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1 Introduction

The Electric Vehicles (EVs) play a key role for guaranteeing more eco-sustainable
transportation systems. In urban contexts, they can be used also in particu-
lar zones forbidden to the Internal Combustion Engines (ICEs). The use of
a such type of vehicles guarantees a reduction of the energetic costs (up to
90%); their regenerative breaking allows recuperating about 15% of the total
energy; their efficiency is about 90% compared to an ICE strongly limiting the
atmospheric heating. Moreover, they are less noisy than the ICEs and they
do not produce harmful emissions (e.g., CO2). However, the EVs still have
a poor battery autonomy and therefore, they require many stops during the
trips for being recharged. This can be a strong limitation to their diffusion
if we think that it is often required to provide transportation services within



precise time windows.
In this paper, we address the problem of serving a set of customers, within
fixed time windows, by using EVs and considering their need to stop at the
Recharging Stations (RSs) during the trips. In the literature, this problem has
been already modeled as a Vehicle Routing Problem (VRP) with Time Win-
dows (TW) and denoted as Electric-VRPTW (E-VRPTW) due to the use of
EVs. The fleet is based at a common depot and each route, assigned to one
EV, has to start and end at the depot itself. Due to the EV features, the E-
VRPTW is different from the traditional VRPTW since the recharging needs
have to be taken into account. The road network will be characterized not
only by the depot and by the points which the customers are assumed to be
placed in, but also by the RSs. The goal is to find a set of routes performed by
EVs in order to handle all the customer requests in time, minimizing a specific
cost function. The VRPTW represents a problem extensively investigated in
the literature ([1] and [7]). Several scientific contributions have already ad-
dressed a VRP to control the harmful emissions (see, for example, [4] and
[2]). In [3], the VRP with alternative fuel powered vehicles and fixed refuel-
ing times is modeled and two heuristics are also proposed: a modified Clark
and Wright savings algorithm and a density-based clustering algorithm. How-
ever, neither the freight vehicle capacity nor the time windows are included.
In [8], a VRPTW with EVs and RSs is formulated. Beyond the traditional
VRPTW constraints, the model imposes also conditions on the battery level.
The Recharging Time (RT) is the time for restoring the current battery level
to the maximum capacity since it is always performed a full recharge. The
authors minimize the number of used EVs and then, the total travel distance.
They also describe a Variable Neighborhood Search combined with a Tabu
Search. The computational results show the high quality performance of the
proposed approach.
In this paper, we propose a variant of the original E-VRPTW such that the
batteries are not always fully recharged, with the aim of reducing the RTs.
Consequently, the partial recharges guarantee higher flexibility during the
route planning. Under these considerations, a Mixed Integer Linear Program-
ming (MILP) formulation will be proposed for minimizing the number of used
EVs, the total Travel Time (TT), the total RT (RT) and the total Waiting
Time (WT) (i.e., the sum of the times spent before starting the services at
the customers). In the MILP, for each EV, the level of battery reached at a
RS is a decision variable of the optimization process. Moreover, a Variable
Neighborhood Search Branching (VNSB) is applied taking into account the
general framework proposed in [6] for MILP formulations.



The rest of the paper is organized as in the following: Section 2 introduces
the statement of the problem and the new formulation proposed for the E-
VRPTW while Section 3 describes the VNSB applied to it. Finally, Section 4
shows numerical comparisons carried out on benchmark instances and Section
5 concludes the paper.

2 A MILP formulation of the E-VRPTW

The aim of the E-VRPTW is to handle a set of customers within their time
windows through a fleet of EVs. It can be represented on a direct complete
graph G =< V,A > where V contains the set N of n customers, the set F of
f RSs and the depot (0) plus its clone (n + f + 1) while V ′ = V \ {0} and
V ′′ = V \ {(n + f + 1)}. Each route starts at 0 and ends at (n + f + 1).
The set A contains all the links between each couple of vertices. The fleet is
homogeneous and then, each EV presents both the same freight and battery
capacity, denoted by C and Q, respectively. Moreover, the average vehicle
speed v is assumed to be known while r and g denote the consumption and
recharging rate of the battery, respectively. In addition, qi ≥ 0 represents the
demand associated with the customer i ∈ N . The range [ei, li] is the time
window for serving the customer i ∈ N ∪ {0} where l0 is the maximum time
duration of a route. Then, the EV cannot start and finish the service before
and after ei and li, respectively. The service time of the customer i ∈ N is
si ≥ 0. For each arc (i, j) ∈ A, the travel distance and duration are known:
dij and tij, respectively. In order to mathematically formulate the problem,
the following decision variables are introduced: xij,∀(i, j) ∈ A equal to 1 if
the arc (i, j) is used, 0 otherwise; τi, yi and ui represent the arrival time,
the battery level and the remaining freight capacity of the EV at the vertex
i ∈ V ; δi is the waiting time of the EV at the vertex i ∈ N and finally, Qi

is the battery level reached at the RS i ∈ F . This means that the battery
level reached at each RS is established during the optimization process. The
mathematical model is detailed in the following:

min α
∑

j∈N∪F

x0j + β
∑
i∈V ′′

∑
j∈V ′|i ̸=j

tijxij + γ(
∑
i∈N

δi +
∑
i∈F

g(Qi − yi))(1)

∑
j∈V |j ̸=i

xij = 1 ∀i ∈ N(2)

∑
j∈V |j ̸=i

xij ≤ 1 ∀i ∈ F(3)



∑
i∈V ′′|j ̸=i

xij =
∑

i∈V ′|j ̸=i

xji ∀j ∈ N ∪ F(4)

τi + δi + (tij + si)xij − l0(1− xij) ≤ τj ∀i ∈ N ∪ {0}, j ∈ V ′|i ̸= j(5)

τi + tijxij + g(Qi − yi)− (l0 + gQ)(1− xij) ≤ τj ∀i ∈ F, j ∈ V ′|i ̸= j(6)

ej ≤ τj + δj ≤ lj ∀j ∈ V(7)

0 ≤ uj ≤ ui − qixij + C(1− xij) ∀i ∈ V ′′, j ∈ V ′|i ̸= j(8)

0 ≤ u0 ≤ C(9)

0 ≤ yj ≤ yi − rdijxij +Q(1− xij) ∀i ∈ N ∪ {0}, j ∈ V ′|i ̸= j(10)

0 ≤ yj ≤ Qi − rdijxij +Q(1− xij) ∀i ∈ F, j ∈ V ′|i ̸= j(11)

Qi − yi ≥ 0 ∀i ∈ F(12)

0 ≤ Qi ≤ Q ∀i ∈ F(13)

y0 ≤ Q(14)

xij ∈ {0, 1} ∀i ∈ V ′′, j ∈ V ′|i ̸= j(15)

The objective function (1) consists in the minimization of four different
components: the EVs used, the TT, the WT and finally, the RT. The weights
are introduced with the aim of monetizing the different components. In par-
ticular, α is an average daily cost for using an EV and takes into consideration,
among the other things, the costs to buy the EV, its maintenance and related
to the driver’s salary. The parameter β represents the cost for time unit due
to the battery consumption during a trip while γ denotes the cost per time
unit due to the idle of the EV (i.e., due to the RTs and WTs). Each constraint
(2) imposes that each customer has to be served by just one EV; the group (3)
assures that a RS can or not be utilized. It is worth noting that, for feasibility
reasons, the RSs are cloned ([8]). The group (4) denotes the flow conservation
conditions while the group (5) determines the arrival time at j ∈ V starting
from the customer i ∈ N . The group (6) finds the arrival time at j ∈ V
starting from the RS i ∈ F . This group represents an innovative aspect of
the proposed model since the battery level reached at each RS is a decision
variable. The constraints (7) guarantee the respect of the time windows, while
(8)-(9) assure that the freight vehicle capacity is never exceeded. The con-
straints (10)-(11) represent the battery consumption rate along a path that
can start either from a customer i ∈ N or from a RS i ∈ F to reach the vertex
j ∈ V . The constraints (12) guarantee that the battery level reached at each
RS is never less than the current battery level. Finally, (13)-(14) assure that
the battery level reached at each RS and the initial battery level at the depot
do not exceed the maximum allowed capacity Q.



3 VNSB for EVRP

The proposed formulation of the E-VRPTW can be seen as a special case of
0-1 Mixed Integer Linear Program (0-1 MILP). Therefore, it is possible to
adopt 0-1 MILP solution methods, e.g., math-heuristics. Among them, we
chose to apply the VNSB introduced in the seminal work of [6]. It consists
in adding linear constraints to the original problem for systematically chang-
ing the neighborhoods following the rules of the general VNS schema. The
idea of implementing a local search by adding a linear constraint to the MILP
model has been firstly presented in the work of [5], known as Local Branching
Method. Therefore, the VNSB combines the VNS approach with the Local
Branching one. To the best of our knowledge, it has never been applied to
the VRPs. With reference to the pseudo-code described in [6], we set the pa-
rameter kstep, aimed to control the depth of the neighborhood explored during
the shaking phase, equal to 5 while the node time limit equal to 1 second.
Beyond the classical time limit (here fixed to 100 seconds), the stopping crite-
rion is also based on the maximum number of consecutive iterations without
improvements (here fixed to 10 iterations).

4 Some numerical results

In this section, a description of the computational tests carried out on some
benchmark instances described in [8] is provided. The aim is to compare the
performances of the mathematical model proposed in [8] (named Model 1 )
with ours (named Model 2 ) in terms of WT, TT, RT, total Travel Distance
(TD) and number of vehicles (µ). These numerical comparisons are shown in
Table 1 where the best results are highlighted in bold. Moreover, in Table 2,
Model 2 is also compared with the VNSB introduced in the previous section.
Both the two MILP formulations have been implemented in AMPL and solved
with the state of the art solver CPLEX 12.5 on a PC Intel Xeon 2.80 GHz
with 2GB RAM. For the aims of the work, some of the instances available
at http://evrptw.wiwi.uni-frankfurt.de, described in [8] and designed on the
well-known Solomon VRPTW instances ([9]) have been tested. In particular,
6 small instances, each one with 5 customers and 2 instances, each one with
10 customers, have been experimented. Each class of instances has been dis-
tinguished by [8] according to the geographical distribution of the customers,
where the prefixes R, C and RC denote a random, a clustered and a mix dis-
tribution, respectively. Moreover, the instances have been also distinguished
by [8] introducing the prefixes R1, C1 and RC1, with refer to a short schedul-



ing horizon; R2, C2 and RC2 with refer to a long scheduling horizon.
With regard to the parameters α, β and γ, their values are set to 100, 1 and
0.1, respectively.

Table 1: Numerical Comparisons between Model 1 and Model 2
Instance Model 1 Model 2

µ TD WT RT TT µ TD WT RT TT

C206C5 1 242.56 1070.39 721.13 2484.08 1 242.55 0.00 571.87 1264.42

C208C5 1 158.47 1353.65 787.87 2749.99 1 158.48 0.00 280.14 888.62

R105C5 2 156.08 74.43 29.71 310.22 2 156.08 0.00 21.46 227.54

R203C5 1 179.04 298.76 87.74 615.54 1 179.06 0.00 58.03 287.08

RC108C5 2 253.92 15.24 78.08 397.24 2 253.93 0.00 38.39 342.32

RC204C5 1 176.39 512.66 41.39 780.44 1 176.39 0.00 38.47 264.87

Model 2 outperforms Model 1 in terms of both RT and TT, with an average
improvement of 67.99% and 111.23%, respectively (Table 1). Concerning WT,
our average absolute improvement is 554.19; about TD, Model 2 obtains al-
most the same values found by Model 1, although it does not directly minimize
this performance measure.

Table 2: Numerical Comparisons between Model 2 and VNSB
Instance Gap obj (%) CPU-Model 2 CPU-VNSB

C206C5 0.10% 81.78 15.57

C208C5 0.00% 11.65 2.45

R105C5 0.71% 7.18 0.52

R203C5 0.00% 116.56 47.74

RC108C5 0.00% 226.12 13.06

RC204C5 0.00% 15.25 14.74

Both the two CPU times displayed in Table 2 are expressed in seconds. The
numerical results clearly show how the VNSB is suitable to detect good quality
solutions in total computational times that are lower than the ones required
by Model 2. These are only preliminary numerical results but they are encour-
aging and therefore, our intention is to extend the experimental campaign.

5 Conclusions and Future Works

In this work, we have firstly presented an innovative mathematical formula-
tion of the E-VRPTW. In the proposed model, the EVs are assumed not to be
always fully recharged at the RSs and therefore, the battery level reached is
considered a decision variable of the optimization process. Moreover, beyond
the number of used EVs, the recharging, travel and waiting times have been



also optimized. The performance of our model (Model 2 ) has been then com-
pared with the already existing mathematical formulation that assumes always
a full recharge of the EVs (Model 1 ). Although the numerical results are pre-
liminary, they show that Model 2 outperforms Model 1 in terms of recharging,
waiting and travel times by using the same number of EVs. Finally, we have
also applied a VNSB to solve the E-VRPTW and the numerical results show
that it is suitable to detect good quality solutions in total computational times
by far lower than the ones required by Model 2. Future works will concern an
extension of the experimental campaign on all the test instances presented in
[8].
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search and local branching, Computers & Operations Research, 33 (2006),
30343045.

[7] Kumar, S., and R. Panneerselvam, A Survey on the Vehicle Routing Problem
and Its Variants, Intelligent Information Management, 4 (2012), 66–74.

[8] Schneider, M., A. Stenger and D. Goeke, The Electric Vehicle Routing
Problem with Time Windows and Recharging Stations, Transportation Science,
Published online in Articles in Advance 06 Mar 2014.

[9] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems with
time window constraints, Oper. Res., 35(1987), 254-265.


