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The propagation of high-frequency sound waves in binary gas mixtures flowing
through microchannels is investigated by using the linearized Boltzmann equation
based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection
boundary conditions. The results presented refer to mixtures whose constituents have
comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures
(composed of very heavy plus very light molecules, like He-Xe). The sound wave
propagation model considered in the present paper allows to analyze the precise
nature of the forced-sound modes excited in different gas mixtures. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4948657]

I. INTRODUCTION

Sound-wave propagation through a gas is known to be adequately described by the continuum
Navier-Stokes equations, provided the characteristic length of the gas flow domain is significantly
larger than the molecular mean free path. However, if the excitation frequency ω of the sound wave
becomes sufficiently high, the classical continuum approach fails even at ordinary densities, because
ω−1 can become of the order of the molecular mean free time. Traditional moment methods also fail
at high frequencies. Methods akin to Grad’s procedure were used by Wang Chang and Uhlenbeck1

and by Pekeris et al.2 in order to describe sound propagation, but the results for the attenuation
rate were found in complete disagreement with experiments at high frequencies.3–5 Therefore, in
the case of rarefied gas dynamics (or equivalently, in the case of a highly oscillatory phenomenon),
there is no recourse but to turn to the kinetic theory and the Boltzmann equation.6–17 In the sixties,
Grad18 conjectured that when a binary gas mixture is made up of species with very different molec-
ular masses, under appropriate circumstances, the two components of such a mixture can support
different temperatures, due to the slow exchange of kinetic energy between light and heavy species.
Two-temperature continuum equations, necessary to replace those of hydrodynamics in part of the
continuum regime, have been developed by a number of authors.19–29 From such “two-temperature
hydrodynamics”, Huck and Johnson30,31 predicted the possibility of several simultaneous sound
modes in a disparate-mass gas mixture (composed of very heavy plus very light molecules), for a
narrow range of compositions at high enough frequencies. However, the identity of these interfering
modes has never been completely understood over the years. Thus, a deeper analysis of forced
sound propagation in a gas mixture is expected to be particularly interesting, in order to clarify the
long standing open question about the precise nature of sound modes excited in disparate-mass gas
mixtures.30,32–35

Furthermore, a correct description of sound propagation through a rarefied gas is very impor-
tant in connection with the evaluation of damping forces in micro-electro-mechanical system
(MEMS) devices vibrating at high frequencies. In the last few years, high-frequency MEMS devices
(RF MEMS) (ranging from 1 MHz to 60 GHz) have increasingly been used in various industrial
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fields. Low frequency MEMS devices are normally operated at very low pressure in order to mini-
mize the damping due to the internal friction of the gas (viscous damping).36 This need can be
overcome when MEMS devices vibrate at relatively high frequencies, since gas compressibility
and inertial forces lead then to another damping mechanism, which is related to the propagation of
sound waves generated by high-frequency oscillating micro-structures. Very recently, it has been
proved in Desvillettes and Lorenzani,37 for a single-component gas, that sound waves propagat-
ing between the micro-device walls induce a resonant/antiresonant response of the system. The
occurrence of an antiresonance is particularly important since, if the device is operated close to the
corresponding frequency, the damping due to the gas is considerably reduced. Since gas resonances
take place for each value of the rarefaction parameter (inverse Knudsen number), the RF MEMS
devices can perform well also at atmospheric pressure, greatly reducing the need for (and the cost
associated with) vacuum packaging.

In the current investigation, we extend the previous analysis carried out for a single species gas37 to
a gas mixture. The kinetic description of a mixture of gases with different particle masses (and possibly
with different internal energies) is not a trivial generalization of the classical Boltzmann theory for a
single gas, since the collision operators have to take into account exchanges of momentum and energy
among the different species (and also mass exchanges, in the case of reacting mixtures).24,25,28 In the
present paper, we will use the unsteady kinetic equation based on the linearized version of the relaxa-
tion model of BGK-type presented in Groppi and Spiga.38 This BGK approximation has already been
used as a consistent tool to investigate other physical problems, such as condensation and sublimation
in gas mixtures.39,40 The evaluation of damping forces exerted by gaseous mixtures, that we want to
investigate here, assumes a basic relevance in all MEMS fabrication processes. In fact, during the wafer
bonding process, a gas mixture of noble gases (like Ar, Kr, or Ne) and getterable gases (like N2, O2, or
CO2) is usually backfilled into the MEMS sensor package to set its operating pressure, which should
exactly match the damping requirements of the micro-device design (“backfilling process”).41 Beyond
the analysis of damping forces in RF MEMS, the sound wave propagation model considered in the pres-
ent paper allows us to study the nature of the multiple forced-sound modes excited in disparate-mass
gas mixtures, thanks to the peculiar characteristics shown by the sound waves in correspondence of
the resonant/antiresonant frequency.

II. LINEARIZED BGK MODEL FOR A BINARY MIXTURE

In kinetic theory, the evolution of a mixture of N elastically scattering gases is usually
described by a set of N integro-differential equations of Boltzmann type for the species distribu-
tion functions f s(t,x, ξ) (s = 1, . . . ,N).42,43 Since it is difficult, in general, to manage the collision
integral operator as such, simplified kinetic models have been developed in the literature44–47 and
widely used in practice.48–52 In the present paper, we perform our analysis by using the BGK
relaxation model proposed by Andries et al.53 and generalized by Groppi and Spiga38 even to
non-conservative (reactive) collisions, which has been proven to be well posed from the mathemat-
ical point of view: correct Boltzmann collision invariants and Maxwellian equilibria are properly
recovered, the H-theorem is fulfilled, and the indifferentiability principle holds (when the N gases
coincide, the classical BGK model for a single gas is correctly reproduced).

For a mixture of two gases (N = 2) with particle masses m1, m2, the BGK model presented by
Groppi and Spiga38 reads as

∂ f s

∂t
+ ξ · ∇x f s = νs(Ms − f s) s = 1,2, (1)

where νs are suitable collision frequencies (independent from the molecular velocity ξ, but possibly
dependent on the macroscopic fields) andMs are Maxwellian attractors,

Ms = ns

(
ms

2πkTs

)3/2

exp

− ms

2kTs
|ξ − vs |2


(2)

with k being the Boltzmann constant. Auxiliary parameters vs, Ts (with subscript s) are determined
in terms of the moments of the distribution functions f s, which is the number density ns, the
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mass velocity vs, the temperature T s (with superscript s), by imposing that the exchange rates for
species momenta and energies given by the BGK operator reproduce the exact corresponding rates
calculated by the Boltzmann collision operators Qsr( f s, f r),

νs ms


R

ξ

Ms(ξ) − f s(ξ)dξ =

2
r=1

ms


R

ξ Qsr( f s, f r) dξ,

νs
ms

2


R

|ξ |2Ms(ξ) − f s(ξ)dξ =
2

r=1

ms

2


R

|ξ |2 Qsr( f s, f r) dξ,

when collisions are of Maxwell molecule type. Skipping intermediate details, the final expressions
of the auxiliary fields written in compact form (for s = 1,2) are

vs = vs + (−1)s ν
12
1

νs

µ12

ms

n1n2

ns
(v1 − v2), (3)

kTs = kT s − (−1)s 2
3
ν12

1

νs
µ12 n1n2

ns
vs · (v1 − v2)

− 1
3ms

( ν12
1

νs
µ12 n1n2

ns

)2
|v1 − v2|2 + 2(−1)s ν

12
1

νs

µ12

(m1 + m2)
n1n2

ns
k(T1 − T2)

+
2
3
(−1)s ν

12
1

νs

µ12

(m1 + m2)
n1n2

ns
(m1v1 + m2v2) · (v1 − v2), (4)

where µ12 = m1m2/(m1 + m2) stands for the reduced mass, and νsr
k

are suitably weighted integrals
of the differential cross sections relevant to collisions between particles of species s and r . Values
for νsr

k
corresponding to intermolecular potentials of inverse power type are reported in Chapman

and Cowling.42 For the special case of the Maxwell molecule interparticle force law

Fsr =
K sr

r5
d

(where rd is the distance between particles and K sr is the interparticle force law constant), the
microscopic collision frequencies, relevant in the present analysis for a binary mixture, are explic-
itly given by

ν12
1 = 2π A1(5)

( K12

µ12

)1/2
, ν12

2 = 2π A2(5)
( K12

µ12

)1/2
,

ν11
2 = 2π A2(5)

(2K11

m1

)1/2
, ν22

2 = 2π A2(5)
(2K22

m2

)1/2
.

Here A1(5) ≃ 0.422, A2(5) ≃ 0.436 are the dimensionless collision cross sections,42 while K11 and
K22 can be written in terms of the simple gas viscosity coefficients ηs (s = 1,2) with aid of the first
Chapman-Enskog expressions for these quantities,

ηs =
1

3π

(2ms

K ss

)1/2 (kT)
A2(5) , (5)

and the constant K12 may be determined from the method of the combination rule

K12 = (K11 K22)1/2 (6)

previously considered by McCormack.44 In order to specify the force constants K11 and K22, use
has been made of the experimental data on the viscosities ηs of the single gases at the temperature
T = 300 K, given in Kestin et al.54

A useful tool in the sequel will be the linearization of the BGK equations (1), obtained repre-
senting the distribution functions f s of both species as follows:

f s = f s0 (1 + hs), |hs | ≪ 1, (7)
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with f s0 being the Maxwellian configuration

f s0 = ns
0

(
ms

2πkT0

)3/2

exp

− ms

2kT0
ξ2


(8)

and hs being the small perturbation with respect to the equilibrium state. Neglecting higher order
terms, it can be easily checked that

ns = ns
0 +


R3

f s0 hsdξ, (9)

vs =
1
ns

0


R3

ξ f s0 hsdξ, (10)

T s = T0 +
ms

3kns
0


R3

(
|ξ |2 − 3k

ms T0

)
f s0 hs dξ, (11)

Ps
i j = Ps

0 δi j +


R3

ξi ξ j f s0 hs dξ, (12)

where Ps
i j denotes the viscous stress tensor. We omit here all detailed computations leading to

the linearized BGK operator, since we follow exactly the same steps of the linearization of clas-
sical BGK model for a single gas presented in Cercignani.43 From now on, we introduce the
normalizations

c =
ξ

2 k
m1T0

, (13)

f̂ 1
0 =

f 1
0

n1
0

=
e−|c|2

π3/2 , (14)

f̂ 2
0 =

f 2
0

n2
0

=
e−

|c|2
M12

(πM12)3/2 , (15)

where M12 = m1/m2 is the mass ratio. The unusual choice of normalizing the molecular velocities
with respect to the thermal velocity of the species 1 depends on the fact that, in this way, it becomes
more evident to identify in the equations written for the components of the mixture (and reported
in Sec. III) the deviations from the single gas behavior, in terms of peculiar parameters such as the
molecular mass ratio, M12, and the macroscopic collision frequencies ratio, Θ12 = ν2/ν1. In partic-
ular, the mass ratio parameter M12 will be useful in the sequel to identify the cases of mixture with
comparable particle masses (M12 → 1) or with disparate masses (M12 → 0, if we assume m1 < m2).
Consequently, the linearized version of the BGK collision term, given by the right-hand side of
Eq. (1), can be written as

Lh1
BGK = ν1


ρ1 + 2(1 − Γ1)c · v1 + 2Γ1c · v2 +


1 − 2Γ1M12

(1 + M12)
 (
|c|2 − 3

2

)
τ1

+
2Γ1M12

(1 + M12)
(
|c|2 − 3

2

)
τ2 − h1


, (16)

Lh2
BGK = ν2


ρ2 + 2(1 − Γ2) c

M12
· v2 + 2Γ2 c

M12
· v1 +


1 − 2Γ2

(1 + M12)
 ( |c|2

M12
− 3

2

)
τ2

+
2Γ2

(1 + M12)
( |c|2

M12
− 3

2

)
τ1 − h2


, (17)

where

Γ
1 =

ν12
1 µ12

ν1m1 n2
0, Γ

2 =
ν12

1 µ12

ν2m2 n1
0,

while the dimensionless macroscopic perturbed density ρs, velocity vs, and temperature τs are
defined as
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ρ1 =
1

π3/2


R3

h1 e−|c|
2
dc, ρ2 =

1
(πM12)3/2


R3

h2 e−
|c|2
M12 dc,

v1 =
1

π3/2


R3

c h1 e−|c|
2
dc, v2 =

1
(πM12)3/2


R3

c h2 e−
|c|2
M12 dc,

τ1 =
1

π3/2


R3

(
2
3
|c|2 − 1

)
h1e−|c|

2
dc, τ2 =

1
(πM12)3/2


R3

(
2 |c|2
3M12

− 1
)

h2 e−
|c|2
M12 dc.

Crucial properties of this BGK model (preservation of correct collision equilibria, conservation
laws, and H-theorem) hold independently from the choice of collision frequencies ν1, ν2. In the
present paper, we determine ν1, ν2 by imposing, as additional constraint, that the (linearized) BGK
model reproduces the (linearized) exchange rates for viscous stress tensors P1

i j and P2
i j (defined

in (12)) prescribed by the Boltzmann equations, but other consistent options could be adopted for
them.25 Skipping calculation details, such a constraint yields

ν1 =
3
4
ν11

2 n1
0 +

3
2
ν12

2
1

1 + M12
n2

0, (18)

ν2 =
3
2
ν12

2
M12

1 + M12
n1

0 +
3
4
ν22

2 n2
0. (19)

III. SOUND WAVE PROPAGATION MODEL

Let us consider a binary gaseous mixture confined between two flat, infinite, and parallel plates
located at z′ = −d/2 and z′ = d/2. Both boundaries are held at the same constant temperature. The
upper wall of the channel (located at z′ = d/2) is fixed while the lower one (located at z′ = −d/2)
harmonically oscillates in the z′-direction (normal to the wall itself) with angular frequency ω′ (the
corresponding period being T ′ = 2π/ω′). The velocity U ′w of the oscillating plate depends on time t ′

through the formula

U ′w(t ′) = U ′0 sin(ω′t ′), (20)

where it is assumed that the amplitude U ′0 is very small compared to the characteristic molecular
velocity of the mixture given by

v0 =


2kT0/m, (21)

with m being the mean molecular mass of the mixture and T0 being the equilibrium temperature
of the mixture. Under these conditions, the Boltzmann equation modeling the gaseous mixture
motion inside the channel can be linearized, as described in Sec. II. Using Eq. (7), the system of
nonstationary BGK-Boltzmann equations reads as

∂hs

∂t ′
+ cz

∂hs

∂z′
= Lhs

BGK s = 1,2, (22)

where Lhs
BGK is the linearized BGK collision operator given by Eqs. (16)-(17). It is convenient now

to rescale all variables appearing in Eq. (22) as follows:

t = t ′/θ1, z = z′/(v1
0θ1), (23)

with θ1 = 1/ν1, v1
0 =


2kT0/m1. Furthermore, we define Θ12 = θ1/θ2 = ν2/ν1 and δ = d/(v1

0θ1),
which is the dimensionless distance between the channel walls as well as the rarefaction param-
eter (inverse Knudsen number) of the species s = 1. Since the problem under consideration is
one-dimensional in space, the unknown perturbed distribution functions hs, as well as the over-
all quantities, depend only on the z coordinate. Likewise, we can reduce the dimensionality of
the molecular-velocity space by introducing the projection procedure.17,55,56 First, we multiply
Eq. (22) by 1

π
e−(c

2
x+c

2
y), when s = 1, and by 1

(πM12) e−(c
2
x+c

2
y)/M12, when s = 2, and we integrate

over all cx and cy. Then, we multiply Eq. (22) by 1
π
(c2

x + c2
y − 1) e−(c

2
x+c

2
y), when s = 1, and by
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1
(πM12) (

c2
x+c

2
y

M12
− 1) e−(c

2
x+c

2
y)/M12, when s = 2, and we integrate again over all cx and cy. The result-

ing equations after the projection are

∂H1

∂t
+ cz

∂H1

∂z
+ H1 = ρ1 + 2(1 − Γ1) cz v1

z + 2Γ1cz v2
z +


1 − 2Γ1M12

(1 + M12)

(c2

z −
1
2
) τ1

+
2Γ1M12

(1 + M12) (c
2
z −

1
2
) τ2, (24)

∂H2

∂t
+ cz

∂H2

∂z
+ Θ12H2 = Θ12


ρ2 +

2(1 − Γ2)
M12

cz v2
z

+
2Γ2

M12
cz v1

z +


1 − 2Γ2

(1 + M12)
 ( c2

z

M12
− 1

2

)
τ2 +

2Γ2

(1 + M12)
( c2

z

M12
− 1

2

)
τ1


, (25)

∂Ψ1

∂t
+ cz

∂Ψ1

∂z
+ Ψ1 =


1 − 2Γ1M12

(1 + M12)

τ1 +

2Γ1M12

(1 + M12) τ
2, (26)

∂Ψ2

∂t
+ cz

∂Ψ2

∂z
+ Θ12Ψ

2 = Θ12

 
1 − 2Γ2

(1 + M12)

τ2 +

2Γ2

(1 + M12) τ
1

, (27)

where the reduced unknown distribution functions H s and Ψs are defined as

H1(z,cz, t) = 1
π

 +∞

−∞

 +∞

−∞
h1(z,c, t) e−(c

2
x+c

2
y) dcx dcy, (28)

H2(z,cz, t) = 1
πM12

 +∞

−∞

 +∞

−∞
h2(z,c, t) e−(c

2
x+c

2
y)/M12 dcx dcy, (29)

Ψ
1(z,cz, t) = 1

π

 +∞

−∞

 +∞

−∞
(c2

x + c2
y − 1) h1(z,c, t) e−(c

2
x+c

2
y) dcx dcy, (30)

Ψ
2(z,cz, t) = 1

πM12

 +∞

−∞

 +∞

−∞

( c2
x + c2

y

M12
− 1

)
h2(z,c, t) e−(c

2
x+c

2
y)/M12 dcx dcy. (31)

The macroscopic fields appearing on the right-hand side of Eqs. (24)-(27) are given by

ρ1(z, t) = 1
√
π

 +∞

−∞
H1 e−c

2
z dcz, (32)

ρ2(z, t) = 1
πM12

 +∞

−∞
H2 e−c

2
z/M12 dcz, (33)

v1
z(z, t) = 1

√
π

 +∞

−∞
cz H1 e−c

2
z dcz, (34)

v2
z(z, t) = 1

πM12

 +∞

−∞
cz H2 e−c

2
z/M12 dcz, (35)

τ1(z, t) = 1
√
π

 +∞

−∞

2
3


(c2

z − 1/2) H1 + Ψ1


e−c
2
z dcz, (36)

τ2(z, t) = 1
πM12

 +∞

−∞

2
3

( c2
z

M12
− 1

2

)
H2 + Ψ2


e−c

2
z/M12 dcz. (37)

Applying the same projection procedure to the linearized boundary conditions reported in Desvil-
lettes and Lorenzani37 (Eqs. (17)-(18)) describing the diffuse scattering of gaseous particles on both
walls of the microchannel, we are led to derive the following expressions:

H1(z = −δ/2,cz, t) = (√π + 2 cz)Uw

−2

c̃z<0

dc̃z c̃z e−c̃
2
z H1(z = −δ/2, c̃z, t) cz > 0,

(38)



052003-7 M. Bisi and S. Lorenzani Phys. Fluids 28, 052003 (2016)

H2(z = −δ/2,cz, t) =
(

π

M12
+

2 cz
M12

)
Uw

− 2
M12


c̃z<0

dc̃z c̃z e−c̃
2
z/M12 H2(z = −δ/2, c̃z, t) cz > 0,

(39)

Ψ
1(z = −δ/2,cz, t) = Ψ2(z = −δ/2,cz, t) = 0 cz > 0, (40)

H1(z = δ/2,cz, t) = 2

c̃z>0

dc̃z c̃z e−c̃
2
z H1(z = δ/2, c̃z, t) cz < 0, (41)

H2(z = δ/2,cz, t) = 2
M12


c̃z>0

dc̃z c̃z e−c̃
2
z/M12 H2(z = δ/2, c̃z, t) cz < 0, (42)

Ψ
1(z = δ/2,cz, t) = Ψ2(z = δ/2,cz, t) = 0 cz < 0. (43)

In Eqs. (38) and (39), Uw is the dimensionless wall velocity given by

Uw(t) = U0 sin(ω t) (44)

with Uw = U ′w/v
1
0 , U0 = U ′0/v

1
0 ,ω = θ1ω

′, T = 2π/ω = T ′/θ1. The time-dependent problem described
by Eqs. (24)-(27), with boundary conditions given by Eqs. (38)-(43), has been numerically solved by
a deterministic finite-difference method.57,58

In order to investigate more deeply the influence of the parameters peculiar to a binary gaseous
mixture, such as the molecular mass ratio, M12, and the macroscopic collision frequencies ratio,
Θ12, on the sound wave propagation, it is convenient to derive a system of integral equations for
the macroscopic fields of the two species. In particular, in view of our subsequent considerations,
we are interested in writing down the integral equations for the bulk velocities of the gas compo-
nents. Since the vibrations of the lower wall of the microchannel are generated by a time-harmonic
forcing (of frequency ω) of the form sin(ω t) (see Eq. (44)), we introduce the following expression
Uw = U0 ei ωt in Eqs. (38) and (39) and then we look for solutions of Eqs. (24)-(27) under the form

H s(z,cz, t) = H s(z,cz) ei ω t s = 1,2, (45)

Ψ
s(z,cz, t) =Ψ s(z,cz) ei ω t s = 1,2. (46)

The solutions of the original problem are then recovered by taking the imaginary part of H s and
Ψs. Inserting (45) and (46) in (24)-(27) and then integrating the resulting equations along the
trajectories of the molecules, we obtain an explicit expression for the distribution functionsH s and
Ψ s, which should be inserted in the definitions (32)-(37). Since these calculations are an extension
of those reported in Desvillettes and Lorenzani37 for a single component gas, we will skip all the
details. Thus, the integral equations for the bulk velocities of the gas components read as follows:

v1
z(z) = K1(z, γ) + 1

√
π

 δ/2

−δ/2
dsϱ1(s) sgn(z − s)T0(|z − s| γ)

− 1
√
π

 δ/2

−δ/2
ds ϱ1(s)K2(z, s, γ)

+
2
√
π

 δ/2

−δ/2
ds [(1 − Γ1) v1

z(s) + Γ1 v2
z(s)]T1(|z − s| γ)

− 1
√
π

 δ/2

−δ/2
ds [(1 − Γ1) v1

z(s) + Γ1 v2
z(s)]K3(z, s, γ)

+
1
√
π

 δ/2

−δ/2
ds

(
1 − 2 Γ1 M12

(1 + M12)
)
τ1(s) + 2 Γ1 M12

(1 + M12) τ
2(s)



× sgn(z − s) [T2(|z − s| γ) − 1
2

T0(|z − s| γ)]

− 4
√
π

 δ/2

−δ/2
ds

(
1 − 2 Γ1 M12

(1 + M12)
)
τ1(s) + 2 Γ1 M12

(1 + M12) τ
2(s)


K4(z, s, γ), (47)
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v2
z(z) = K1(z, γ̃) + Θ12√

π

 δ/2

−δ/2
dsϱ2(s) sgn(z − s)T0(|z − s| γ̃)

− Θ12√
π

 δ/2

−δ/2
ds ϱ2(s)K2(z, s, γ̃)

+
2Θ12
π M12

 δ/2

−δ/2
ds [(1 − Γ2) v2

z(s) + Γ2 v1
z(s)]T1(|z − s| γ̃)

− Θ12
π M12

 δ/2

−δ/2
ds [(1 − Γ2) v2

z(s) + Γ2 v1
z(s)]K3(z, s, γ̃)

+
Θ12√
π

 δ/2

−δ/2
ds

(
1 − 2 Γ2

(1 + M12)
)
τ2(s) + 2 Γ2

(1 + M12) τ
1(s)



× sgn(z − s) [T2(|z − s| γ̃) − 1
2

T0(|z − s| γ̃)]

− 4Θ12√
π

 δ/2

−δ/2
ds

(
1 − 2 Γ2

(1 + M12)
)
τ2(s) + 2 Γ2

(1 + M12) τ
1(s)


K4(z, s, γ̃), (48)

where γ = (1 + i ω), γ̃ = (Θ12 + i ω)/√M12, and the symbols Ki (i = 1, . . . ,4) stand for expressions
involving products of the Abramowitz functions Tn defined by

Tn(x) B
 +∞

0
sn e−s

2−x/s ds. (49)

The explicit form of the functions Ki is given in Appendix A. A comparison of the integral equa-
tions (47)-(48) with the bulk velocity field obtained in Desvillettes and Lorenzani37 for a single gas
(Eq. (67)) allows us to infer under what conditions the sound modes associated to the components of
the mixture reduce to a single gas-based sound mode.

Beyond the macroscopic fields given by Eqs. (32)-(37), a further quantity of interest in the
present problem is the perturbation of the global normal stress Pzz (this is the quantity that is
measured experimentally) evaluated at z = −δ/2, since it gives the force exerted by the gaseous
mixture on the moving wall of the channel. In the frame of our linearized analysis, the normal
component of the stress tensor of the mixture is defined in terms of the single component parameters
as Pzz = P1

zz + P2
zz, where

P1
zz(z, t) = 1

√
π

 +∞

−∞
c2
z H1 e−c

2
z dcz, (50)

P2
zz(z, t) = 1

πM12

 +∞

−∞
c2
z H2 e−c

2
z/M12 dcz. (51)

The normal stress time-dependence is of the following known form:

|Pzz | sin(ω t + φ), (52)

where |Pzz | is the amplitude and φ the phase. In general, the amplitude of the time-dependent
macroscopic fields is extracted from our numerical results as half the vertical distance between a
maximum and the nearest minimum appearing in the temporal evolution of the macroscopic quan-
tity. Since the parameter range investigated in our numerical simulations is close to the one taken
into account in Desvillettes and Lorenzani,37 about the accuracy of the BGK approximation we
consider valid the same remarks reported in that reference for a single component gas (still lacking a
complete experimental data set).

IV. PRELIMINARY HYDRODYNAMIC CONSIDERATIONS

In the low-frequency limit, the problem concerning the propagation of sound waves of small
amplitudes in a binary gas mixture is correctly described by the classical Navier-Stokes, Fourier,
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and Fick equations.59,60 As the sound frequency increases, the usual Navier-Stokes description be-
comes unable to describe the experimental data and, in particular, leads to an infinite phase velocity
as the frequency goes to infinity. The analysis of the gas-mixture equations is more difficult than
the comparable single component gas theory because of the many different scales which now enter
in the approach to equilibrium. There is the approach of the distribution function to a Maxwellian
distribution (referred to as Maxwellization) and, in addition, there is the equilibration of the species
(i.e., the vanishing of differences in velocity and temperature among the species). Some time ago,
Grad conjectured that when a binary gas mixture is made up of species with very different molecular
masses, the approach of the gas to equilibrium should exhibit very different relaxation times.18 First,
the light species and then the heavy species reach approximate local Maxwell equilibrium about
independent species temperatures, in times of the orders of the different species self-collision times:
θ1 for the light-species and θ2 for the heavy species. Equilibration between the species can only
be attained thereafter on a time scale of order θ∆T , which is a relaxation time for the difference in
temperature (∆T) between the species. When one assumes comparable number densities n1 ≃ n2,
the times characterizing these different epochs are expected to stand in the ratios,21,35

θ1

θ2
≃ θ2

θ∆T
≃

(m1

m2

)1/2
(53)

with m1 and m2 being the molecular masses of the light and heavy species, respectively. If (m1/m2)
is very small, as it happens for disparate-mass gas mixtures, then θ∆T becomes of the order of a
typical macroscopic time and ∆T is permitted to be a large effect. For completeness, a more detailed
study of all the parameters which play a role in the approach to the equilibrium of different gaseous
mixtures, starting from the BGK-Boltzmann equations considered in the present paper, has been
reported in Appendix B.

Correct equations which necessarily involve separate species temperatures in part of the con-
tinuum regime have been developed independently by several authors. Goebel et al.21 derived a
two-temperature hydrodynamic description by using Grad’s thirteen moment approach for a binary
mixture of Maxwell molecules. The regime of interest here is the frequency regime ω ≃ θ−1

∆T . Using
a linearized version of the equations obtained by Goebel et al.,21 Huck and Johnson30 suggested
the possibility of several simultaneous sound modes in a disparate-mass gas mixture, for a narrow
range of compositions at a high enough frequency. Sound propagation experiments were carried
out on He–Xe mixtures, in the two-temperature regime, by Bowler.32–34 The most significant aspect
highlighted in the Bowler experimental data is that there is, indeed, a large-scale change in disper-
sion at high frequencies as the He mole fraction n1

0 goes from 0.2 to 0.8. This change occurs at
roughly n1

0 ≃ 0.5 for frequencies above ν/p ≃ 70 MHz/atm. The dispersion observed by Bowler
confirms the predictions of Huck and Johnson in showing clear evidence of a competition between
two sound modes excited in disparate-mass gas mixtures, and in verifying the predicted values
for critical composition and frequency which should characterize this interference. Referring to
the results found by Huck and Johnson, one can conclude that for frequencies above the critical
frequency there can be a slow wave or a fast wave in the gas, with the possibility that both may be
present simultaneously if He and Xe are present in nearly equal proportions. The slow wave itself is
a characteristic of a Xe-rich mixture, while the fast wave is the characteristic of the one in which He
predominates. Closer study of the phase and amplitude for the deviation of the hydrodynamic vari-
ables from equilibrium confirms that the slow wave is a damped soundlike mode primarily carried
by the heaviest component of the mixture, which is partly decoupled from the light component, but
the precise identity of these interfering modes has never been completely understood over the years.

V. RESULTS AND DISCUSSION

The results presented here refer to the noble gaseous mixtures of He–Xe (that is, helium with
molecular mass m1 = 4.0026 au and xenon with molecular mass m2 = 131.29 au) and Ne–Ar (that
is, neon with molecular mass m1 = 20.179 au and argon with molecular mass m2 = 39.948 au).
The computations have been carried out for three different values of the rarefaction parameter δ =
0.1,1,10 and of the ratio of the molar concentrations of the two species N12 = n1

0/n2
0 = 0.11,1,9 at
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FIG. 1. Amplitude of the normal stress tensor Pzz at the oscillating wall versus T for δ = 0.1. Comparison between the
results obtained for a single component gas (circles) and for the He–Xe (squares) and Ne–Ar (triangles) mixtures, with the
same molar concentrations.

varying the period T of oscillation of the moving plate. For a single component gas, it has been pointed
out by Desvillettes and Lorenzani37 that above a certain frequency of oscillation of the lower wall
of the channel, the sound waves propagating through the gas are trapped in the gaps between the
moving elements and the fixed boundaries of the microdevice. In particular, Desvillettes and Loren-
zani37 found a scaling law (valid for all Knudsen numbers) that predicts a resonant response of the
system when the dimensionless distance between the channel walls (measured in units of the oscil-
lation period of the moving plate), L = δ

T
, takes a well-defined fixed value. A resonant/antiresonant

response of the system can be detected due to the constructive/destructive interference occurring be-
tween the incident and reflected sound waves generated by the high-frequency oscillating boundary
of the microchannel. Corresponding to a resonant response of the system, the amplitude of Pzz at
z = −δ/2 reaches its maximum value (resonance) or its minimum value (antiresonance). In particular,
the occurrence of an antiresonance is of paramount importance, since if the device is operated close
to the corresponding frequency, the damping due to the gas is considerably reduced.

In Figures 1-3, we report the profiles of the global normal stress amplitude at the oscillating
wall, obtained by numerical integration of Eqs. (24)-(27), as a function of the period T , for three

FIG. 2. Amplitude of the normal stress tensor Pzz at the oscillating wall versus T for δ = 1. Comparison between the results
obtained for a single component gas (circles) and for the He–Xe (squares) and Ne–Ar (triangles) mixtures, with the same
molar concentrations.
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FIG. 3. Amplitude of the normal stress tensor Pzz at the oscillating wall versus T for δ = 10. Comparison between the
results obtained for a single component gas (circles) and for the He–Xe (squares) and Ne–Ar (triangles) mixtures, with the
same molar concentrations.

different values of the rarefaction parameter δ. We have included in these pictures the results
of numerical calculations for the mixtures He–Xe, Ne–Ar (with the same molar concentrations,
N12 = 1), as well as those corresponding to a single component gas. Figures 1-3 reveal that, in
the near-free molecular flow regime (δ = 0.1) and in the transitional region (δ = 1), the resonant
response of the system occurs also for both gas mixtures considered (although the scaling law
found for a single component gas does not hold any longer), while, in the near-continuum regime
(δ = 10), the propagation of sound waves in the disparate-mass He–Xe mixture does not show up
any resonance.

For completeness, we list in Table I the values of T corresponding to the occurrence of reso-
nances (Tr) and antiresonances (Ta), in the case of a single component gas and of both mixtures

TABLE I. Values of T corresponding to the occurrence of resonances (Tr) and antiresonances (Ta), for a single component
gas and for the mixtures Ne–Ar and He–Xe, for different values of N12 and δ. The symbol “−−” indicates a lack of
resonances/antiresonances.

δ = 0.1

Ne–Ar He–Xe

N12= 0.11 N12= 1 N12= 9 N12= 0.11 N12= 1 N12= 9 Single gas

Tr 0.21 0.21 0.21 0.2 0.2 0.2 0.2
Ta 0.51 0.51 0.51 0.44 0.44 0.44 0.43

δ = 1

Ne–Ar He–Xe

N12= 0.11 N12= 1 N12= 9 N12= 0.11 N12= 1 N12= 9 Single gas

Tr 2.6 2.4 2.2 2 2 2.1 2.1
Ta 5.6 5.5 5.4 5.5 5.3 4.9 4.6

δ = 10

Ne–Ar He–Xe

N12= 0.11 N12= 1 N12= 9 N12= 0.11 N12= 1 N12= 9 Single gas

Tr 32 28 25 −− −− 26 23.5
Ta 60 56 51 −− −− 85 47
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Ne–Ar and He–Xe, for different values of the ratio of the molar concentrations of the two species
N12 and of the rarefaction parameter δ. In order to inspect more deeply the physical processes
going on in both gas mixtures, we examine in the following the macroscopic profiles of the mixture
components in different regimes.

A. Near-continuum regime

We report in Figures 4-5 the velocity and temperature profile of the mixture components as a
function of the distance across the gap of the channel (at different stages during a period of oscil-
lation). We have included in these pictures the results of numerical calculations for the mixtures
Ne–Ar and He–Xe (with N12 = 1), when the period T matches the main resonant response of the
system and δ = 10. Since for the He–Xe mixture no resonances appear, we have chosen a period
T corresponding to the occurrence of the main resonance for a single component gas. In all the
figures presented in the following, the lightest component of each mixture has been labelled with
superscript 1, while the heaviest one with superscript 2. For a single gas, it has been pointed out by
Desvillettes and Lorenzani 37 that, when a resonant response of the system occurs, the velocity field
of the gas takes the form of a standing wave and concomitantly also the temperature field assumes
a characteristic shape. In the case of the Ne–Ar mixture, both species have the same macroscopic
fields (see Fig. 4). In particular, the velocity of each species takes the form of a standing wave,
as it happens for a single gas when a resonant response of the system occurs. On the contrary, for
the He–Xe mixture, the pictures reveal that two different forced-sound modes are simultaneously
present: a fast and a slow wave (see Fig. 5). The slow wave is a damped soundlike mode primarily
carried by the Xe, while the fast wave should be associated to the He-component of the mixture.
These observations are in agreement with previous predictions about the possibility of several
simultaneous sound modes in a disparate-mass gas mixture for a narrow range of compositions at
high enough frequencies.30,33,35 In particular, the analysis performed by Huck and Johnson30 (briefly

FIG. 4. Variation of the macroscopic velocities and temperatures of the Ne–Ar mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 10 and T = 28. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.
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FIG. 5. Variation of the macroscopic velocities and temperatures of the He–Xe mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 10 and T = 23. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.

reported in Section IV), which predicted the existence of two sound modes of comparable absorp-
tion but very different speed of propagation, seems confirmed by our numerical results. Indeed,
looking at Figures 6 and 7, where the velocity and temperature profiles of the mixture components
are shown for different values of the period T (T = 2 and T = 70), one can infer that the charac-
teristics of the macroscopic fields, associated with the two sound modes, depend strongly on the
excitation frequency of the modes themselves. At T = 2, both modes are damped, then, when T
increases, they tend to equilibrate, even if, in a neighborhood of T = 23, the sound mode associated
to the heaviest component of the mixture appears more damped than the other and with a very
different speed of propagation. Since this trend is also confirmed for N12 = 9 and N12 = 0.11, we can
conclude that the equilibration of the modes associated with the mixture components is not related
to the number of cross collisions between the molecules of the two species, as one might expect.18,35

Therefore, the results obtained previously, based largely on the two-temperature hydrodynamic
description and summarized in Section IV, provide only a partial picture of the real characteristics
of the macroscopic fields associated with different sound modes propagating in a disparate-mass gas
mixture.

To explain the lack of resonances in a disparate-mass gas mixture, when N12 = 1, we can resort
to a qualitative analysis of the integral equations given by Eqs. (47) and (48). In the near-continuum
regime (δ ≥ 10), the integrals in Eqs. (47) and (48) give the main contribution to the velocities
of gas components. In spite of the complex form assumed by these expressions, some qualitative
properties on the behaviour of the two species of the mixture can still be deduced. For mixtures
like Ne–Ar, whose constituents have comparable molecular mass, such that γ ≃ γ̃, Θ12 ≃ 1, and
M12 ≃ 1, the velocity profiles of the two species are symmetric by interchanging superscripts 1 and
2 (as the numerical results reported in Fig. 4 show). In this case, Eq. (47) reduces to the equation
for the velocity field of a single-component gas,37 since the terms (−Γ1 v1

z) and (Γ1 v2
z) cancel out

as well as the terms: −


2 Γ1 M12
(1+M12)


τ1 and


2 Γ1 M12
(1+M12)


τ2. All the remarks done by Desvillettes and

Lorenzani37 on the appearance of resonances/antiresonances will continue to apply, except that now,
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FIG. 6. Variation of the macroscopic velocities and temperatures of the He–Xe mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 10 and T = 2. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.

for a mixture, the phenomenon of constructive/destructive interference will involve incident and
reflected waves associated to two species (since the profiles of v1

z and v2
z are symmetric). Therefore,

the location of the main resonance (antiresonance) will be different from that found for a single gas
(see Figs. 1-3 and Table I).

On the contrary, for mixtures like He–Xe, whose constituents have very different molecular
mass, such that Θ12 ≪ 1, M12 ≪ 1, and the real and imaginary parts of γ̃ are higher than those of
γ, the field v2

z, described only by the Abramowitz functions which depend on γ̃, approaches zero
more quickly, as function of z, than v1

z. This is true for each value of T . Therefore, in this case,
the appearance of resonances/antiresonances should be linked only to the constructive/destructive
interference occurring between the incident and reflected sound waves associated to the lightest
species (He). Indeed, Fig. 3 shows that, for δ = 10 and N12 = 1, the propagation of sound waves
in the He–Xe mixture does not show up any resonance. In order to trace back the origin of this
phenomenon, we are led to compare Eq. (47), when M12 ≃ 0, with the integral equation for the
macroscopic velocity field of a single-component gas, reported in Desvillettes and Lorenzani 37

(Eq. (67)). The comparison reveals that if we consider values of T in a neighborhood of T = 23
(corresponding to the main resonance of the system for a single component gas) such that v2

z is a
rapidly damped profile (see Fig. 5), the velocity field of the lightest species v1

z is the same as that
reported by Desvillettes and Lorenzani 37 for a single gas, except that, in Eq. (47), the influence
of the integral term involving v1

z is weighted by the factor (1 − Γ1) instead of 1. This means that
the wave associated to the He-component is not a single gas-based sound mode. When Γ1 → 0,
that is, for N12 ≫ 1, Eq. (47) reduces to the equation for the velocity field of a single-component
gas and the resonant phenomenon can be observed, in the near-continuum regime, also for a
disparate-mass gas mixture. This is shown in Fig. 8, where we report the profile of the global
normal stress amplitude at the oscillating wall as a function of the period T , for the He–Xe mixture,
when N12 = 9.

By definition, Γ1 is proportional to the ratio between the microscopic collision frequency be-
tween particles of species 1 and 2, ν12

1 , and the macroscopic collision frequency ν1. Therefore, one



052003-15 M. Bisi and S. Lorenzani Phys. Fluids 28, 052003 (2016)

FIG. 7. Variation of the macroscopic velocities and temperatures of the He–Xe mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 10 and T = 70. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.

can conclude that the lack of resonances for a disparate-mass gas mixture is due to the fact that,
in the near-continuum regime, when there is a large number of collisions between the two species
if their molar concentration is nearly the same (N12 = 1), the particles of the heaviest component
of the mixture slow down those of the lightest species and no sound waves can reach the fixed
wall of the channel. On the contrary, when Γ1 is small, which can be obtained if n1

0 ≫ n2
0 (that is,

N12 ≫ 1), the two species behave almost independently of each other, as it happens in the near
free-molecular flow regime, so that the sound waves associated to the He-component of the mixture
can again interfere to produce resonances. Therefore, in contrast to that previously obtained by

FIG. 8. Amplitude of the normal stress tensor Pzz of the He–Xe mixture at the oscillating wall versus T for δ = 10 and
N12= n

1
0/n

2
0= 9.
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Huck and Johnson,30 our results reveal that, in a disparate-mass gas mixture, two excited sound
modes always coexist, regardless of the molar concentration of the two species (that is, for each
N12). On the other hand, in agreement with what previously found both theoretically and experi-
mentally, our computations predict a change in the propagation properties of the two excited sound
modes when N12 ranges from 0.11 to 9. This can be immediately inferred by comparing the profile
corresponding to He–Xe shown in Fig. 3 (which has a similar shape also for N12 = 0.11) with the
one in Fig. 8.

B. Near-free molecular flow regime and transitional region

In the near-free molecular flow regime (δ = 0.1), the macroscopic field profiles of the light-
est species of both mixtures coincide with those obtained for a single gas (see Figures 9-10).
This justifies the appearance of resonances/antiresonances for both the mixtures considered. In the
case of the Ne–Ar mixture, when the period T matches the main resonant response of the sys-
tem, the velocity and temperature profiles of the two gas components are similar in shape, even
if quantitatively different (see Fig. 9). In particular, the temperature profiles of the two species
show a different functional form, reflecting the fact that the “two-temperature regime” is not a
prerogative of disparate-mass gas mixtures. In the case of the He–Xe mixture, Fig. 10 reveals that,
for δ = 0.1, when the period T matches the main resonant response of the system, two different
forced-sound modes are simultaneously present: a fast and a slow wave, with the same properties
already analyzed in Subsection V A. The only difference with the near-continuum case is that, for
δ = 0.1, the wave associated to the He-component of the mixture appears to be a single component
gas-based sound mode for each value of N12, since the velocity field v1

z for helium is the same
as that obtained for a simple monatomic gas. The output of the numerical simulations presented
in Figures 9-10 can be more deeply evaluated through an analysis of the integral equations given
by Eqs. (47) and (48). In the near-free molecular flow regime, the integrals appearing in Eqs. (47)
and (48) vanish and the velocity profiles of both components of the mixture are given by the same

FIG. 9. Variation of the macroscopic velocities and temperatures of the Ne–Ar mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 0.1 and T = 0.21. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.
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FIG. 10. Variation of the macroscopic velocities and temperatures of the He–Xe mixture components (with the same molar
concentrations), in the z-direction across the gap of the channel for δ = 0.1 and T = 0.2. In each panel, the profiles of the
macroscopic quantities are shown at different stages during a period of oscillation of the moving wall.

expression except that the Abramowitz functions depend on γ, in the case of v1
z, and on γ̃, in the

case of v2
z. Therefore, for mixtures like Ne–Ar, whose constituents have comparable molecular

mass, the parameters γ and γ̃ take close values and the macroscopic velocity fields v1
z and v2

z

have a similar shape (as shown in Fig. 9). On the contrary, for disparate-mass gas mixtures like
He–Xe, the Abramowitz functions, which depend on γ̃, approach zero more quickly as functions
of z than those depending on γ, and the field v2

z represents a damped soundlike mode associated to
the heaviest component of the mixture (as shown in Fig. 10). However, also in this case, the same
remarks valid for δ = 10 can be applied: when the period T is very small (of the order of 10−2), both
modes associated to the two mixture components are damped, while, when T increases, they tend to
equilibrate. This result confirms that the equilibration of the modes associated with the two species
is not related to the number of collisions between molecules, which, in the near free-molecular flow
regime, is small. The same considerations hold also for N12 = 0.11 and N12 = 9 and for each δ lying
in the transitional region (that is, 0.1 < δ < 10).

VI. CONCLUDING REMARKS

In the present paper, we have analyzed the high-frequency sound wave propagation in binary
mixtures flowing through microchannels, within the framework of kinetic theory of rarefied gases.
The results presented refer to the noble gaseous mixtures of He–Xe and Ne–Ar with different molar
concentrations. Our analysis shows that, due to the constructive/destructive interference occurring
between the incident and reflected sound waves generated by the oscillating boundary of the mi-
crodevice, a resonant/antiresonant response of the system can be detected in the near-free molecular
flow regime and in the transitional region for both gas mixtures considered. In the near-continuum
regime, for mixtures like Ne–Ar, the macroscopic velocities of the two species are symmetric and
reduce to the velocity field of a single-component gas. In this case, resonances still occur but
since the phenomenon of constructive/destructive interference will involve incident and reflected
waves associated to two species, the location of the main resonance (antiresonance) turns out to
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be different from that found for a single gas. Instead, when δ ≥ 10 and N12 ≤ 1, the propagation
of sound waves in disparate-mass gas mixtures (like He–Xe) does not show up any resonance.
For a period T corresponding to the occurrence of the main resonance for a single component
gas, the macroscopic velocity of the heaviest component Xe is a rapidly damped field while the
velocity of the lightest species He differs from that of a single-component gas due to a term propor-
tional to Γ1. When Γ1 → 0, that is, for N12 ≫ 1, the resonant phenomenon can be observed, in the
near-continuum regime, also for a disparate-mass gas mixture and the fast wave carried by the He
appears to be a single component gas-based sound mode.

Therefore, the sound wave propagation model considered in the present paper allows us
to analyze the precise nature of the multiple forced-sound modes excited in gaseous mixtures,
thanks to the peculiar characteristics shown by the sound waves in correspondence with the reso-
nant/antiresonant frequency. In this regard, our findings extend the results obtained previously,
based largely on the two-temperature hydrodynamic description, which provide only a partial
picture of the real characteristics of the macroscopic fields associated with different sound modes.
Despite the fact that the theoretical approaches presented here and in Refs. 30 and 35 assume
Maxwellian intermolecular forces, the predictions about the possibility of several simultaneous
sound modes in a disparate-mass gas mixture and the physical regimes in which these features
should be evident have been all confirmed by the experiments.32–34 Therefore, even if the BGK
kinetic model, considered in the present paper, has been derived in closed-form by assuming
Maxwell molecules, we expect to obtain analogous results on sound waves propagation also for
other collision kernels corresponding to more realistic intermolecular potentials.
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APPENDIX A: DETAILED FORM OF THE FUNCTIONS APPEARING IN THE INTEGRAL
EQUATIONS (47)-(48)

In the following, we report the explicit form of the functions Ki (i = 1, . . . ,4) appearing in
Eqs. (47)-(48):

K1(z, v) B 2
√
π

T2((δ/2 + z) v) − 1
√
π
[1 − 4 T2

1 (δ v)]−1 T1((δ/2 − z) v)

× [2√π T1(δ v) + 4 T2(δ v)] + 1
√
π
[1 − 4 T2

1 (δ v)]−1 T1((δ/2 + z) v)
× [√π + 8 T1(δ v)T2(δ v)], (A1)

K2(z, s, v) B [1 − 4 T2
1 (δ v)]−1

×

4 T1(δ v)T1((δ/2 − z) v)T0((δ/2 + s) v) + 2 T1((δ/2 − z) v)T0((δ/2 − s) v)

− 4 T1(δ v)T1((δ/2 + z) v)T0((δ/2 − s) v) − 2 T1((δ/2 + z) v)T0((δ/2 + s) v)

, (A2)

K3(z, s, v) B [1 − 4 T2
1 (δ v)]−1

×

4 T1((δ/2 − z) v)T1((δ/2 − s) v) − 8 T1(δ v)T1((δ/2 − z) v)T1((δ/2 + s) v)

− 8 T1(δ v)T1((δ/2 + z) v)T1((δ/2 − s) v) + 4 T1((δ/2 + z) v)T1((δ/2 + s) v)

, (A3)

K4(z, s, v) B [1 − 4 T2
1 (δ v)]−1

×

T1(δ v)T1((δ/2 − z) v) [T2((δ/2 + s) v) − 1

2
T0((δ/2 + s) v)] + 1

2
T1((δ/2 − s) v)

× [T2((δ/2 − s) v) − 1
2

T0((δ/2 − s) v)] − T1(δ v)T1((δ/2 + z) v) [T2((δ/2 − s) v)
− 1

2
T0((δ/2 − s) v)] − 1

2
T1((δ/2 + s) v) [T2((δ/2 + s) v) − 1

2
T0((δ/2 + s) v)]


. (A4)
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APPENDIX B: PARAMETERS INVOLVED IN THE APPROACH TO EQUILIBRIUM
OF DIFFERENT GASEOUS MIXTURES ACCORDING TO THE BGK-BOLTZMANN
EQUATION

Since the collision operator in the BGK model (1) consists of a unique relaxation-type term,
the relaxation time which measures the rate of convergence of the distribution function f s towards
a Maxwellian distribution is simply given by the inverse of the macroscopic collision frequency:
θs = 1/νs. Therefore, using Eqs. (18) and (19), the times, needed by both mixture components to
reach approximate local Maxwell equilibrium about independent species temperatures, are expected
to stand in the ratios

θ1

θ2
= Θ12 =

ν2

ν1
=


M12

√
2 M12 N12 +


K22

K12

√
1 + M12



√
2 +


K11

K12

√
1 + M12 N12

 . (B1)

If the Chapman-Enskog expressions for the gas viscosity coefficients ηs are considered (Eq. (5)) and
the method of the combination rule taken into account (Eq. (6)), Eq. (B1) reads

Θ12 =

√
2 M12 N12 +


η1

η2

√
M12
√

1 + M12



√
2 +


η2

η1

√
M12
√

1 + M12 N12

 . (B2)

For the purpose of obtaining a rough estimate of orders of magnitude, it can be assumed that the
species of the mixture have comparable number densities (N12 ≃ 1) and that the intermolecular
forces are of the same order (K11 ≃ K22 ≃ K12). In this case, Eq. (B1) reduces to

Θ12 ≃ C


M12, (B3)

where the constant C is of order 1 for all M12 ∈ [0,1] (precisely, C ∈


1
1+
√

2
,1

). The estimate (B3)

is consistent with the scaling (53) first conjectured by Grad (under the same hypotheses leading
to (B3)), even if a complete dependence on all the parameters which play a role in the approach
to the equilibrium is given by Eq. (B2). In order to evaluate the relaxation time for the difference
in temperature θ∆T (which is the time scale for the equilibration between the species), we have to
consider the evolution equation for the difference of species temperatures (T1 − T2). An explicit
estimate may be found in physical situations, recently underlined in extended thermodynamics,27

when the mechanical relaxation time is shorter than the thermal one, or, in other words, the equal-
ization of species velocities is faster than the equalization of temperatures. In this case, an adequate
hydrodynamic description can be obtained by considering a single mass velocity for the gas mixture
and different temperatures for each species. Thus, the evolution equation for the temperature T s,
obtained by multiplying the space homogeneous version of Eq. (1) by ms |ξ |2/(3kns

0) and integrating
over ξ, reads

∂T s

∂t
= νs(Ts − T s) s = 1,2 (B4)

since we have assumed v1 = v2 = v1 = v2 = v0 = 0. Hence, subtracting two Equations (B4), we get

∂(T1 − T2)
∂t

= ν1
�
T1 − T1� − ν2

�
T2 − T2�. (B5)

Using Eq. (4) and bearing in mind again the assumption v1 = v2, Eq. (B5) becomes

∂(T1 − T2)
∂t

= − 4 πA1(5)
√

K12(n1 + n2)


M12

m2(1 + M12)3
(T1 − T2)

≡ −ν∆T (T1 − T2). (B6)
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Therefore, from Eqs. (19) and (B6), by assuming that the species of the mixture have comparable
number densities (N12 ≃ 1) and that the intermolecular forces are of the same order (K11 ≃ K22 ≃
K12), we get the following estimate:

θ2

θ∆T
=

ν∆T
ν2
≃ const.


M12 (B7)

in agreement with Grad expectation (53).35
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