
are off. These configurations were chosen due to the availability
of previous results in literature, therefore it was possible to com-
pare the performance of the M-cGA not only to the standard
cGA but also to other established approaches [12].
Table I reports the PSL of the first three configurations, i.e.,

the arrays with the 50% of elements switched off, obtained with
the M-cGA, the cGA, the GA, and the hybrid ADS-GA [12],
respectively. These results show that the cGA works almost al-
ways as the GA, while the M-cGA outperforms both the GA
and the cGA in all cases, most significantly when the size of the
array increases; its performance is comparable to those of the
ADS-GA for the smallest array, but it becomes better than the
latter when increasing the problem size.Moreover, after running
the M-cGA simulation over 50 independent trials, the resulting
standard deviation is 0.4009 for the first array (98/49), 0.5953
for the second (198/99), 0.261 for the last (502/251).
Fig. 3 gives information about the computational cost of

the four considered methods applied to arrays with the 50%
of elements switched off since it shows the variation of the
number of cost function evaluations versus the total number
of array elements. This plot highlights the advantage of using
the probability vector instead of the population since it allows
a drastic reduction of the workload. Moreover, it proves that
M-cGA outperforms cGA since the use of more PVs speeds up
the convergence.
Finally, Table II summarizes the results for the last two con-

sidered arrays, for what concerns both the minimum PSL and
the number of cost function evaluations, relative to the M-cGA
and compared to those for the ADS-GA [12]; in fact, from the

TABLE II
COMPARISON OF THE M-CGA AND THE ADS-GA [12] IN TERMS OF

MINIMUM PSL AND COMPUTATIONAL COST

Fig. 4. Average curve of convergence of theM-cGA applied to the optimization
of the thinned array.

above analysis, the latter appears to provide better results than
the cGA and the GA. Also in these two cases, the PSL values
obtained with the M-cGA are slightly better than those given
by the ADS-GA, but the M-cGA outperforms the ADS-GA for
what concerns the computational cost, which is reduced to one
half in the first case and even to one third for the second array.

B. Synthesis of Planar Thinned Array

In this section, results of the synthesis of planar, i.e., square
and rectangular, thinned arrays, are shown. Similarly to the
linear case, different configurations have been considered based
on previous literature availability. In all the cases, the fitness
function optimized by the M-cGA is the sum of PSLs in two
main planes, i.e., , and and the probability
vectors are one-dimensional vectors as for the linear array.
The first configuration considered is a -element planar

array, in which 108 elements are turned on. In Fig. 4, theM-cGA
average curve of convergence is plotted: The value of the fitness
function after 3000 iterations corresponds to an array configu-
ration whose radiation pattern is shown in Fig. 5. The PSL is
equal to 26.6 dB in the plane, and to 23.5 dB in the

plane. These achieved values are lower than those ob-
tained with the GA in [5], and with the modified real genetic al-
gorithm (MGA) that optimized also the position of the elements
switched on [23].Moreover, the number of fitness function eval-
uations required to converge is around 12 000 for the M-cGA,
i.e., less than half of those needed by the MGA [23].
As a last example of application of the M-cGA to the opti-

mized synthesis of planar thinned arrays, different square ar-
rays have been considered, with different size and percentage
of switched off elements. The obtained PSLs, which in these
cases is equal in the two planes, are reported in the third column
of Table III. In the columns 4–7, the results obtained with the



Fig. 5. Far-field patterns in the two main planes for the optimized
thinned array.

TABLE III
MINIMUM PSL [dB] OBTAINED WITH DIFFERENT METHODS APPLIED TO

DIFFERENT-SIZE PLANAR THINNED ARRAYS

cGA, the HSPSO [14], the ACO [9], and the IFTDT [15] are
also shown.

IV. CONCLUSION

In this letter, the M-cGA, an enhanced version of the cGA
recently introduced integrating learning mechanism in cGA, is
applied to the synthesis of thinned arrays. The results here pre-
sented reveal that the M-cGA is able to well control the PSL of
both linear and planar thinned array, with a reduced computa-
tional cost.
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