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I. INTRODUCTION

W ith the rise in demand for cloud services, huge
amounts of digital content are being created and

datacenters is called a cloud network [1]. Cloud services in-
clude, among other applications, popular Web applications,
distributed grid computing, and some mission-critical ap-
plications with high bandwidth requirements [1,2]. The
contents and services are replicated over multiple datacen-
ters, so that a user request can be served by any datacenter
that hosts the required content. Such services require net-
work infrastructures with high capacity, high availability,
low latency, robustness, etc., to serve the rising volume of
traffic, and optical networks are well suited to meet these
requirements [3].

Considering the role of cloud services today, any disrup-
tion of content/service is a major concern. For example, in
2011 and 2012, a major cloud provider’s cloud crash took
down a number of sites for days, causing permanent dam-
age in many customers’ data; in 2012, a major airline’s op-
eration was disrupted from a carrier’s two fiber-optic cuts;
and a survey shows that, in 2011, 19% of the data loss ex-
perienced by businesses was from the cloud [4–6]. Besides
natural disasters such as earthquakes and tornadoes,
human-made disasters pose a major threat to cloud net-
works. National security agencies report rising alarms
about the increasing risk of terrorist activities, such as
weapons of mass destruction (WMD) attacks (e.g., nuclear,
chemical, EMP, biological) [7].

Network failures due to disasters are correlated; i.e., sec-
ondary or cascading failures resulting from the initial fail-
ures (such as aftershocks and power outages [8]) cause
further damage to network resources. For instance, due
to the Japanese earthquake and tsunami of 2011, power
outages affected 1500 telecom buildings during the main
shock in March and another 700 telecom buildings during
the aftershock in April [7]. Hence, the vulnerability of the
network and content to multiple correlated, cascading, and
colocated failures is an important problem to study. In this
work, we investigate disaster-aware datacenter placement
and dynamic content management through proactive and
reactive approaches that can help providers to design a
disaster-resilient cloud network.

Understanding the nature of disaster failures in telecom
networks is important for designing resilient networks.
Risk/hazard maps of disasters can be obtained and
matched with the physical topology of a network to deter-
mine its possible risky zones [9]; e.g., the US West Coast is

shared all the time over the network. It is crucial that
the network supporting such services is resilient to data
loss or service disruptions, hence making cloud network de-
sign an important problem. Datacenters are mega-centers
of computing and storage resources, and a network of
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more vulnerable to earthquakes, whereas the East Coast is
more vulnerable to hurricanes. Terrorist attacks generally
target populated cities and important government, mili-
tary, or resource facilities such as power grids and datacen-
ters (DCs) [7]. As an example, we acquired information on
possible locations of different major facilities from various
public sources, and generated a WMD risk map on a US-
wide topology by considering possible attacks and correla-
tions between them (see Fig. 1). Such maps can help to
develop a disaster-aware network design.

Today, major cloud service providers select DC locations
based on energy availability, developable land, available
workforce, user demands, etc. [10–12]. In addition, it is
imperative to consider the disaster map of the physical
locations. Studies on DC placement problems consider min-
imizing network cost, energy, latency, etc. [13,14], and there
have been studies on content or replica placement in a DC
network with the objective of reducing network cost and
latency [15,16]. But addressing DC and content placement
for a disaster-resilient network has not been studied in
detail before. For instance, even thoughmajor cloud provid-
ers place their DCs in distinct physical locations to isolate
failures from each other, they still experience data loss at
times of disaster events [4].

We propose a risk analysis in a given network with a set
of candidate DC locations to estimate how much, in terms
of cost or penalty, a network operator may lose probabilisti-
cally in case of a possible disaster and define it as expected
content loss or risk (a similar risk metric is defined in [9]).

Generally speaking, having more replicas of content means
greater availability and reliability, and less vulnerability.
But we aim to emphasize the placement of the replicas,
i.e., the locations of the hosting DCs, to ensure disaster
resiliency. In the case of a disaster or an attack, we want
to ensure that a sufficient number of replicas of content
survive during/after a disaster; i.e., all (or most) replicas
are placed in disaster-free zones; otherwise, the content
may become vulnerable to loss. For example, having two
surviving replicas of content after a disaster is more desir-
able than having one surviving replica because the last rep-
lica may be lost due to a post-disaster correlated or
uncorrelated failure. To ensure such resiliency, it may not
suffice to have a large number of replicas, if all (or most) of
them are hosted in DCs located in disaster-vulnerable re-
gions. Rather, a reasonable number of replicas strategically
placed in geographically distributed and disaster-resilient
DC locations can enhance the possibility of surviving rep-
licas and hence reduce risk in the case of a disaster. Our
risk analysis can be used to identify suitable locations in
the network for DC placement and, hence, the initial place-
ment of the contents. Such analysis can also be applied to
any existing set of DCs to help operators choose disaster-
resilient DC(s) from various DC sites to host more impor-
tant or critical contents.

Since network settings and disaster scenarios are dy-
namic in nature, one-time placement of the contents might
not ensure disaster resiliency. Dynamic content manage-
ment is required to make the content placement adaptive

Fig. 1. Risk map for WMD attacks on US-wide topology.



• Expected loss due to unavailability: Content is vul-
nerable to loss if a DC hosting the content is unavailable
due to a disaster; i.e., if a DC is damaged and is unavail-
able due to a disaster, then its content also becomes
unavailable.

• Expected loss due to unreachability: Content is vul-
nerable to loss if a DC hosting the content is unreachable
from a user node due to a disaster. Thus, if the routes
connecting the users to the DC are damaged due to a dis-
aster, then the content becomes unreachable from the
users. Here, the reachability of content is similar to
the concept of content connectivity defined in [7] for
the virtual network mapping problem.

Considering the access latency requirements of users, we
analyze the expected content loss due to unreachability
with a reasonable finite number of link-disjoint routes
between the user node and a DC. Thus, DCs are placed
not too far away from users while finding the optimal loca-
tions for placing a DC, so that a user can obtain content
from a DC via one of the link-disjoint k-shortest paths
between the user and the DC.

We introduce, for each content c, an importance factor,
αc, which represents the importance or value of the content.
Usually, content is associated with a popularity metric, but
for mission-critical (e.g., military) applications, the impor-
tance is a more appropriate choice. Popular content may
not be the most important content and vice versa. By using
this factor, we ensure the survivability of the most impor-
tant content first. The higher the importance of content,
the higher the penalty due to loss of that content.

Since placing a DC requires careful planning, huge in-
vestment, and resources, the total number of DCs in the
network is limited. For replica management, we constrain
the maximum number of replicas per content. To maintain
consistency among different replicas hosted at different
DCs, the replicas need to be synchronized or updated to
the same state periodically. We do not consider full replica-
tion where all content is replicated at every DC because
this may create more background traffic between the
DCs due to synchronization. (We consider an uncapacitated
network and hence do not consider any bandwidth con-
straint for the links.) On the other hand, to ensure content
availability against a DC failure, content should be repli-
cated in at least two or a minimum number, r, DCs. It fol-
lows that the decision of the actual number of replicas of
content c, Rc, might depend on many factors. Therefore,
we make Rc depend on both αc and demands (in terms of
number of user requests), ηc, while also guaranteeing that
the value of Rc stays between r and a maximum value Rmax

(assumed to be provided by the service provider, and
bounded by the total number of DCs in the network). In
formulas, Rc is calculated as follows:

ρc � ⌈γ1 · ηc � γ2 · αc⌉; Rc � maxfr;minfρc; Rmaxgg:

Here ρc denotes a weighted sum of ηc and αc, and the
parameters γ1 and γ2 will be chosen independently based
on the service provider’s priorities. For example, to priori-
tize more popular services, service providers may put more
weight on ηc, whereas for more critical applications, higher
weight on αc would be more appropriate.

We analyze the network with a probabilistic disaster
model. Network equipment in a disaster zone [represented
as a shared-risk group (SRG), i.e., a set of links and nodes
that fail simultaneously] fails with some probability, which
depends on the dimensions of equipment (e.g., link length),
its distance from the disaster’s epicenter, the type of disas-
ter, etc. [17,18]. For our case study, we consider that the
closer a network element is to the epicenter of a disaster,
the higher the failure/damage probability. We consider that
one disaster occurs at a time in the network.

to any network and disaster alert updates to reduce risk at 
all times. Using our method, any existing content place-
ment can be analyzed, at any given time, to understand 
the possibility of contents being vulnerable to loss due to 
disasters and adapt accordingly. This study will help cloud 
operators to design and prepare their infrastructure 
against disasters.

Our contribution to the DC and content placement prob-
lem is twofold: first, we formulate a disaster-aware DC and 
content placement approach that statically assigns the 
DCs and contents to locations that are least vulnerable 
to disasters, and hence risk (expected content loss) is mini-
mized. As a part of this initial placement design, we also 
adapt a budget constraint (based on storage cost in DCs) 
to ensure that our disaster-aware approach is not too 
costly. We then propose a disaster-aware dynamic content-
management (DADCM) algorithm that dynamically ad-
justs the placement of content replicas over a fixed set of 
DCs depending on the changing network and disaster sce-
narios such that risk of the network is reduced. We compare 
our disaster-aware approaches with disaster-unaware ap-
proaches for the DC and content placement problem. Our 
results show that, for the typical US-wide network scenario 
studied in this work, disaster-aware placement provides 
about 45% risk reduction in terms of expected content loss 
due to a given set of disasters compared with a disaster-
unaware approach, which minimizes the average path cost. 
We also present a content-management cost analysis of our 
approaches based on real-world cloud pricing.

The rest of the study is organized as follows. Section II 
presents the static disaster-aware datacenter and con-
tent placement problem, and its mathematical model. 
In Section III, we provide the algorithm for DADCM. In 
Section IV, we discuss a content-management cost model. 
Section V provides illustrative results showing the effec-
tiveness of our approaches. Finally, Section VI concludes 
the study.

II. DISASTER-AWARE DATACENTER AND CONTENT

PLACEMENT

We propose a disaster-aware DC and content placement 
design based on risk analysis in terms of expected content 
loss. We consider two (nonexclusive) contributing factors to 
the expected content loss:



able), and let Qm
kds be the probability that path k connecting

DC d and user s is damaged by disaster m. Then, the prob-
ability that all the k paths from user s to DC d are damaged
simultaneously by disaster m (hence, the content at d is
unreachable) is

Q
k∈Lds

Qm
kds (here, we consider the path fail-

ures to be independent). When a DC becomes unavailable,
all of its adjacent links also become unavailable, and any
path via these links will be unreachable. Given the
damage/failure of DC d, the probability that the links ad-
jacent to DC d are damaged is

Q
k∈Lm

ds
Qm

kds, where Lm
ds ⊇Lds

is the set of paths whose links adjacent to DC d are within
the zone of disasterm. For a set of paths, Lds, between DC d
and user s, the probability Pm

ds that DC d is damaged
(unavailable or unreachable from user s) due to disaster
m can be computed as

Pm
ds �

�
Pm
d �

Y
k∈Lds

Qm
kds

�
− Pm

d ·
Y
k∈Lm

ds

Qm
kds; L

m
ds ⊇Lds:

Risk is defined in terms of expected content loss, which
depends on the damage probability, Pm

ds. Given that content
c is lost (either unavailable or unreachable) and letting
Jm
dcs indicate that c at DC d is lost from user s due to dis-

aster m, the expected loss of content c can be derived
based on αc, the importance factor of c, as follows:

expected lossc � �Pm
ds · J

m
dcs� · αc:

Thus, we can say that risk, defined as expected content
loss, is in the units of αc. If, for example, αc of content c is
some monetary value to lose a replica, then the risk can
be expressed in the expected amount of money to lose
replica(s) of c due to disaster m. We formulate the risk of
the network as the total expected loss incurred for all
contents, all DCs, all users, and all disaster events:

Risk �
X
m∈M

X
c∈C

X
s∈S

X
d∈D

�expected lossc�.

Please note that the more content is replicated in disas-
ter zones, the larger the expected loss is going to be, because
Jm
dcs will be 1 for the replicas that are affected by disasterm.

Irrespective of the number of replicas of content, our model
focuses on the actual placement of the replicas. We argue
that content c1 with two replicas, all placed in disaster-free
locations, incurs less risk than content c2 with four replicas,
all placed in disaster zones. Similarly, content c3 with four
replicas, all placed in disaster zones, incurs more risk than
content c4 with two replicas, all placed in disaster zones.
Even though c3 has more replicas, there is a greater pen-
alty for losing more replicas compared to c4. This is done to
enforce that all (or most) of the replicas of content are
placed in low-risk or no-risk DCs. The objective function
does not distinguish between two content replicas and four
content replicas, all placed in disaster-free locations, since
both have zero risk value (Jm

dcs will be 0 for the replicas
unaffected by disaster m).

Given a network topology, a set of user nodes, a set of
candidate DC locations, a set of contents (with correspond-
ing demands, importance factors, and maximum number of
replicas), a set of precomputed link-disjoint k-shortest
paths between the nodes, and a set of possible disaster
events with given failure/damage probabilities, we need
to assign DCs and contents to candidate DC locations such
that the risk (i.e., expected content loss) of the network is
minimized. We formulate the problem as an integer linear
program (ILP) with the objective of risk minimization as
follows:

A. Input Parameters

• G�V;E�: Physical topology of the network; V is the set of
nodes, and E is the set of links.

• D ∈ V : Set of candidate DC locations.
• S ∈ V : Set of user (requesting) nodes.
• M: Set of disaster events.
• Lds: Set of paths between nodes, d ∈ D and s ∈ S.
• C: Set of contents.
• β: Number of DCs to be placed, β > 0.
• ηc: Demand in number of user requests for content c ∈ C.
• αc: Importance metric of content c ∈ C.
• Rc: Number of replicas per content c ∈ C calculated
based on αc and ηc, r ≤ Rc ≤ Rmax, Rmax < β.

• Xm
d ∈ f0;1g: 1 if node d ∈ D is damaged by disas-

ter m ∈ M.
• Ym

kds ∈ f0; 1g: 1 if path k ∈ Lds is damaged by disas-
ter m ∈ M.

• Pm
d : Probability of damage of node d ∈ D by disas-

ter m ∈ M.
• Qm

kds: Probability that path k ∈ Lsd to node d ∈ D from
node s ∈ S is unreachable due to disaster m ∈ M.

• Pm
ds: Probability of unavailability or unreachability of

node d ∈ D from node s ∈ S due to disaster m ∈ M.
• Gcs ∈ f0; 1g: 1 if node s ∈ S requests content c ∈ C.

B. Variables

• Tdc ∈ f0; 1g: 1 if content c ∈ C is available at node d ∈ D.
• Bd ∈ f0;1g: 1 if there is a DC at node d ∈ D.
• Am

dc ∈ f0; 1g: 1 if content c ∈ C is unavailable at node d ∈
D due to disaster m ∈ M.

• Hm
dcs ∈ f0;1g: 1 if node d ∈ D containing content c ∈ C is

unreachable from node s ∈ S due to disaster m ∈ M.
• Jm

dcs ∈ f0; 1g: 1 if disasterm ∈ M occurs and content c ∈ C
in node d ∈ D is lost from node s ∈ S due to unavailability
or unreachability caused by disaster m ∈ M.

C. Problem Formulation

Minimize:
X
m∈M

X
c∈C

X
s∈S

X
d∈D

αc · Jm
dcs · P

m
ds (1)

subject to

The probability of a DC or a path connecting a user to a 
DC being damaged due to a disaster can be obtained as 
input (from given disaster and network data) based on 
which the probability of unavailability and unreachability
can be determined. Let Pd

m be the probability that DC d is 
damaged by disaster m (hence, the content at d is unavail-



Jm
dcs ≥

Am
dc�Hm

dcs

2
∀ s∈S; ∀ d∈D; ∀ c∈C; ∀m∈M; (2)

Jm
dcs ≤Am

dc�Hm
dcs ∀ s∈S; ∀ d∈D; ∀ c∈C; ∀m∈M; (3)

Am
dc � Xm

d · Tdc ∀ s ∈ S; ∀ d ∈ D; ∀ m ∈ M; (4)

Hm
dcs �

Y
k∈Lsd

Ym
kds · Tdc ∀ c ∈ C; ∀ m ∈ M; (5)

Bd ≥
P

c∈CTdc

Z
∀ d ∈ D; (6)

Bd ≤
X
c∈C

Tdc ∀ d ∈ D; (7)

X
d∈D

Bd ≤ β; (8)

X
d∈D

Tdc ≤ Rc ∀ c ∈ C; (9)

X
d∈D

Tdc ≥ r ∀ c ∈ C; (10)

Jm
dcs ≤ Gcs ∀ c ∈ C; ∀ d ∈ D; ∀ s ∈ S; ∀ m ∈ M: (11)

The objective function in Eq. (1) minimizes the overall
risk of the network in terms of expected content loss due
to unavailability and unreachability. The expected loss of
content is adjusted according to its importance, αc.
Equations (2) and (3) indicate that content can be expected
to be lost due to unavailability or unreachability or both.
These equations are the linearization of the logical OR
of variables on the right-hand side of the equations.
Equations (4) and (5) determine the expected content loss
due to unavailability and unreachability, respectively. The
main decision variable in this ILP is Tdc, and other varia-
bles are derived based on this. Equations (6) and (7), which
are linearizations of the logical OR similar to Eqs. (2) and
(3), indicate whether node d hosts a DC (here, Z ≥ jCj�.
Equation (8) bounds the total number of DCs in the net-
work. The solution selects β best DCs (in terms of risk) from
a set of candidate DCs. Equations (9) and (10) bound the
number of replicas of content c. To ensure content availabil-
ity, there must be at least r replicas of content c, whose
upper bound is Rc. Equation (11) indicates that a user node
s obtains content c if s has demand for c; i.e., we consider
unavailability and unreachability of c from s only when s
requests for c.

To evaluate the effectiveness of our disaster-aware ap-
proach, we study a disaster-unaware minPathCost DC and

content placement design with the objective to minimize
the average path cost (i.e., average distance from a user
node to the nearest replica of content) while placing the
DCs and the contents. The path distance is proportional
to access latency, which is important to minimize in DC
placement. Given a network topology, a set of user nodes,
a set of candidate DC locations, and a set of contents (with
corresponding demands and maximum number of repli-
cas), DCs and contents are assigned to the candidate loca-
tions such that the average path cost in the network is
minimized. This approach is formulated based on a simpler
model of the disaster-aware approach without any risk
analysis. Since there is no notion of disaster/risk in this ap-
proach, only Eqs. (6)–(10) are adapted from the disaster-
aware ILP. The objective function is

Minimize:Maximum
�X
s∈S

X
d∈D

�Usd · Vsd�
�
;

where Usd is the path cost between user s and DC d, and
Vsd indicates whether user s is served from candidate DC d
(a user is served from one DC). The content replication and
DC placement constraints are similar to the disaster-aware
approach; additional constraints are formulated to express
path existence and content placement. Our disaster-aware
approach only minimizes the risk in the network and does
not aim to minimize the network cost in terms of resources,
for which path cost can be a trade-off. But since only a lim-
ited set of paths is used for DC reachability, it places DCs
within a set of shortest paths from the user nodes.

Content incurs a storage cost; i.e., the monetary cost of
storing it in a DC and the charge for storage capacity is
based on the average amount of data stored (in GB) (details
are presented in the cost analysis in Section IV). In prac-
tice, different DCs have different pricings for storage and
bandwidth usage (see Section IV), and, hence, during plac-
ing contents in DCs, it is important to consider cost. It
should be noted that, since our design solves only for the
initial content placement, we consider only the storage cost
in DCs.We propose an adaptation of our disaster-aware DC
and content placement design by incorporating a storage
cost constraint—a budget in the ILP. The objective is still
to minimize the overall risk for all contents in the network,
but now the placement will be bounded by a budget. As a
benchmark for our budget constraint, we study a disaster-
unaware minStorageCost DC and content placement ap-
proach with the objective of minimizing the storage cost
in DCs.

The disaster-unaware minStorageCost DC and content
placement problem is formulated based on a simpler
version of our proposed disaster-aware approach (without
any risk analysis) with the objective to minimize the stor-
age cost in DCs. Given a network topology, a set of user
nodes, a set of candidate DC locations with corresponding
per GB storage cost, and a set of contents (with correspond-
ing demands, maximum number of replicas, and size in
GB), DCs and contents are assigned to candidate locations
such that the overall storage cost in DCs is minimized.
Since there is no notion of disaster/risk in this approach,



Minimize
X
c∈C

X
d∈D

Tdc�Bc · Std�;

where Tdc (as in our disaster-aware approach) indicates
whether content c is hosted at DC d, Bc is the size (in
GB) of content c, and Std is the storage cost (per GB) for
DC d. The content replication and DC placement
constraints are similar to the disaster-aware approach;
additional constraints express content placement. This ap-
proach ensures that the content placement incurs the min-
imum storage cost. Our original disaster-aware approach
minimizes only the risk without any cost constraint, for
which storage cost can be a trade-off. Hence, we first min-
imize cost in the minStorageCost approach, and then we
employ a budget constraint (based on the minimum cost)
in the disaster-aware DC and content placement design
to achieve risk minimization within a cost bound. The
budget constraint is as follows:

X
c∈C

X
d∈D

Tdc�Bc · Std� ≤ Budget;

where Budget � minCost, the minimum storage cost ob-
tained from the disaster-unaware minStorageCost place-
ment approach, since this is the minimum possible
storage cost for placing a given number contents in DCs.
Besides the content unavailability and unreachability con-
straints, the DC and content placement decision in the
disaster-aware approach will now also be bounded by DC
storage cost. The solution will still minimize the overall
risk in the network but within a given budget. Hence,
the solution will have less flexibility in minimizing risk
compared with the original approach (without any budget
constraint), but the placement will be more cost-efficient.
Depending on the provider’s priority, the budget can be ad-
justed to achieve better/lower risk minimization. The
higher the budget (for safeguarding the contents and
the resources in the network from disasters), the higher
the scope for risk minimization.

In our disaster-aware ILP, the number of variables is
jVj� jVjjCj� jMjjCjjVj�2jMjjCjjVjjVj, O�jMjjCjjVj2�, and
the number of constraints is 2jVj � 2jCj � jMj�3jCjjVjjVj�
jVjjVj � jCj� � 1, O�jMjjCjjVj2�. For the disaster-unaware
approaches that minimize resources without any risk con-
sideration, the number of variables is at most
jVj � jVjjVj � jCjjVj � jCjjVjjVj, O�jCjjVj2�, and the num-
ber of constraints is 2jVjjVj � 3jCjjVj � 2jVj � jCj � 1,
O�jVj2 � jCjjVj�. Thus, the product of the number of
contents and the number of disasters yields additional
complexity for the disaster-aware approach versus disas-
ter-unaware approaches. With network size, disaster type,
and number of contents (in the range of hundreds and thou-
sands), the problem size can grow significantly towards
limited scalability.

III. DISASTER-AWARE DYNAMIC CONTENT MANAGEMENT

The disaster-aware DC and content placement approach
ensures that DCs and contents are placed at locations with
minimum risk based on disaster probabilities. But the
probability of disasters and content properties (demands
and importance) can be time-varying. Suppose the contents
in the initial DC locations are less vulnerable to loss from a
given set of disasters, but a change in disaster probabilities
can make a currently safe DC location become risky at a
later time. Once established, it is not viable to relocate a
DC based on changing the risk profile. Rather, with a given
set of DCs, and updated information on disaster probabil-
ities, we can rearrange the placement of the contents such
that the expected content loss is reduced at any given time.
In response to an upcoming disaster alert, such a reconfig-
uration might need to be performed in a very limited time
scale, ranging fromminutes to hours depending on the type
of alert. Also, initially, we consider a fixed number of
replicas for content, but with time, the required number
of replicas can change. The placement can be reconfigured
periodically, e.g., based on hourly/daily traffic variation, or
whenever content properties change.

But rearranging contents among a set of DCs is resource
intensive since it involves adding replicas in some DCs and
deleting them in others. So we need to reduce the number
of rearrangements and hence replication cost, e.g., network
bandwidth consumption (cost is linearly proportional to the
number of replicas) [15], and the background traffic for
synchronization among different replicas of content.

We propose a DADCM algorithm that adjusts the con-
tent placement based on how disaster risks and content
popularity/importance evolve in time. After the proposed
disaster-aware static approach (obtained from ILP) decides
on the DC placement and the initial content placement, we
propose a dynamic scheme for reconfiguring the initial
placement of the contents among the chosen set of DCs de-
pending on network updates. Hence, the solution of the
static approach serves as the initial placement input for
the algorithm. The problem is to dynamically decide where
content is to be replicated so that risk, in terms of expected
content loss, is reduced under dynamic settings of disaster
events and demands. While performing DADCM, we con-
sider 1) reducing the number of content rearrangements,
2) satisfying the quality of service (QoS) (minimum access
latency) of users, and 3) reducing the number of replicas
within risk requirements.

Satisfying the latency constraint with risk reduction is a
challenge because these two objectives are fairly contradic-
tory. Some parts of the network may pose the least threat
and hence minimum risk, but such parts may be distant
from users, hence violating the minimum latency require-
ment. Also, placing contents closer to popular regions can
reduce latency, but such regions can be vulnerable to disas-
ters. We further try to reduce the number of replicas
(as long as demands are met) after satisfying risk and la-
tency requirements to save resources.

We analyze risk based on existing DC placement with
new updated settings: a new set of user nodes and hence

only Eqs. (6)–(10) are adapted from the disaster-aware ILP. 
The objective function is



2. Latency distance: An average latency-aware distance,
F0

sd, between the user nodes and the serving DCs, which
satisfies the minimum latency constraint of the users as
determined by QoS. For latency in an optical network, it
is important to consider the propagation delay of light in
fibers, which is about 5 μs∕km. Such delay can be mini-
mized by choosing the shortest-distance path. During con-
tent placement, we consider latency by choosing a limited
set of paths for reachability. But to conform to QoS, we
check whether the shortest-path distance, Fsd, between a
serving DC d and a requesting user node s is within F0

sd.
If the latency constraint cannot be satisfied due to risk re-
quirements, node s will at least have the content available
via a longer-latency path.

For DADCM, we compute for each content, at run time,
some risk parameters based on which we decide whether a
content placement should be updated. The parameters are
calculated based on the optimization objective function in
Eq. (1) as follows:

1. Partial risk per DC:

partial riskc�d� �
X
m∈M0

X
s∈S0

c

α0c · Jm
dcs · P

m
ds:

For each content c, we retrieve the old placement, Dc old,
i.e., set of DCs where c is initially replicated, and compute
partial riskc�d� that each DC d may incur with new up-
dated settings. It is computed per DC because we want
to analyze how each DC location independently contributes
to the risk (hence it is partial risk) of a content placement.
We sort the DCs based on partial riskc�d� values to deter-
mine which DC locations are safe (low risk) and which are
risky for hosting c in the new settings. We repeat this risk-
based sorting on the remaining set of DCs,D0

c (by assuming
that c is hosted in these DCs). These DCs are candidate
locations for future hosting of c in case the current place-
ment of c needs to be updated.

2. Minimum risk:

min riskc �
XR0

c

i�1

partial riskc�di�:

We determine the new required number of replicas R0
c for

content c based on η0c and α0c. We chooseR0
c safe DC locations

(DCs with the lowest partial riskc�d� values) from the list
of all the DCs,D. We denote the combined risk, i.e., the sum
of all individual partial riskc�d� values of these DCs, as
min_riskc. This is the lowest achievable risk for c because
placing c in these DCs will incur the minimum possible risk
with new settings.

3. Current risk:

curr riskc �
X
m∈M0

X
s∈S0

c

X
d∈Dc new

α0c · Jm
dcs · P

m
ds:

For each content c, we acquire the new placement, Dc new,
i.e., the set of DCs where c is replicated after adjusting for
new settings. We compute curr_riskc as the total risk of this
updated placement and then analyze whether this is
acceptable.

Algorithm: Heuristic DADCM is applied per content and
is divided into five phases, each addressing a separate goal
as shown in Fig. 2. The phases are described in Algorithm 1,
and the notations used in the algorithm are defined below:

• C: Set of contents.
• D: Set of all DCs.
• S0

c: Set of new user nodes requesting content c ∈ C.
• M0: Set of new disaster events.
• α0c: New importance factor of content c ∈ C.
• η0c: New demand for content c ∈ C.
• Dc old: Set of old DCs hosting content c ∈ C, Dc old ∈ D.
• Dc new: Set of new DCs hosting content c ∈ C, Dc new ∈ D.
• D0

c: Set of candidate DCs to host content c ∈ C, D0
c ∈ D.

• Rc: Current number of replicas for content c ∈ C.
• R0

c: New required number of replicas for content c ∈ C.
• threshold riskc: Threshold risk of placing content c ∈ C.
• partial riskc�d�: Partial risk incurred by DC d ∈ D.
• min riskc: Minimum risk incurred by R0

c DCs d ∈ D for
content c ∈ C.

• curr riskc: Current/updated risk incurred by DCs d ∈
Dc new currently hosting content c ∈ C.

• Fsd: Shortest-path distance between nodes s ∈ S0
c

and d ∈ D.
• F0

sd: Latency-aware distance between nodes s ∈ S0
c

and d ∈ D.
• Sc Lat: Set of user nodes covered by latency con-
straint, Sc Lat ∈ S0

c.
• Sc noLat: Set of user nodes not covered by latency con-
straint, Sc noLat ∈ S0

c.
• Lusers�d�: Set of user nodes served by DC d ∈ D within
latency constraint.

• DC count�s�: Number of DCs that serve user node s ∈ S0
c

within latency constraint.
• Dc lat: Set of candidate DCs that satisfy users’ latency
constraint for content c ∈ C, Dc lat ∈ D0

c.

new demands for content c (S0
c), a new required number of 

replicas (R0
c) determined based on new demands (η0c) and 

new importance factors (α0c), and a new set of disaster 
events (M0). Given a network with existing DC locations 
and dynamic settings, we need to update the placement 
of contents to reduce risk, i.e., expected content loss in 
the network.

Our proposed heuristic, DADCM, updates the placement 
of one content at a time with the goal of global risk reduction 
for all contents. We assume the service provider provides 
the following:

1. Threshold risk: A reasonable risk value, 
threshold riskc, which satisfies the expected level of 
availability of content c against a disaster. It can be roughly 
associated with the recovery point objective (RPO), a met-
ric used in business continuance and disaster recovery 
of a system. It indicates the amount of data loss (or at risk 
of being lost), measured in time, that a system can tolerate 
or the maximum acceptable period in which data might be 
lost in the case of a critical event [19–21]. Our goal is to 
achieve this threshold value, or, in case threshold riskc can-
not be met, at least to guarantee the minimum achievable 
risk with given disaster alerts.



Algorithm 1 Disaster-Aware Dynamic Content
Management
Risk-Based Sorting Phase
Input: C, D, S0

c, M0, α0c, Dc old, R0
c.

Output: Sorted Dc old, D0
c.

1: Sort set of all contents, C, in descending order based on
number of user requests �s; c�.

2: for each c ∈ C do
3: for each d ∈ D do
4: Compute partial riskc�d�
5: end for
6: Sort the set of all DCs, D, in ascending order based

on partial riskc�d�
7: Compute min riskc
8: D0

c ← fDnDc oldg //Get the set of remaining candidate
DCs, D0

c from D by excluding Dc old.
9: Sort Dc old and D0

c in ascending order based
on partial riskc�d�

10: Replication_Check_Phase (Dc old, D0
c)

11: end for

Replication Check Phase
Input: Rc, R0

c, Dc old, D0
c, threshold riskc.

Output: Dc new, D0
c, curr riskc.

1: ΔRc ← R0
c −Rc

2: if ΔRc > 0 then
3: Add replicas to ΔRc DCs with lowest partial riskc�d�

in D0
c

4: Dc new ← fDc old �D0
c�1:ΔRc�g; D0

c ← fDnDc newg //
Update placement with new replicas to Dc new and
update D0

c

5: curr riskc ← a very large number
6: else if ΔRc < 0 then
7: Delete redundant replicas from ΔRc DCs with highest

partial riskc�d� in Dc old

8: Dc new ← fDc oldnDc old�end: − 1:ΔRc�g; D0
c ← fDnDc newg

//Update placement to Dc new and update D0
c

9: Compute curr riskc with Dc new

10: else if ΔRc � 0 then
11: Dc new ← Dc old //Keep old placement and update it

as Dc new

12: Compute curr riskc with Dc new

13: end if
14: if curr riskc > threshold riskc then
15: Replacement_Phase (Dc new;D0

c; curr riskc�
16: else
17: Latency-Constraint_ Phase (Dc new;D0

c)
18: end if

Replacement Phase
Input: Dc new, D0

c, min riskc, threshold riskc, curr riskc.
Output: Dc new, D0

c, min riskc, curr riskc.
1: min riskc ← maxfmin riskc; threshold riskcg
2: while curr riskc > min riskc do
3: Add replica in DC with lowest partial riskc�d� in D0

c.
4: Delete replica from DC with highest partial riskc�d�

in Dc new.
5: Dc new ← fDc new �D0

c�1�g, Dc new ← fDc newnDc new

�end�g; D0
c ← fDnDc newg //Update placement to

Dc new and update D0
c

6: Compute curr riskc with Dc new

7: end while
8: Latency-Constraint_Phase (Dc new, D0

c)

Latency-Constraint Phase
Input: Dc new, D0

c, S0
c, Fsd, F0

sd.
Output: Dc new, D0

c, DC count�s�, Lusers�d�.
1: for each d ∈ Dc new do
2: for each s ∈ S0

c do
3: Compute Fsd

4: if Fsd ≤ F0
sd then

5: Sc Lat ← fSc Lat∪fsgg //Put node s in Sc Lat

6: Lusers�d� ← fLusers�d�∪fsgg //Put node s in Lusers�d�
for DC d

7: DC count�s� ← DC count�s� � 1 //Increment count
of DCs, DC count�s�, for node s

8: end if
9: end for
10: end for
11: Sc noLat ← fS0

cnSc Latg //Find set of user nodes not
covered within F0

sd, Sc noLat, from S0
c

12: if Sc noLat � ∅ then
13: Dc new ← Dc new //Keep placement Dc new

14: else
15: Sort D0

c in ascending order based on partial riskc�d�
16: for each s ∈ Sc noLat do
17: for each d ∈ D0

c do
18: Compute Fsd

19: if Fsd ≤ F0
sd then

20: Dc lat ← fDc lat∪fdgg //Put DC d in Dc lat

21: Lusers�d� ← fLusers�d�∪fsgg //Put node s in
Lusers�d� for DC d

22: DC count�s� ← DC count�s� � 1 //Increment
DC count�s� for node s

23: break
24: end if
25: end for
26: end for
27: if Dc lat � ∅ then
28: Dc new ← Dc new //Keep placement Dc new

29: else
30: for each d ∈ Dc lat do
31: Add replica in DC d

Fig. 2. Algorithm DADCM.



32: end for
33: Dc new ← fDc new �Dc latg //Update placement

Dc new

34: end if
35: D0

c ← fDnDc newg //Update placement D0
c

36: end if
37: Replica_Reduction_Phase (Dc new, D0

c, DC count�s�,
Lusers�d�)

Replica Reduction Phase
Input: Dc new, D0

c, min riskc, DC count�s�, Lusers�d�.
Output: Dc new, D0

c, curr riskc,.
1: Sort Dc new in descending order based on partial riskc�d�
2: for each d ∈ Dc new do
3: essential replica ← FALSE
4: for each s ∈ Lusers�d� do
5: if DC count�s� ≤ 1 then
6: essential replica ← TRUE
7: break
8: end if
9: end for
10: if essential replica � FALSE then
11: Compute curr riskc with Dc new without DC

d (fDc newnfdgg)
12: if curr riskc < min riskc then
13: Delete replica in DC d
14: Dc new ← fDc newnfdgg //Update the place-

ment Dc new

15: for each s ∈ Lusers�d� do
16: DC count�s� ← DC count�s� − 1 //Decrement

DC count�s� for node s
17: end for
18: else
19: Dc new ← Dc new //Keep placement Dc new

20: end if
21: end if
22: end for

In the risk-based sorting phase, we sort all the DCs
that host the replicas of content c and the remaining can-
didate DCs based on partial riskc�d� values to differentiate
risky DC locations from safe DC locations. Based on this
sorting and the new required number of replicas, R0

c, we
determine the minimum risk, min riskc.

In the replication-check phase, after comparing Rc

and R0
c, if content c requires more replicas, we add replicas

in new safe (low-risk) candidate DCs and update the cur-
rent placement. If c hasmore replicas than required by new
settings, we delete the redundant replicas from high-risk
DCs and update the current placement. We then check
whether the curr riskc value of the current placement of
c meets the required threshold riskc value. If the risk re-
quirements are not satisfied, we move to the replacement
phase in order to reduce the risk of the placement, or else
we move to the latency-constraint phase. It should be noted
that whenever we add more replicas, even if we place addi-
tional replicas in new safe DCs, the high-risk DCs from the
original placement remain. Hence, we aim to reduce risk by
always moving to the replacement phase in the case of
adding replicas.

In the replacement phase, to reduce or limit the num-
ber of rearrangements in the network, we aim to keep the
existing placement of a content c as long as it meets the
threshold riskc value even if it is not the best solution
with the new settings. Hence, we set min riskc as
maxfmin riskc; threshold riskcg. If risk requirements for c
are not met, we rearrange the placement of one replica
at a time until min riskc is achieved. We start with adding
a replica in a new candidate DC with the lowest
partial riskc�d� value, and deleting a replica from a cur-
rently hosting DC with the highest partial riskc�d� value.
In the worst case, all replicas may need to be rearranged or
re-replicated at new safer DC locations, but this can
achieve the best possible placement or the minimum
achievable risk at the expense of resource usage.

After risk reduction, we verify whether the current
placement of replicas conforms to the users’ latency re-
quirements. In the latency-constraint phase, we com-
pute the shortest-path distance Fsd, between every DC d
hosting content c and every user node s requesting c. We
check whether Fsd is within the latency distance, F0

sd,
and obtain Sc Lat, a set of user nodes covered by the latency
constraint. Thus, we get Sc noLat, the set of user nodes for
which no DC from the current placement satisfies the la-
tency constraint. For such node s in Sc noLat, we find a
new safe candidate DC d from D0

c that meets the latency
constraint of F0

sd for s and add a replica in d. If no such
DC is found, content placement remains unchanged.

In the replica reduction phase, we reduce the number
of replicas by deleting redundant replicas given that over-
all risk reduction is achieved. For each DC d, we obtain
Lusers�d�, a set of user nodes that are being served by d
within the latency constraint of F0

sd. If any such node s in
Lusers�d� exists that is served only by DC d (i.e., node s is
served by only one DC within the latency constraint or
DC count�s� � 1), then the replica at d is essential. If all
user nodes served by d are also served by other DCs within
the latency constraint or DC count�s� ≥ 1 for all such
nodes, then the replica at d is not essential and can be de-
leted. We analyze curr riskc of the placement without d; if
the risk requirements are satisfied, we delete the replica
from DC d and update the placement to new placement.
If replica reduction is not possible either due to latency con-
straint or risk requirements, content placement remains
unchanged.

The resulting placement is the final placement for con-
tent c. We thus obtain updated placements of all contents
and determine the total risk in the network. Accounting for
all five phases in the algorithm DADCM, and considering
the average-case sorting time as O�jVj log jVj�, the
complexity of the heuristic is O�jCjjMjjVj5�.

IV. CONTENT-MANAGEMENT COST ANALYSIS

Ensuring disaster-aware dynamic content management
(DADCM) in the cloud can be resource intensive since it
involves content replication and rearrangement among
DCs. We want to analyze the cost of resource utilization
associated with our dynamic content-management scheme.



CostStrc �
X
d∈Dc

std · Bc:

2. Replication cost: Creating or adding new replicas of
content involves copying the content from one DC to other
DCs. Hence, adding n new replicas incurs n data transfers
and n times additional storage capacity. Let Dc add be the
set of DCs where new replicas are to be added, and let the
content be replicated from DC da to the DCs in Dc add.
Then,

CostRepc � n · bwda
· Bc �

X
d∈Dc add

std · Bc; da∉Dc add:

3. Synchronization cost: Synchronization traffic includes
fractional data updates. Let ΔBc be the fractional size (in
GB) of content c that requires updating. For m replicas,
m − 1 replicas need to be synchronized and, hence, incur
m − 1 data transfers (update cost of the mth replica in the
local server can be ignored). Letm − 1 replicas be synchron-
ized based on the most updated replica at DC da. Hence,

CostSync � �m − 1� · bwda
· ΔBc:

We assume that the size of the content will remain the
same after an update and that the update will occur only on
ΔBc. It can happen that the replicas will need additional
(or reduced) storage capacity after being updated, in which
case the synchronization cost will need to be adjusted to
include the corresponding storage cost.

While adding or updating a replica can incur additional
cost, deleting a replica can reduce CostStrc and CostSync for
content; we assume the cost of deletion and other similar
requests to be negligible. Both CostStrc and CostSync are
proportional to the number of existing replicas. Whether
a content replica is added, deleted, or updated, the corre-
sponding costs can be analyzed based on our model.

For cost analysis, we apply our content-management
cost model to our DADCM algorithm. We compute, for each
content, the cost incurred from the initial disaster-unaware
placement and from the updated disaster-aware place-
ment, and then determine the total cost of placement of
all the contents in both cases. For disaster-unaware place-
ment, we analyze the cost associated with placementDc old.
Since this is the initial placement and no replicas are added
or deleted, only CostStrc and CostSync are incurred. Through
subsequent phases of the algorithm, replicas can be added
and/or deleted and the costs change accordingly. For disas-
ter-aware placement, we analyze the cost of the updated
placement Dc new. Besides CostStrc and CostSync , CostRepc

can also be incurred if additional replicas are added
through content replication or rearrangement. Since our
algorithm aims to reduce or limit the number of content
rearrangements in the network, replication costs will be
limited. Furthermore, since the replica reduction phase in
our algorithm may reduce the total number of replicas in
the network, it may be possible that the associated storage
cost and synchronization cost of the updated placement are
lower than the associated costs of the initial placement.
In case no replica reduction takes place and additional rep-
licas are added, the total cost of the disaster-aware updated

The monetary cost for cloud resource utilization, such as 
storage and bandwidth usage for outbound data, is usually 
charged based on data usage per billing period, e.g., on a 
monthly basis [22]. Content incurs a storage cost, i.e., 
the monetary cost of storing it in a DC for a billing period, 
and a bandwidth cost, i.e., the monetary cost for replicating 
or updating it over the cloud during a billing period.

Content replication means copying content from a host-
ing DC to a DC that does not host the content, so it involves 
inter-DC data transfer or bandwidth cost [22]. A new replica 
can be created or copied from a master replica or another 
replica in the nearest location (depending on the cloud pro-
vider’s policies). To maintain consistency among different 
replicas of content, all replicas need to be synchronized 
or updated to the same state, and this incurs data transfer 
or bandwidth cost. Replicas can be updated, periodically 
from a master replica or based on the most recent update. 
Frequent content updates lead to more background traffic 
for synchronization. Since such traffic includes only up-
dates, for simplicity, we assume the synchronization data 
as a fraction of the entire data. Thus, each content incurs 
a storage cost of all its replicas and a bandwidth cost for 
replication and synchronization in the cloud.

To develop a content-management cost model for our case 
study, we explore some current cloud-pricing schemes. 
According to information from some major cloud providers 
[23–26], data storage and data transfer (bandwidth) costs 
are determined based on the volume of data usage per 
month. Most cloud providers today charge for outbound 
(egress) data transfers based on the volume of data going 
out of a provider’s DC via the Internet in a given billing 
cycle (typically a flat rate per GB), and inbound transfers 
are usually free. The cost of outbound data transfer can 
vary depending on the destination region or zone. For ex-
ample, the cost of outbound traffic within the US is uni-
form, whereas it varies for traffic going outside of the 
US [23,24]. The charge for storage capacity is based on 
the average daily amount of data stored (in GB) over a bill-
ing period. Some providers also charge for metadata func-
tions associated with copying or deleting files. These 
operational costs are generally negligible (compared with 
storage and bandwidth cost) based on aggregated requests 
per month. Providers also offer volume discount or tiered 
pricing schemes where costs per GB differ based on the to-
tal consumption in a monthly period [23–27]. A pricing 
example can be found in [23].

For our content-management cost model, we consider for 
content c storage cost (CostcStr), replication cost (CostcRep), 
and synchronization cost (CostcSyn). Let std be the cost 
per GB of storage capacity in DC d and bwd be the cost 
per GB of outbound bandwidth transfer from DC d. Let 
Bc be the size (in GB) of content c. Three different costs 
are devised as follows:

1. Storage cost: Replicas of content are hosted at different 
DCs that can have different storage pricing. The storage 
cost of content is the combined storage cost of all the 
replicas. Let Dc be the set of DCs where the replicas of 
content c are hosted. Hence,



very large, but, since the ILP has limited scalability, we first
consider a small number of contents, e.g., 20, with αc as-
signed on a scale of 1–10. We assume that all user nodes
can request all contents. We calculate Rc using γ1 � 0.2,
γ2 � a random number generated uniformly between 0.2
and 0.5, r � 2, and Rmax � 6. These values are based on the
total number of DCs and demands in the network. We chose
to put more weight on αc since it is a contributing factor in
risk minimization, and we want to ensure survivability of
the more important contents. We assume an average con-
tent size of 2 GB, and hence the value of Bc ranges from
1 to 3 GB. DC storage pricing is discussed in the simulation
parameters for the dynamic content-management heuristic.

We compare our disaster-aware and the disaster-
unaware (minPathCost) DC and content placement ap-
proaches. As shown in Fig. 4, disaster-aware placement
(shown in green and bold lines) assigns the DCs in locations
avoiding the nodes vulnerable to WMD attacks. For in-
stance, based on the attack events, the worst candidate
nodes for a DC are nodes 5, 20, 21, and 19, and the next
worst candidates are nodes 3 and 4 since they are associ-
ated with high link failures from both attack eventsm1 and
m2. The contents are distributed according to their impor-
tance and their demands from user nodes. Disaster-
unaware (minPathCost) placement (shown in red and
dashed lines) assigns DCs to locations that may be vulner-
able to attacks since it only minimizes the path cost from
user nodes to DC nodes. In the case of a WMD attack, DCs
at nodes 5, 20, and 21 will incur large expected content loss
due to unavailability, whereas DCs at nodes 3 and 4 will
incur high expected content loss due to unreachability.
Such placement may not be desirable.

We compare the expected content loss (i.e., risk) between
disaster-aware and disaster-unaware (minPathCost) ap-
proaches for different numbers of contents (10–40) as
shown in Fig. 5. We calculated the risk of the two ap-
proaches based on the objective function in Eq. (1). We
average the risk values over numbers of contents; the
average value for 10 contents in the disaster-aware ap-
proach is normalized to 1, and other values are adjusted
accordingly. The results report an average over 20 random-
ized instances and show the normalized per-content risk

Fig. 3. 24-node USnet topology (distances in kilometers) with
possible WMD attack zones.

Fig. 4. Disaster-aware and disaster-unaware (minPathCost) DC
and content placement.

placement will be higher than the cost of the disaster-
unaware initial placement. Thus, using this cost model, 
we can determine the costs that may be incurred while de-
signing a disaster-aware content-management approach.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

To evaluate the benefits of our disaster-aware DC and 
content placement design, we simulated a 24-node 
USnet topology, with a focus on WMD attacks. Based on 
Fig. 1, we consider possible locations of major military 
facilities as probable targets of WMD attacks and modeled 
10 WMD attack zones as shown in Fig. 3.

We consider not only primary attacks but also corre-
lated/cascading effects such as secondary attacks and 
power outages. Based on information in [28] and consider-
ing large-scale disaster and multiple correlated/cascading 
effects, we assume a failure span of 1000 km around the 
targeted areas. The probabilities of damage/failure on 
nearby nodes and links are estimated with reasonable as-
sumptions (between 0 and 1) based on their distances from 
the target’s epicenter. For example, in Fig. 3, in the case of 
attack event m1 (shown with corresponding disaster zone), 
two links (3–4 and 3–7) are estimated to be damaged with 
probability 1, and nodes 3, 4, and 7 have estimated damage 
probabilities of 0.7, 0.4, and 0.05, respectively (decreasing 
with distance). Similarly, from attack event m2, node 5 is 
estimated to be damaged with probability 1; consequently, 
all associated links are failed, and neighboring nodes 3 
and 4 have estimated damage probabilities of 0.05 and 0.1, 
respectively. Here, attack event m1 can cause expected loss 
due to unreachability if DCs are placed at nodes 3 and 4, 
and m2 can cause expected loss due to unavailability if a 
DC is placed at node 5. The worst case in terms of link fail-
ure is attack event m10 where node 19 gets disconnected 
from the network.

We consider all network nodes as candidates for DC, and 
we consider eight DCs for placement. The user nodes are 
distributed according to population density and their vicin-
ity to military facilities because these regions will generate 
the most requests, and we consider all nodes as user nodes. 
Typically, in a cloud network, the number of contents can be



(for the disaster-aware approach) with 95% confidence
intervals [0.84366, 1.1563], [0.89288, 1.1071], [0.8782,
1.1218], and [0.95398, 1.046] for 10, 20, 30, and 40 contents,
respectively. It can be shown that the disaster-aware
approach incurs significant improvement of about
45%–57% risk reduction over the disaster-unaware
minPathCost approach for this typical US-wide network
scenario and given WMD zones.

In Fig. 6, we compare the resource usage, i.e., the aver-
age path cost of the two approaches, for different numbers
of contents. The disaster-aware approach incurs about 16%
higher path cost over the disaster-unaware minPathCost
approach for 20 contents. For other numbers of contents,
about 6%–10% higher path costs are incurred. Hence,
the general trend of the results for this typical network
scenario and given WMD zones shows that our disaster-
aware approach is efficient and not very resource intensive.

In Fig. 7, we compare expected content loss (risk) of the
disaster-aware approach, with and without budget, for
different numbers of contents (10–40). We set Budget �
minCost obtained from the minStorageCost ILP. Risk

values are averaged over numbers of contents; the average
value for 10 contents from the disaster-aware approach
without budget is normalized to 1, and other values are
adjusted accordingly. The budget-constrained approach
(DA /w budget) shows about an 8%–10% increase in risk,
for different numbers of contents, compared with the un-
constrained approach (DAw/o budget). Even with the min-
imum budget, we observe only an 8%–10% increase in risk;
hence, by keeping the cost bounded, the trade-off in risk is
quite reasonable.

To study the impact of the budget on risk minimization,
we increase the budget in small percentages and compare
the risk. We use Budget � x � �minCost� with x �
�0.05; 0.1;0.15;0.2�. We show that risk decreases with in-
creasing budget and converges to the minimum risk of
the unconstrained approach only after a 15% increase in
budget. Thus, we infer that, by keeping the budget mini-
mum, we compromise risk by only about 10%, while with
only a 15% increase in budget, we can achieve the optimal
risk. This study can help network operators to budget their
disaster-awareness goals accordingly.

For our disaster-aware dynamic content management
(DADCM) design, we simulated the 24-node USnet topol-
ogy under the same settings as before. We alter the values
of ηc, αc, and disaster probabilities within a reasonably
small range (	10–20%) to simulate dynamic settings. We
experimented with 10 different inputs for disaster proba-
bilities, ηc, αc, and hence Rc, for different numbers of con-
tents, and observed curr riskc values. Based on the average
of these values, we used threshold riskc � 100 for our
examples. We used F0

sd � 3000, based on distances (in
kilometers) in the given topology. For content-management
cost analysis, we used std � � 0.03 0.07 0.045 � and
bwd � �0.1 0.08 0.12 �; we chose a set of values for each
parameter, based on real-world cloud pricing (per GB per
month) [23–26], to simulate different pricings at different
DCs. Each DC is randomly assigned a storage cost and an
outbound bandwidth cost from the set of values of std and
bwd, respectively. For instance, DC 2 has st2 of $0.07∕GB
and bw2 of $0.1∕GB. For our examples, we used
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Fig. 5. Risk comparison between disaster-aware and disaster-
unaware (minPathCost) approaches.
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Fig. 6. Average path-cost comparison between disaster-aware
and disaster-unaware (minPathCost) approaches.
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Fig. 7. Risk comparison of disaster-aware approach without
budget and with increasing budget.



Table I. For comparison, we adjust the ILP to content place-
ment only, instead of joint DC and content placement, so
that both approaches solve for the same fixed set of DCs.
Even though the heuristic is a dynamic scheme and the
ILP solves for the static placement scheme, we obtain, from
the ILP, a benchmark for content placement for a given in-
stance. In other words, the optimum solution from the ILP
provides a lower bound for possible risks at a given in-
stance, and we evaluate how the solution from our heuristic
follows the lower bound at that instance. We compare our
results for 10–40 contents (low numbers due to limited scal-
ability of ILP). Risk values are averaged over numbers of
contents, and the average value for 10 contents in the static
approach is normalized to 1, and other values are adjusted
accordingly. We observe that the risk values provided by
our heuristic follow closely the lower bound obtained from
ILP with average deviation of about 4.5%.

In Table II, we compare the content-management costs
of the disaster-aware and disaster-unaware approaches for
a large number of contents (100–5000) with dynamic set-
tings. Cost values are averaged over numbers of contents,
and the average value for 100 contents for the disaster-
aware approach is normalized to 1, and other values are
adjusted accordingly. Our heuristic limits the number of
content rearrangements in the network, which, in turn,
helps to limit replication cost. Also, the replica reduction
phase in our heuristic helps to reduce the number of rep-
licas and, hence, the overall cost in terms of storage and
synchronization. Our results for this typical network
scenario and given WMD zones show that the disaster-
aware approach incurs about 16.5% lower cost over the
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Fig. 8. Risk comparison between disaster-aware and disaster-
unaware approaches with dynamic settings.
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Fig. 9. Risk comparison of dynamic disaster-aware approachwith
different QoS values.

TABLE I
RISK COMPARISON BETWEEN HEURISTIC AND LOWER

BOUND

Number of Contents Lower Bound Heuristic

10 1.00 1.09
20 1.24 1.29
30 1.37 1.40
40 1.39 1.43

Bc � 2 GB as a typical content size and ΔBc � 0.6 GB by 
assuming that, typically, 30% of content gets updated dur-
ing synchronization and that the size of the content re-
mains the same after an update.

In Fig. 8, we show expected content loss or risk for large 
numbers of contents (100–5000) with dynamic settings. For 
comparing the disaster-aware approach with a disaster-
unaware approach, we employ content placement based 
on demands in the network without any risk minimization. 
We then apply our heuristic on the disaster-unaware place-
ment and compare the risk. Risk values are averaged over 
numbers of contents, and the average value for 100 con-
tents for the disaster-aware approach is normalized to 1, 
and other values are adjusted accordingly. Our results 
show that the disaster-aware approach provides signifi-
cant improvement in risk reduction (about 45%) over the 
disaster-unaware approach, for this typical US-wide net-
work scenario.

In Fig. 9, we compare the risk of the dynamic disaster-
aware approach for different values of the latency (QoS) 
parameter. The higher the latency constraint, the smaller 
the latency-aware distance. The placement becomes more 
restrictive because it limits the number of candidate DCs, 
and hence our algorithm is forced to place contents in rela-
tively risky DCs, if required, as opposed to safer but far-away 
DCs. Risk reduction improves as the latency distance (and 
hence the set of candidate DCs) is increased; it improves 
significantly by about 30% at 3000 km from 2000 km. 
Hence, there is a trade-off between satisfying the latency 
constraint and minimizing risk. Note that risk reduction 
is not that significant after 3000 km and becomes almost con-
stant after 4000 km. For the US-wide topology, the coast-to-
coast distance is 5000 km; a latency constraint of 5000 km 
is equivalent to no latency constraint and hence it gives 
the maximum possible risk reduction. For other types of 
network topologies with higher node distribution and con-
nectivity, such a phenomenon may be observed sooner.

To demonstrate the performance of our heuristic, we also 
compare the risk of content placement obtained from our 
heuristic and the static disaster-aware approach in



disaster-unaware approach for 5000 contents, which can be
considerable savings in terms of network resource usage
for service providers.

Our heuristic is an efficient solution since, while reduc-
ing the overall risk in the network, it also reduces the net-
work resource usage and satisfies the latency constraint.

VI. CONCLUSION

Recent disasters have shown that cloud networks are
vulnerable to large-scale disaster failures, and it is becom-
ing challenging for providers to ensure content availability
at all times. We have provided a solution for the disaster-
aware datacenter and content placement problem that
aims to minimize the overall risk of a network in terms
of expected loss of content. Compared with a disaster-
unaware approach, it provides significant improvement
in risk reduction. We have also analyzed the impact of
an operational budget constraint on such placement. We
then developed a dynamic content-management solution
as an enhancement to the initial placement to make the
network adaptable to changing conditions and disaster
alerts. Besides reducing risk in our dynamic approach,
we took into consideration QoS (latency) constraints and
network resource usage. We have also presented a cost
analysis of employing our dynamic content-management
scheme in the network based on real-world cloud pricing.
Ourmethods can highly benefit service providers in design-
ing disaster-resilient cloud networks.
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TABLE II
CONTENT-MANAGEMENT COST COMPARISON BETWEEN

DYNAMIC DISASTER-AWARE AND DISASTER-UNAWARE

APPROACHES

Number of Contents Disaster-Aware Disaster-Unaware

100 1.00 1.17
500 1.02 1.21
1000 0.91 1.08
5000 1.01 1.21




