
When Software Architecting Leads to Social Debt

Damian A. Tamburri
VU University Amsterdam

Amsterdam, The Netherlands
Email: d.a.tamburri@vu.nl

Elisabetta Di Nitto
Politecnico di Milano

Milan, Italy
Email: elisabetta.dinitto@polimi.it

Abstract—Social and technical debt both represent the state
of software development organizations as a result of accu-
mulated decisions. In the case of social debt, decisions (and
connected debt) weigh on people and their socio-technical in-
teractions/characteristics. Digging deeper into social debt with
an industrial case-study, we found that software architecture, the
prince of development artefacts, plays a major role in causing
social debt. This paper discusses a key circumstance wherefore
social debt is connected to software architectures and what can
be done and measured in response, as observed in our case-study.
Also, we introduce DAHLIA, that is “Debt-Aimed arcHitecture-
Level Incommunicability Analysis” - a framework to elicit some
of the causes behind social debt for further analysis.

I. INTRODUCTION

In layman’s terms, social debt is the additional project cost
in the current state of affairs caused by sub-optimal socio-
technical decisions [1]. The additional cost may be connected
to a wide variety of possible decisions, e.g., changing the
organisational structure [2] of the development network [3]
(e.g., through outsourcing), changing the development process
(e.g., by adopting agile methods), leveraging on (too much or
too little) global collaboration across networked development
organisations. Although an established body of work discusses
technical debt and its relations with software architecture and
its qualities, social debt remains relatively unexplored.

In an effort to explore and better define social debt, we
conducted an explorative industrial case-study.

We found that software architecture, the prince of software
development artefacts, along with the very process of architect-
ing, play a key role in generating but also pinpointing some of
the accumulated social debt. More in particular, architecture
decisions can take place “by osmosis”, that is, considering
information that crosses every possible communication link
across the development and operations network. In this cir-
cumstance, loss of essential information is almost inevitable.
For example, architecture decisions in this circumstance can
emerge from the following sequence of events: (a) clients
encounter difficulties; (b) these difficulties are communicated
to operators; (c) operators discuss and alert developers; (d)
developers force architects into an architectural change, some-
times making partial architecture decisions of their own. The
problem is that much information, rationale and requirements
can go lost in the resulting communication chain. We observed
many nasty circumstances linked to this chain of events, such
as architecture erosion [4], poor architecture documentation,
lack of vision and, eventually, mistrust.

To tackle the above circumstance, we introduce DAHLIA,
that stands for “Debt-Aimed arcHitecture-Level Incommuni-

cability Analysis”, a metrics framework to evaluate the com-
municability of decisions across a development network [3].
DAHLIA uses basic social-network analysis (SNA) assump-
tions and techniques [5] to elicit the social debt connected
to (some of) the patterns above. We illustrate DAHLIA using
architecture decisions from our case-study.

We conclude that studying social debt at the architecture
level is as important as studying its technical counterpart to
reduce waste during the software lifecycle. Also, social and
technical debt are deeply intertwined in both cause and effect.
Software architectures are viable ways to study this relation,
unravel its implications on software products and use it to
improve lifecycle and product quality.

II. ARCHITECTING BY OSMOSIS
LEADS TO SOCIAL DEBT

The results in this article are based on a study in a large
IT service provider (which we call Capita from now on) for
the aviation industry. Capita has around 3,000 employees in
several locations in Germany and around Europe. Also, Capita
controls several offices in 14 other countries.

The data we used to obtain our results is based on 16
semi-structured interviews1 (with an average of 90 mins per
interview). The study involves a total of 13 people some
of which were interviewed multiple times, including man-
agers, architects, developers, operators and Integration engi-
neers. Interviews2 were structured according to procedures and
guidelines in [6]. It should be noted that social debt itself
was never mentioned during data elicitation, to avoid bias.
Following strict non-disclosure agreements, all transcriptions
were completely anonymised at the source. Our material was
analysed through Grounded-Theory [7].

As previously mentioned, we found recurrent series of
circumstances in which architecture decisions and the process
of architecting reportedly generated social debt. Essentially
these circumstances represent architecting patterns [8], to be
avoided if social debt is not acceptable. In our case study, we
saw recurring a peculiar series of events leading to what we
call “architecting by osmosis”.

In layman’s terms, osmosis refers to the process of perme-
ating a solvent through a semi-permeable (series of) mem-
brane(s)3. By comparison, architecting by osmosis means

1a summary of key interviews is available online: http://tinyurl.com/ljqgay9
2interview guide is protected by non disclosure agreements but can be made

available upon written and signed request.
3“Osmosis”. Oxford English Dictionary (3rd ed.). Oxford University Press.

September 2005.

https://www.researchgate.net/publication/277355779_Social_debt_in_software_engineering_insights_from_industry?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/230764805_Organizational_Social_Structures_for_Software_Engineering?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/221553811_Socio-technical_developer_networks_should_we_trust_our_measurements?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/221553811_Socio-technical_developer_networks_should_we_trust_our_measurements?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/2815761_Foundations_for_the_Study_of_Software_Architecture?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/234021632_Social_Networks_and_Organizations?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/220309700_Interviewing_Techniques?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/41010857_Grounded_Theory_Research_Procedures_Canons_and_Evaluative_Criteria?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==


architecture decisions 
reach clients and 

operations people try 
troubleshooting

Product is operating 
and clients report many 

inconsistencies

Decisions result into inoperable software

ARCHITECTING BY OSMOSIS

Operators suggest changes to developers

Developers suggest changes to the architecture

poor decision
documentation

architecture
erosion

time waste

circumstance

PATTERN

Cause/Effect 
Relations

Social Debt 
Effect

LEGENDA

Tech. Debt 
Effect

decision
localisation

Fig. 1. Architecting by osmosis, semi-permeable communication.

making architecture decisions using knowledge that is filtered
through many semi-permeable communication links. We ob-
served architecting by osmosis manifesting when the following
sequence of events occurs: (1) the effects of certain decisions
reach clients and product operators but result in inoperable
software; (2) operators, pushed by clients, share malcontent
with developers and suggest technical changes; (3) developers
evaluate (and sometimes partially implement) possible techni-
cal changes and suggest change to architecture decisions; (4)
architects make necessary changes in decisions with knowl-
edge that was partially filtered by all communication layers
in the development network. This pattern is depicted in Fig.
1. It was found recurring over time and was encountered 3
times. Some of the most common consequences we found
resulting from this pattern are: (a) decision localisation -
architecture changes were made by certain architects who did
their best to communicate but the decision (and consequent
refactoring) remained local to their own team - apparently
architects assumed that the same communication chain for the
change request would disseminate the change itself - eventually
this phenomenon resulted in uncooperative behaviour; (b) poor
decision documentation - much of the rationale and reasoning
behind architecture change requests went lost as people filtered
out details through every communication link, this reportedly
caused frustration when architecture documents were involved
and eventually led to deprecation of architecture documents;
(c) architecture erosion - some architecture decisions were
changed as they created unstable configurations, this reportedly
caused a great deal of misalignment.

III. PAYING BACK SOCIAL DEBT?

A large part of the negative and invisible effects reported
in Section II were mitigated with success in Capita using a
practice referred by people part of Integra as an Architecture
Board (AB). An AB is essentially a sub-community in Integra
comprised of people who were, are or are likely to be respon-
sible for architecture decisions and their dissemination. More
in particular, any person involved in the project and matching
the following prerequisites would become AB member:

• The person has made or influenced architecture deci-
sions with provable rationale;

• The person has architecture expertise or concerns and
belongs to a site without an AB member;

• The person has architecture expertise or concerns and
belongs to a team without an AB member;

Also, for certain architecture decisions requiring particular
domain-specific expertise, client or domain-specific analysts’
intervention was required for one or more AB meetings.

Thus structured, an architecture board is consistent with the
Problem-Solving Community (PSC) we previously reported in
[2]. The community met on a bi-weekly basis to fulfil two
organisational goals: (a) make and disseminate architecture
decisions; (b) gather and monitor the usage of organisational
culture inherent to devising and disseminating decisions.

This practice reportedly reduced debt connected to 3 of the
patterns reported above, namely: (a) obfuscated architecting;
(b) invisible architecting and (c) lonesome architecting.

Nevertheless, using ABs was not without nasty conse-
quences. For example, some board-members eventually as-
sumed subversive behaviour of their own, e.g., pulling deci-
sions and decision-making towards their own concerns while
disregarding or belittling others, with consequent emergence
of social debt. Quoting from our interviews “[members of the
board] are essentially different architects from different teams
and pulling towards their own direction instead of finding a
common standard [for organisational structure and goals]”. We
found reports of this circumstance 4 times. Also, the AB itself
received little or no formal recognition by the organisational
structure around Capita. This reportedly compromised its
existence. We saw indication of this 5 times in our interviews.
For example, one architect reported that “ The architects board
is also unofficial.. [this means] no formal organization, no
discipline. [Hence] still there are cases in which architects are
not involved and requirements are not well documented and
specified. [...] Involvement of architects always! To minimise
the risk of false implementation”.

IV. SOCIAL DEBT AND ARCHITECTING: WHAT CAN BE
MEASURED?

Analysing our interviews, the resulting patterns and their
root-cause we observed that sharing architecture knowledge,
i.e., the act of making available software architecture decisions
and related artefacts [9], is necessary for the quality of software
processes and resulting products but it is not sufficient. It is in
fact architecture incommunicability that plays a key role in the
emergence of social debt. Architecture incommunicability is

the inability to communicate architecture decisions tempes-

tively to those who should be aware of them due to adverse or-

ganisational or social circumstances across the development

network. In other words, architecture incommunicability is the
likelihood that who should know about architecture decisions
actually does not know anything about them. By its very
nature, incommunicability has to do with communication and
hence is afflicted by social and organisational circumstances
(e.g., organisational filtering protocols or non-disclosure agree-
ments). As such, however, architecture incommunicability can
be studied combining principles and techniques from social-
networks analysis (SNA) with an analysis of who makes archi-
tecture decisions, as opposed to who actually knows about said
decisions. Our scenario seems consistent with what is known as
“weak-ties hypothesis” as elaborated by Granovetter in [10] in

https://www.researchgate.net/publication/230764805_Organizational_Social_Structures_for_Software_Engineering?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/220377915_The_lonesome_architect?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/248390464_The_Strength_of_Weak_Ties?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==


b1

b2

b3c8

c3

c7

c1

c2

c6

c5
c4

a5

a4a3

a2
a1

D1 D3

D2

2

3

3

2

3

3 1

2

1

2

3

1
2

1

2

1

component 
dependencies

Decision and 
Association

LEGENDA

Arch.
Component

Number of developers 
working/responsible for 

the component

Fig. 2. Structural dependency view of software architecture in Integra.

SNA. Paraphrasing from [10], the weak-ties hypothesis implies
that:

“if entity A is linked to both B and C then there is
a considerable probability that B and C are related
as well, with pretty much the same relation”.

More in particular, we noticed that mainly people who are
strongly-tied with the decision maker are actually made aware
of the decision in a short time-span. Conversely, people with
weak-ties either with decision-makers or their strongly-related
partners find out about architecture decisions only eventually,
after a longer time-span.

Under this hypothesis, analysts can observe and compute
the difference between: (a) the number of people who are
among the decision-maker’s strong-ties; (b) the number of
people who should actually know certain decisions. This
difference can be seen as a rough estimate of architecture
incommunicability. We can also hypothesise that AB’s were
effective in Integra since they enabled weak-ties in the board
to be used as architecture knowledge conveyors.

A. DAHLIA: Measuring Architecture Incommunicability

Stemming from the above concepts and definitions of
architecture incommunicability we defined DAHLIA, that is
“Debt-Aimed arcHitecture-Level Incommunicability Analy-
sis”.

DAHLIA was defined using GQM [11] through the
following logic:
GOAL: measure the likelihood that everyone knows about
decisions of which they should be aware and evaluate how
much does the delay connected to unawareness cost;
QUESTION: “who else should know about a certain
decision D besides the decision-maker? who actually knows
about D after the decision has been made and preliminarily
disseminated?”
METRIC 1: given a certain decision D, understand which
components are related to it and infer who is currently working
or responsible for said components. This measurement is
a percentage of people in the development network, i.e., a
decision popularity metric (DEM).
METRIC 2: given a certain decision D, understand the
subgraph of the development network that is aware about
a certain decision assuming the strong ties hypothesis [10]
for developers related to the decision-maker. This is again
a percentage of people in the development network , i.e., a
decision awareness metric (DAM).
METRIC 3: given a DEM and its related DAM, compute

the gap between the two - this amount roughly indicates the
percentage of people across the development network that
should know but are almost certainly unaware of decision D,
i.e., the mean architecture incommunicability (MAI) indicates
the mean percentage of people that should be aware but, in
fact, are not.
METRIC 4: compute the Average Per-PersoN Delay
(APPeND) connected to decision unawareness, this is a
measure of time, and can be measured in man-hours. Once
the number is available, multiply APPeND (mean cost)
and MAI (mean number of unaware developers) values to
elaborate a rough estimate of social debt.

The above reasoning is conceptually similar to the logic
behind Transactive-Memory Systems (TMS) previously defined
in social-networks and organisations research by Wegner et Al.
[12]. Essentially, TMS are mental mechanisms through which
groups collectively encode (by capturing actors and actions,
“who did what”), store (by capturing the experts, “who should
know”), and retrieve knowledge (by retrieving the experts,
“who knows what”) [13], contributing to the creation of a
group-mind, or collective intelligence [13].

In layman’s terms, DAHLIA is a framework to measure
communicability using a rudimentary TMS of architecture
decisions. This rudimentary TMS can be obtained combining
two socio-technical artefacts related to software architecture
and computable during software lifecycles as follows:

1) A structural dependency view of the software archi-
tecture components augmented with: (a) a mapping
of architecture decisions onto related components;
(b) a mapping of how many developers/operators are
currently working or responsible for said components.
This view relates architecture components among
themselves (using their associations or dependencies)
with decisions concerning said components. A sample
of this view computed using data from our case-
study can be seen in Fig. 2. This view is needed
to measure how many people should know about
a certain architecture decision (and the connected
DEM), as defined above.

2) A social-network representation of the development
network computed using strong interaction and col-
laboration relations existing among developers.

Applying DAHLIA means following this simple process:

1) Evaluate and subtract DEM and DAM for architecture
decisions taken up to the instant under investigation;

2) Compute an average of the above subtractions, i.e.,
Mean Architecture Incommunicability (MAI);

3) Compute the APPeND value for the project at hand;
4) Multiply APPeND and the number of people reflected

by MAI, i.e., additional project cost connected to
social debt;

Note that the above process can be applied even with an
a-posteriori evaluation. In this case observers evaluate and
subtract DEM and DAM for every architecture decision made
during the observed project.

https://www.researchgate.net/publication/248390464_The_Strength_of_Weak_Ties?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/248390464_The_Strength_of_Weak_Ties?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/239596452_The_goal_question_metric_approach?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/274289010_A_Computer_Network_Model_of_Human_Transactive_Memory?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/279366092_Cognitive_Interdependence_in_Close_Relationships?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==
https://www.researchgate.net/publication/279366092_Cognitive_Interdependence_in_Close_Relationships?el=1_x_8&enrichId=rgreq-f17034fb-3af9-4453-b71c-6db6b4d5143b&enrichSource=Y292ZXJQYWdlOzI3MzY5ODY4NjtBUzoyMTgxMTgwNDg3NTE2MTdAMTQyOTAxNDgwMzcwNQ==


To illustrate DAHLIA, Section IV-B applies the framework
in practice, using data and models4 from our case-study.

B. DAHLIA in Action: a Scenario from our Case-Study

Using data from our scenario we were able to apply
DHALIA in practice for a limited number of decisions (three
decisions) both before and after the usage of Architecture
Boards. This allows us to: (a) illustrate DHALIA and its work-
ings on a very limited and simple yet expressive scenario; (b)
illustrate a rough estimate of the effect that using Architecture
Boards introduced in our scenario.

First, let us assume D1 is a decision associated to compo-
nent C1. Also, let us assume that component C1 is related
to components C3, C4 and C5 respectively. What is the
incommunicability for D1?

According to our definitions from Section IV-A and the
assumptions above, there are at least 8 people who should be
made aware of D1, namely:

• 1 developer who is currently working on the same
architecture component on which the decision is af-
fecting;

• 7 developers working on components related to the
one affected by D1;

8 out of 13 people means that 61% of the development
network should be aware of D1. This is our DEM metric.
However, by virtue of the strong-ties hypothesis [10], people
in strong-ties with the decision-maker are more likely to be
made aware about D1. According to our data, in our scenario
there are 5 such people strongly tied to “Arch. 3”, hence, about
38% of the development network (this percentage is our DAM)
is more likely to know of the decision in a shorter time.

By virtue of the weak-ties hypothesis, subtracting the two
numbers gives a very rough estimate of how many people
should know but actually do not in a short time span, i.e.,
the MAI value sought for: 8 - 5 = 3, i.e., around 23% of
the network. These people are more likely to know of D1
eventually after a longer time span.

We iterated this exercise on our data for Integra for
available decisions and found that, on average, 2 people part
of the project were not aware of architecture decisions as they
were taken or changed. Now, let’s assume that the patterns
causing decision unawareness yield an average delay of 4 man-
hours (our APPenD value) as we observed in [1]. What results
is 1 Man-Day additional cost, connected to a MAI value of
23%. This delay is connected to social debt across Integra.

V. CONCLUSION

This paper reports on patterns in the process of architecting
found to result in what we call social debt, i.e., a picture of the
current state of things burdened by sub-optimal socio-technical
decisions. This paper also reports on a practice observed in our
case-study to mitigate some of the nasty consequences con-
nected to emerging social debt. Finally, we outlined DAHLIA,
a sample metric for architectures to make (some) social debt

4All data and models were properly anonymised, reshuffled and modified
according to our Non-Disclosure Agreement.

explicit by measuring architectural (in)communicability, i.e,
the likelihood that the developers’ network is (un)aware of
architecture decisions.

We observed that social debt and software architectures
are tightly knit together and with technical debt as well, and
deserve further attention in the future. We plan to elaborate
on our findings, expanding our understanding of the relations
between social debt, its technical counterpart and software
architectures possibly with an immersive study in industry.
Also, we plan to understand the differences between social debt
in closed-source industries (as reported in this paper) and open-
source, to possibly find successful architecting patterns elicited
from open-source, if any. In addition, we plan to elaborate
further on the proposed metric for software architecture com-
municability, demonstrating its representation condition and
applying it in practice to provide more solid validation. Finally,
we are already setting up an industrial study to compare
different architecting practices in the scope of social debt, e.g.,
to evaluate the efficacy of said practices also in reducing debt-
generating decisions5.

REFERENCES

[1] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt
in software engineering: Insights from industry,” Journal of Internet
Services and Applications, pp. 1–17, Under Review 2014.

[2] D. A. Tamburri, P. Lago, and H. van Vliet, “Organizational social
structures for software engineering.” ACM Comput. Surv., vol. 46, no. 1,
p. 3, 2013.

[3] A. Meneely and L. Williams, “Socio-technical developer networks:
should we trust our measurements?” in Proceedings of the 33rd In-
ternational Conference on Software Engineering, ser. ICSE ’11. New
York, NY, USA: ACM, 2011, pp. 281–290.

[4] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 4, pp. 40–52,
Oct. 1992.

[5] M. Kilduff and W. Tsai, Social Networks and Organizations. Sage
Publications Ltd, 2003.

[6] G. Neville-Neil, “Interviewing techniques.” ACM Queue, vol. 9, no. 6,
p. 30, 2011.

[7] J. Corbin and A. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, no. 1,
pp. 3–21, 1990.

[8] W. J. Brown, R. C. Malveau, H. W. S. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis: Refactoring Software, Architecture and Projects in Crisis, 1st ed.
John Wiley & Sons, 1998.

[9] J. F. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The lonesome
architect.” Journal of Systems and Software, vol. 84, no. 9, pp. 1424–
1435, 2011.

[10] M. Granovetter, “The strength of weak ties,” American Journal of
Sociology, no. 78, pp. 1360–1380, 1973.

[11] V. R. Basili, G. Caldiera, and D. H. Rombach, The Goal Question
Metric Approach. John Wiley & Sons, 1994, vol. I.

[12] D. M. Wegner, “A computer network model of human transactive
memory,” Social Cognition, vol. 13, pp. 1–21, 1995.

[13] D. M. Wegner, T. Giuliano, and P. Hertel, Cognitive interdependence in
close relationships. New York: Springer-Verlag, 1985, pp. 253–276.

[14] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search
of a metric for managing architectural technical debt.” in WICSA/ECSA.
IEEE, 2012, pp. 91–100.

[15] D. A. Tamburri, P. Lago, and H. van Vliet, “Uncovering latent social
communities in software development,” IEEE Software, vol. 30, no. 1,
pp. 29 –36, jan.-feb. 2013.

5This research has been partially supported by the European Commission,
Grant no. FP7-ICT-2011-8-318484 MODAClouds project.


