
DeSpErate++: An Enhanced Design Space
Exploration Framework Using Predictive

Simulation Scheduling
Giovanni Mariani, Gianluca Palermo, Member, IEEE, Vittorio Zaccaria, Member, IEEE,

and Cristina Silvano, Senior Member, IEEE

I. INTRODUCTION

THE APPLICATION-SPECIFIC platform-based design
approach is a widely used technique to deal with the

design complexity of today’s computing architectures [1]. In
this approach, a parameterized platform template is cus-
tomized to meet the application-specific requirements. The
customization process consists of a multiobjective design

Manuscript received May 14, 2014; revised July 25, 2014 and
October 3, 2014; accepted November 15, 2014. Date of publication December
12, 2014; date of current version February 16, 2015. This work was sup-
ported by the European Commission under Grant FP7-612069-HARPA and
Grant FP7-611146-CONTREX. This paper was recommended by Associate
Editor T. Kim.

The authors are with the Politecnico di Milano, Dipartimento
di Elettronica, Informazione e Bioingegneria, Milano 20133, Italy
(e-mail: giovannisiro.mariani@polimi.it; gianluca.palermo@polimi.it;
vittorio.zaccaria@polimi.it; cristina.silvano@polimi.it).

Color versions of one or more of the figures in this paper are available online.

space exploration (DSE) approach to tune the architectural
parameters to optimize the target figures of merit (e.g.,
performance, power/energy consumption, chip area, etc.).

To implement the optimization process, traditional nature-
inspired heuristics such as genetic algorithms [2], simulated
annealing [3], and ant colony optimization [4] are widely
used. In this context, executable simulation models are valu-
able tools to enable the accurate evaluation of the target figures
of merit for a given platform configuration. However, these
heuristic techniques require the simulation of many candi-
date platform configurations. Due to the computational time
required to carry out each simulation, the DSE process can
become unreasonably long. To reduce the simulation time,
a solution is to use analytic models to predict the simula-
tion results [5]. Once analytic models are trained to fit the
behavior of some observed simulations, they can be used to
prune the design space by focusing the exploration on the most
promising design points [6].

An orthogonal path to solve the problem is to embrace
the so-called parallel computer aided design (CAD)
philosophy [8], [9] that imposes to design tools to scale
over a large set of computing nodes. As for standard parallel
programming, the main rule in parallel CAD is to keep busy
all the available processors (computing units) doing useful
work for the entire period to speedup the design process.
However, the full exploitation of parallel resources to support
the design process is still a big challenge in the design
automation field [10] lacking of practical solutions covering
all the areas.

In this paper, we demonstrate that state-of-the-art
analytic performance prediction techniques such
as [5], [6], and [11]–[13] do not represent the best
DSE approach when a parallel computing system (e.g., a
multicore processor or a computer cluster) is exploited to
run concurrently different simulations. To clarify this idea,
Fig. 1 shows the distribution of simulation times when
considering a chip multiprocessor modeled using the super
escalar simulator (SESC) simulator [7]. Similar considerations
apply for many other computer architecture simulators such
as Sniper [14], SlackSim [15], and MARSS [16]. Results in
Fig. 1 are reported for four applications of the SPLASH-2
benchmark suite [17]. For each application, simulation times
are collected for different architectural configurations without
modifying the target dataset. For two out of four applications

Fig. 1. Box-plot of the simulation time distribution for the SESC [7] simu-
lator for different design configurations with respect to the target application.
Simulation times are normalized by their median value.

(namely the blocked lower-upper matrix decomposition (LU)
and the ocean simulation (OCEAN) applications) the simula-
tion time variations consist of one order of magnitude (from
0.5 to 5). The integer radix sort (RADIX) application is
characterized by the lowest simulation time variability with a
2× difference between the slowest and the fastest simulations
(about 0.75–1.5 normalized time, respectively). This means
that, when using a computer cluster (or a multicore system)
to run simulations in parallel, simulation scheduling becomes
a relevant problem. One computing node might run different
short simulations while another computing node runs a
single long simulation. This consideration suggests us that,
without an accurate scheduling of the parallel simulations,
the simulation time variability might lead to a significant
underutilization of the parallel computational resources. This
intuition drove [18], where machine learning techniques
were used to predict the simulation times associated with
different architectural configurations and thus to schedule the
simulations.

In this paper, we extend [18] by introducing DESPER-
ATE++, a simulation scheduling technique for parallel design
environments that includes two orthogonal analytic prediction
models to characterize candidate simulations by predicting
not only the simulation time—as done in [18]—but also the
configuration quality. The analytic model of configuration
quality is used to focus the exploration on the most promis-
ing design regions, while the analytic model of simulation
time is used to schedule the simulations. In this paper, we
also describe in detail the novel predictive scheduling tech-
nique. Finally, we demonstrate that DESPERATE++ overcomes
state-of-the-art approaches for parallel computing environ-
ments, including [18], and we show some experimental results
including model accuracy and related overheads.

The reminder of this paper is organized as follows.
Section II reports the related works in the field of DSE
for multicore systems, while Section III explains a motivat-
ing example. Section IV presents the proposed methodology.
Empirical evaluation of the proposed approach in reference
to the state-of-the-art is reported in Section V. Finally, the
conclusion is provided in Section VI.

II. RELATED WORKS

In recent years, the automatic multiobjective DSE prob-
lem for multicore architectures generated an increas-
ing interest in the electronic design automation research
community [19]–[22].

The first main problem in the field of DSE is that current and
next generation of homogeneous and heterogeneous systems
are able to expose a large number of parameters that should be
tuned to find the most suitable architectural configuration for
the target application domain. To tackle this problem, many
previous works propose heuristic solutions derived from differ-
ent areas ranging from genetic algorithms [13], [23], [24] and
other nature-inspired optimization algorithms [4], [25], [26],
up to simulated annealing [3], [27] and structured design of
experiments [28], [29].

The second main problem is related to the fact that DSE
is a typical predesign phase, where the architecture has not
been already tapeout or prototyped and thus the evaluation
of system configurations are based on long simulations. To
alleviate this problem, several techniques have been adopted
to speed-up the simulation time considering both sampling
techniques [30]–[32] and parallel simulators [33]–[35]. In the
context of the DSE phase, researchers proposed to better
tackle the problem with the usage of approximate sys-
tem models. These models are analytic approximations of
system performance that are learned after an initial train-
ing phase [36] and used to determine where to focus the
costly evaluations [5], [6], [37]. Widely used methods are
linear regressions [38], radial basis functions [5], [39], neu-
ral networks [40], regression trees [28], [41], and statistical
techniques such as Gaussian processes [42] and Kriging
interpolation [11], [43].

An orthogonal option to speedup the DSE process is to
exploit a parallel computing environment to concurrently eval-
uate different system configurations [44]. This approach, that
is the core of the proposed solution, cannot be based simply on
a job scheduler for parallel and distributed environments [45],
since it is not enough to support a structured DSE with
optimization purposes. Combined with parallel optimization
algorithms, the usage of a parallel computing environment
has been successfully exploited in the field of iterative
compilation [46], dynamic memory management [47], and
microprocessor optimization [48]. On top of these works, the
proposed method combines a parallel DSE algorithm with
quality and time prediction models to support the scheduling
of simulations on the parallel resources.

In [18], we combined the advantages of a parallel computing
environment and analytic performance prediction models. We
proposed DESPERATE, a prediction-based simulation schedul-
ing technique for parallel design environments that adopts
an analytic prediction technique for estimating the simulation
run-time with the goal of balancing the workload on the com-
putational nodes. In this paper, we extend [18] by proposing
the DESPERATE++ DSE algorithm that adds a configuration
quality predictor in an orthogonal way to the previous simu-
lation time prediction model. Given some candidate design
configurations, the combination of the two models predict:
1) the quality of these configurations, to focus the exploration

Fig. 2. Comparison of traditional prediction techniques based on pruning
the design space and the proposed one minimizing idle times on simulation
nodes.

effort on the most promising design regions and 2) their simu-
lation times, to fully exploit the parallel environment. Finally,
in this paper we demonstrate that, thanks to this new feature,
the novel DESPERATE++ approach overcomes the exploration
performance of its predecessor by providing a 1.3× speedup.

III. MOTIVATING EXAMPLE

Traditional heuristic optimization algorithms are very time
consuming when considering the problem of tuning computer
architecture parameters. Their lack of efficiency is mainly due
to the high cost of computational intensive simulations.

So far, several works proposed to speedup the DSE process
by pruning the number of simulations to be executed by means
of an approximate system model [6], [11], [28], [37], [41].
This approach is promising when considering a single sim-
ulation node in the environment hosting the DSE process.
With the term simulation node, we refer to each computa-
tional resource needed to run a single simulation, being this
simulation either single-thread or multithread [49].

Let us clarify with a motivating example why the prun-
ing approach becomes less appropriate when the goal is to
speedup the exploration process given a host environment
where different nodes are available to execute simulations
in parallel [44], [46]–[48]. In this case, simply pruning sim-
ulations might result in an underutilization of the overall
computing infrastructure leading no benefits in terms of the
overall exploration time.

Let us consider that we need to evaluate four architec-
tural configurations whose simulations take 1–4 time units,
respectively. These four configurations might represent the
individuals of a population based heuristic DSE algorithm
(e.g., a genetic algorithm with a population size γ = 4).
Simulating these four configurations by using a sequential
approach would take ten time units (Fig. 2). Let us consider
that we decide to prune the second and the third simulations
since an approximate system model suggests us that these
configurations are suboptimal. A sequential approach using
traditional pruning techniques (Fig. 2) simulates the first and

the fourth configuration taking five time units. Thus, in this
specific case the approximate model allows to save 50% of
the simulation time.

When considering a parallel computing environment, it is
possible to achieve a significant speedup by running different
simulations concurrently. In this example, when considering
that four simulation nodes are available to run one simulation
per node, the evaluation lasts four time units since this is the
duration of the longest simulation. In this situation, we obtain
no further speedup by skipping the second and the third simu-
lation because, we still have to wait for the termination of the
longest simulation (parallel traditional approach in Fig. 2).

In a parallel simulation environment, the simulation time
variability typical of architectural simulators (Fig. 1) leads
to an underutilization of the computational resources hosting
the simulations. In this paper, we propose a methodology to
exploit this simulation time variability. Rather than pruning
the number of simulations to be executed, our idea con-
sists of identifying an efficient simulation scheduling based
on: 1) the available computing resources and 2) an analytic
model predicting the time required to execute the simula-
tion of each design configuration. In the example (parallel
proposed approach in Fig. 2), we consider that simulation
pruning is not necessary and two more simulations can be
scheduled during the idle periods (reserve simulations). These
reserve simulations (taking two time units each in the pro-
posed example) will not affect negatively the overall DSE
time but they will increase the number of simulations run,
thus providing additional information and potentially lead to
the identification of better architecture configurations. The pro-
posed DESPERATE++ approach combines the simulation time
prediction model with an analytic model on the quality of
architectural configurations. While the simulation time pre-
diction model is used to decide whether or not to run the
reserve simulations, the configuration quality prediction model
supports the selection of the configurations to be considered
as reserve simulations to focus the exploration on the most
promising design region.

IV. PROPOSED METHODOLOGY

In [11] and [43], we demonstrated that the quality of
design configurations are correlated in the design space
(intuitively similar configurations have similar quality).
This finding implies that optimal design configurations are
not uniformly distributed in the design space but rather
their distribution follows a problem-specific density func-
tion. Given that, we believe that estimation of distribution
algorithms (EDAs) represent a good matching for the archi-
tectural DSE problem [26]. EDAs are optimization algorithms
explicitly designed to learn the probability distribution of good
solutions to focus the DSE process toward design regions
densely populated by optimal design configurations. EDAs
are particularly suitable for implementing the proposed DSE
approach because the design configurations to be simulated are
independently sampled with a given probability distribution
and can be launched in parallel. This mechanism is very flex-
ible because, when a computing node is expected to become

Fig. 3. Base MOA algorithm and (represented as dashed boxes) the additional
modules introduced by the proposed approach.

idle, we can sample a new reserve simulation from the given
probability distribution and launch the simulation. The base
EDA over which we develop the proposed methodology is the
Markovianity-based optimization algorithm (MOA) [50] that
has been selected for its efficiency.

MOA is an iterative optimization process as presented in
Fig. 3. At each iteration, a set of γ configurations is sampled
from the design space with a given probability distribution.
These simulations represent the base set P and are all sched-
uled for execution on the available computing resources. Once
all simulations are completed, simulation results are processed
as follows. First, the set B representing the m best configura-
tions is identified. Then, a Markov network is learned to model
the probability distribution that best fits the distribution of the
set B [50]. In this model, the probability distribution of good
design configurations is represented by an undirected graph
whose nodes represent design variables and their probabil-
ity distributions, while edges represent dependencies between
different variables. The next iteration is initialized by sam-
pling this new probability distribution. The MOA algorithm
starts by setting an uniform distribution as initial probabil-
ity distribution and it ends by returning the Pareto optimal
configurations found so far after running a given number of
iterations. Off-the-shelf tools exist to implement the MOA algo-
rithm. In this paper, we use the MATLAB implementation
derived from [51].

The proposed approach extends the MOA algorithm to
better exploit a parallel simulation environment. The addi-
tional modules required to extend the MOA algorithm are
reported in Fig. 3 by using dashed boxes. At each iteration
of DESPERATE++, the probability distribution model is sam-
pled to generate a set of (γ + ρ) design configurations. The
scheduler partitions this input set in a base set P of γ ele-
ments (as in MOA) and a reserve set R of ρ elements. The
set P represents the set of configurations to be simulated as
for the MOA algorithm. The set R represents the reserve list
of candidate configurations to be simulated if computational
resources are available.

In DESPERATE++, a prediction model that estimates the
quality of architectural configurations is responsible for parti-
tioning the sample set of configurations—input to the simula-
tion scheduler—into the two sets P and R. Other scheduling
decisions are taken based on the simulation time prediction
model. At each iteration of the algorithm, the collected simula-
tion results are used to update these analytic prediction models
to improve their accuracy. Besides, the probability distribu-
tion model based on a Markov network is also updated as in

Fig. 4. Actual and estimated rank for simulated configurations x ∈ X and
nonsimulated configurations x′ /∈ X, given the set X of configurations
simulated so far.

MOA. In the proposed approach, the first iteration proceeds by
sampling γ configurations uniformly distributed in the design
space that are all simulated. These simulations are used to
bootstrap the analytic models.

A. Predicting the Quality of Architectural Configurations

We measure configuration quality in a multiobjective
perspective [11] by using the concept of the nondominated
rank r(x). The analytic prediction model of configuration qual-
ity r̂(x) represents an approximation of the nondominated rank
r̂(x) ∼ r(x).

Without loss of generality, let us consider a multiobjec-
tive minimization problem where each objective oi(x) has to
be minimized. Let us call X the set of configurations simu-
lated so far. The Pareto front P(X) ⊆ X represents the best
configurations among the set X

x ≺ x′ ⇐⇒ ∀i, oi(x) ≤ oi
(
x′) ∧ ∃i, oi(x) < oi

(
x′) (1)

P(X) =
{
x ∈ X | !x′ ∈ X, x′ ≺ x

}
(2)

where ≺ represents the Pareto dominance operator. The
nondominated rank r(x) of a configuration x ∈ X is a measure
of how deep x is nested in sub-optimal (nonPareto) solutions.
This concept is graphically represented in Fig. 4 for a 2-D min-
imization problem whose objectives are δ and ε. All the design
configurations x belonging to the Pareto front have r(x) = 1.
Configurations with r(x) = 2 are those which are dominated
only by design configurations with r(x) = 1. The higher r(x)
is, the worse the design configuration x is.

More formally, given the set of design configurations sim-
ulated so far X, we define a sequence of sets %n ⊆ X and
Pareto fronts Pn ⊆ X such that

%n = X, n = 1 (3)

Pn = P(%n), n ≥ 1 (4)

%n = %n−1 " Pn−1, n > 1. (5)

The nondominated rank of a design configuration x ∈ X is
then defined as

r(x) = n ↔ x ∈ Pn. (6)

At each iteration of DESPERATE++, an artificial neural net-
work (ANN) is trained to fit the nondominated rank of the

Fig. 5. Proposed DESPERATE++ simulation scheduler.

design configurations simulated so far. We use a fully con-
nected network with a single hidden layer. The number of
neurons in the hidden layer is set to half the number of the
input neurons [52]. The feedforward backpropagation training
scheme is adopted for the learning mechanism. The sigmoid
tangent activation function is used for the hidden neurons
while the output neuron uses a linear activation function.
Nondominated rank of design configurations not yet simulated
x′ /∈ X (i.e., simulation candidates) is predicted in a continuous
domain (Fig. 4).

1) Selecting the Base and Reserve Sets: The simulation
scheduler of DESPERATE++ is represented in Fig. 5. At each
iteration of the optimization loop, (γ + ρ) configurations
are sampled from the design space given the probability
distribution in the current Markov network model. These con-
figurations are sorted by their predicted quality r̂(x) and then
partitioned to shape out the base and the reserve sets. In
particular, the base set P includes the γ most promising con-
figurations in reference to their predicted quality r̂(x), while
the reserve set R includes the remaining ρ configurations.

Then, all configurations x ∈ P are scheduled for sim-
ulations, while configurations x ∈ R are scheduled only
if their execution is expected to reduce the overall idle
time of the computing system hosting simulations. Thus, in
DESPERATE++, the optimization is driven toward the optimal
design configurations thanks to two concepts: 1) the non-
dominated rank prediction model r̂(x) that selects the most
promising configurations in the base population P and 2) the
Markov network learning (Fig. 5) that learns the probabil-
ity distribution to drive the search for the best configuration
candidates as in MOA.

B. Simulation Scheduler

The simulation scheduler of DESPERATE++ exploits a
simulation time prediction model to carefully schedule the
simulations with the goal of better utilizing the available
computing resources. The simulation time t(x) of a configu-
ration x is approximated with an analytic predictor function
t̂(x) ∼ t(x). To implement this analytic model, we have
been inspired by fitness prediction techniques used in other
EDAs. In particular, we consider the analytic model proposed
in [53] for the univariate marginal distribution algorithm. Let
us identify with Xi the value of the ith parameter for a
configuration x. Let us define t̄ as the mean simulation time
computed over all the configurations executed so far and t̄(Xi)

as the mean simulation time computed only over those config-
urations whose ith parameter has the value Xi. The simulation
time prediction is computed analytically as follows:

t̂(x) = t̄ +
∑

i

(
t̄(Xi) − t̄

)
. (7)

The simulation scheduler in DESPERATE++ (Fig. 5) sorts
the configurations in each set P and R with respect to the
expected simulation time t̂(x) in descending order. Then,
all configurations x ∈ P are scheduled starting from the
one expected to take the longest time. New simulations
are launched as soon as a simulation node terminates the
simulation currently running.

The scheduler keeps track of each simulation under execu-
tion. Let us call S the set of configurations currently under
simulation and s(x) the time elapsed from the instant we
launched the simulation of x ∈ S. Thus, the expected remain-
ing simulation time τ̂ (x) for the configuration x ∈ S is
approximated by using the analytic model t̂(x)

τ̂ (x) =
{

t̂(x) − s(x), if t̂(x) > s(x)
0, otherwise.

(8)

Let us refer to the number of nodes available to host sim-
ulations as θ . Once the last configuration x ∈ P has been
launched, the set S has a size equal to θ . Then, as soon as
simulations are terminated, some nodes might become idle.
However, we will consider a set S always of size θ where idle
nodes have an expected remaining simulation time τ̂ = 0.
Given the set S of currently running simulations, we can
compute the overall expected idle time w(S) as

◦
τ (S) = max

x∈S

(
τ̂ (x)

)
(9)

w(S) =
∑

x∈S

(◦
τ (S) − τ̂ (x)

)
(10)

where ◦
τ (S) is the time needed for terminating the longest sim-

ulation while ◦
τ (S)− τ̂ (x) are the idle times, i.e., the time each

computational node is expected to be idle.
Once all configurations x ∈ P have been launched, the

simulation scheduler waits for the termination of the next
simulation. At that point, the scheduler computes w(S) by con-
sidering the new idle node (for the simulation just terminated).
Then, it parses the configurations x′ ∈ R, and computes the idle
time w(S′) considering that we are launching the simulation
of the configuration x′ (i.e., S′ = S ∪ x′). If launching the new
simulation reduces the overall idle time [i.e., w(S′) < w(S)],
then the simulation is launched otherwise the configuration x is
discarded from the reserve set. Thus, the simulation schedule
depends on the sorting of sets P and R as well as on the point
in time when the running simulations are terminated that, in
turn, influences the values of τ̂ and thus of w(S), determined
by (8) and (10).

When no one configuration x ∈ R exists for reducing the
idle time, DESPERATE++ waits for the termination of the sim-
ulations currently running. Then, it continues as the traditional
MOA algorithm, i.e., it identifies the set B representing the m
best configurations; it models their distribution with a Markov
network and returns this distribution model as input to the

TABLE I
DESIGN SPACE FOR THE TARGET SHARED-MEMORY

MULTICORE ARCHITECTURE

next iteration (Fig. 5). Once the elaboration of the configura-
tion sets P and R is terminated, actual simulation results are
learned by the simulation time prediction model and by the
nondominated rank prediction model to improve the prediction
accuracy.

Finally, we would like to highlight how the proposed sim-
ulation scheduler also manages the case of elastic design
environments, where the number of resource allocated to the
DSE phase is variable (depending on cluster-level power-aware
policies or when other design tasks are requesting/releasing
computing resources). To manage this case, the previous
formulation should include the following two considera-
tions: 1) when a resource is no more available, its expected
remaining simulation time τ̂ is always equal to ◦

τ (S) and
2) when a resource is back into the available set, its expected
remaining simulation time is τ̂ = 0, as for standard idle
resources.

V. EXPERIMENTAL RESULTS

To validate the proposed methodology, we targeted the cus-
tomization of a symmetric multicore architecture modeled
by using the SESC [7] simulation infrastructure. This infras-
tructure models out-of-order MIPS-based (R10K architecture)
multiprocessors. It estimates the energy and execution time
metrics associated to a pair of application-architectural con-
figuration. These two system level metrics are the objectives
of the multiobjective optimization problem.

The target design space is composed of parameters related
to task level and instruction level parallelism and to the mem-
ory configuration. A detailed view of the parameters and their
ranges is shown in Table I. In particular, their values can
assume only integer levels representing a power of two thus
generating a design space of roughly 128 000 (217) possible
configurations.

Regarding the application scenarios, we considered four
benchmarks derived from the SPLASH-2 parallel suite [17]:
complex 1-D fast Fourier transform (FFT), RADIX, OCEAN,
and LU. Additionally, we adopted three different input param-
eter settings for each application creating 12 different applica-
tion scenarios. In reference to the SPLASH-2 framework [17],
the three input parameter settings for the different benchmarks
are as follows.

1) FFT: -m14, -m12, and -m10.
2) RADIX: -n64k, -n32k, and -n16k.
3) OCEAN: -n34, -n18, and -n10.
4) LU: -n128, -n64, and -n32.

Fig. 6. Tuning of the normalized population size NP.

Given this experimental setup, the exhaustive exploration of
the whole design space would have required 354 days of sim-
ulations by using a single computing node design environment
composed of an Intel Xeon processors running at 3 GHz. In
this paper, we used a cluster including up to 64 computing
nodes to generate the reported experimental results.

A. Tuning of the Normalized Population Size

First, we want to tune the proposed algorithm in terms of ρ,
that is the size of the reserve population R. The size of the
base population γ is set to 64. The value 64 has been cho-
sen because it represents the maximum number of parallel
simulation nodes θ considered in this paper.

Let us define the normalized population size NP as

NP = (γ + ρ)

γ
. (11)

NP represents the populations’ size (γ + ρ) relatively to
the base population size γ . For example, NP = 2 means that
the overall populations’ size sum is twice the base popula-
tion (i.e., reserve and base sets have the same size). Values
larger than two mean that the reserve population is larger than
the base population. We investigate the NP values in the set
{2, 4, 8, 16, 32}. Results reported for the NP parameter tuning
consider four computing nodes to host simulations in parallel,
θ = 4.

Each setting of NP is evaluated in terms of average distance
from reference set (ADRS) reached by DESPERATE++ when
the DSE is stopped after a certain amount of time. The ADRS
metric [54] evaluates the quality of the Pareto front found
with a multiobjective optimization algorithm by measuring its
distance from the reference Pareto-optimal solutions obtained
through an exhaustive exploration. The lower the ADRS, the
better is the Pareto-front.

In DESPERATE++, increasing NP means to increase the
pressure on the analytic model that estimates the quality of
the architectural configurations. As NP grows, a larger number
(γ + ρ) of configurations is exposed to the simulation sched-
uler during the selection of the γ best configurations that
compose the base population P. Fig. 6 reports the effect of the
parameter NP on the accuracy of the Pareto solution identified
after a given exploration time.1 For a very short exploration

1The exploration time is measured with respect to the time required for
carrying out an exhaustive exploration using the same number of simulation
nodes.

Fig. 7. Speedup of the proposed DESPERATE++ algorithm in reference to the
baseline DESPERATE algorithm by varying the number of simulation nodes
and the ADRS.

time (0.1% of the exhaustive exploration time), the value of NP
is rather irrelevant. The analytical model is inaccurate during
the initial exploration phase because too few configurations
have been simulated. For longer exploration time, a larger NP
leads to a better ADRS. The best NP value estimated empir-
ically is 8. Further increasing NP lets the analytic prediction
model become too much relevant in the DSE process. Thus,
the effects of model errors emerge. Model errors push the opti-
mization toward local optima slowing down the optimization
for NP values higher than 8.

B. Comparison with respect to the State-of-the-Art

In this section, we compare DESPERATE++ with respect to
several state of the art techniques. First of all, we focus on
comparison between the enhanced DESPERATE++ algorithm
and its baseline implementation DESPERATE [18] to prove the
benefits introduced by the proposed extension.

As highlighted in Section II, DESPERATE differs from DES-
PERATE++ because there is no nondominated rank prediction
model, thus the base and reserve populations are picked up
at random from the sample set of configurations input to the
simulation scheduler. Note that the simulation time prediction
model (7) and the method for selecting whether or not to run
a reserve simulation do not change for the two techniques.

Fig. 7 reports the speedup obtained by DESPERATE++ with
respect to DESPERATE when both methods are run up to
solutions characterized by a given ADRS value. Results for
different ADRS values (5%, 2.5%, 1%, and 0.5%) are reported
by different bars. The analysis is carried out by varying the
number of nodes concurrently hosting the simulations (from
1 to 64 by power of 2). The speedup of DESPERATE++ is
generally higher when targeting more accurate solutions char-
acterized by lower ADRS. However, a clear trend in relation
to the number of nodes θ cannot be pointed out. Generally,
when considering from 1 to 32 simulation nodes, the resulting
speedup is around 1.3×. When using 64 simulation nodes the
speedup is in the range of 1.1×–1.25×.

We also compare DESPERATE++ in reference to five state-
of-the-art optimization algorithms. Two out of them do not
use any analytic prediction model to speedup the optimization
process: 1) the MOA [50] and 2) the multiobjective genetic
algorithm named NSGA-II [55]. Two other algorithms use a
moderate mix of accurate simulations and analytic prediction

Fig. 8. Speedup of DESPERATE++ in reference to the MA-NSGA-II algorithm
considering 64 simulation nodes by varying the population size γ of the
MA-NSGA-II and the ADRS.

models to avoid unnecessary simulations. These algorithms
are: 3) a metamodel-assisted NSGA-II (MA-NSGA-II) where the
approximation is based on an artificial neural network [56] and
4) OSCAR [11], a technique based on a Kriging model to itera-
tively search the best architecture configuration to be simulated
in the next iteration. So far, OSCAR has been proven to be
the best sequential exploration algorithm for the target design
space. The last algorithm: 5) RESPIR [5] extensively uses an
analytic prediction model and simulates only those config-
urations expected to be Pareto optimal on this approximate
model. These reference methodologies except the MOA algo-
rithm have been previously applied for the design optimization
of computer architectures. Evolutionary algorithms such as
the NSGA-II are proposed in [24] and [57], the MA-NSGA-II

algorithm has been applied in [23] and [58] while OSCAR and
RESPIR have been proposed in [5] and [11].

Given the randomness introduced by the optimization pro-
cess in the initial sampling for all the methods, algorithm
evaluations are carried out by repeating ten times the opti-
mization of each application scenario, each time changing the
initial population. We use a population size γ = 64 for MOA

and NSGA-II (the same size of the base population in the
proposed approach). For the MA-NSGA-II algorithm, the sim-
ulation pruning mechanism reduces the number of simulations
to run at each generation. This implies that, by setting γ = 64
for this algorithm, less than one simulation per node would be
launched when having 64 simulation nodes (64 is the maxi-
mum number of simulation nodes considered in this paper).
Thus, for MA-NSGA-II, we investigate larger population size
γ as well, within the set {64, 128, 256}. Fig. 8 shows the
speedup of the proposed DESPERATE++ algorithm in reference
to the MA-NSGA-II for different settings of γ , when consid-
ering an exploration environment of 64 simulation nodes. The
MA-NSGA-II provides the best performance with γ = 128 that
leads to the minimum DESPERATE++ speedup. Thus, the set-
ting γ = 128 is used in the next analysis for the MA-NSGA-II

algorithm.
1) Convergence Frequency Analysis: The use of analytic

performance models to approximate the simulation output
introduces an estimation error that can drive the exploration
toward local optima. This impacts negatively—especially in
case of pruning configurations—on the probability of identi-
fying accurate solutions characterized by low ADRS values.

Fig. 9. Probability of converging toward solutions whose ADRS is lower
than a given threshold.

Fig. 9 shows the probability of converging toward solutions
characterized by a given ADRS for the different methodolo-
gies. This probability is estimated over the different algorithm
executions. In this paper, MOA, NSGA-II, MA-NSGA-II, and DES-
PERATE++ are stopped after processing 50 generations. RESPIR

is run until it converges and stops issuing the simulation of any
new configuration [5]. OSCAR is stopped after 500 iterations
(i.e., OSCAR simulates 500 design configurations).

MOA and NSGA-II algorithms are not subject to any model
error and their convergence probability is very high, almost
100%. To escape from local optima, MA-NSGA-II simulates
some configurations even if these are suboptimal in refer-
ence to the approximate model [56]. This mechanism lets the
algorithm converge toward accurate solutions with a higher
probability.

Also DESPERATE++ has a high probability of converging
toward accurate solutions. At each iteration of the proposed
algorithm, a set P of γ configurations is selected from a pool
of γ + ρ configurations. This selection process is robust with
respect to approximation errors since it allows to simulate
some design configurations that are predicted as suboptimal
by the approximate model. In fact, whenever in the pool of
γ + ρ configurations the optimal designs are fewer than γ ,
some suboptimal configurations are included in P.

OSCAR exploits a statistical analysis to estimate model
uncertainty and it uses this information for escaping from
local optima. Its convergence probability is approximately
90% when targeting accurate solutions characterized by
0.5% ADRS.

RESPIR is characterized by a low convergence probability
since it prunes most of the design configurations. This algo-
rithm simulates only design configurations that are optimal for
the approximate analytic models. When these configurations
turn to be suboptimal for the real system this algorithm fails
to identify solutions having low ADRS value.

2) Speedup Analysis: We analyze the exploration speedup
obtained by DESPERATE++ in reference to the alternative
optimization algorithms when targeting the identification of
solutions with a given ADRS. The RESPIR methodology is
excluded from the analysis since it is likely to miss the iden-
tification of solutions with low ADRS values. All remaining
methodologies have been parallelized at population-level, i.e.,
all design configurations to be evaluated in a generation are
executed in parallel as long as simulation nodes are available.

Regarding OSCAR, it represents an exception because it is
not a population based algorithm but it is a sequential DSE
approach.

Comparison results in Fig. 10 report the average speedup of
DESPERATE++ obtained by varying the number of nodes avail-
able to host the simulations (from 1 to 64 parallel nodes). The
proposed approach surpasses MOA and NSGA-II algorithms
always providing a speedup greater than 1 [Fig. 10(a) and (b)].
These techniques are population-level parallelized but do not
make use of any prediction technique.

MA-NSGA-II is an enhanced version of NSGA-II where
some simulations are pruned on the basis of the approximate
prediction model. Thus, the speedup of DESPERATE++ in ref-
erence to MA-NSGA-II [Fig. 10(c)] is significantly lower than
for the NSGA-II case [Fig. 10(b)]. When using 64 simula-
tion nodes and considering solutions with 0.5% of ADRS,
the speedup in reference to NSGA-II is about 4× while a
speedup of 1.26× is measured in reference to MA-NSGA-II

algorithm.
In reference to the sequential prediction-based technique

named OSCAR [Fig. 10(d)], the speedup grows significantly
when increasing the number of simulation nodes. Note that
the comparison with OSCAR [Fig. 10(d)] has been reported
with a different scale since the speedup range (y-axis) is sig-
nificantly larger than for the other three methods. The speedup
in reference to OSCAR ranges from 0.25×–0.5× when using
a single simulation node (sequential optimization) to 8×–16×
when using 64 simulation nodes.

To summarize, when considering 64 simulation nodes and
targeting a solution with 0.5% ADRS, DESPERATE++ provides
a speedup from 1.26× up to 4× in reference to population-
level parallelized DSE algorithms and a speedup of 16× in
reference to OSCAR.

3) Accuracy Analysis: When final Pareto solutions are not
available, a practical stopping criterion is to define the amount
of time given for the optimization process and to stop the
exploration once that time is elapsed. In this analysis, we
decided to fix the stopping criteria after 3.5 days of exploration
run-time, representing the 1% of the sequential exhaustive
exploration time for the target experimental setup . This value
has been considered constant over the different design envi-
ronments and we focused on the quality of the solution found
by the different methods.2

Fig. 11 shows the improvement in the final result quality
obtained by the proposed DESPERATE++ in reference to the
alternative algorithms when considering 3.5 days of simula-
tion run-time as stopping criterion. The quality improvement
is measured in terms of ADRS. In fact, evaluating with a

2The tuning of a time-based stopping criterion is usually a hard task since
there is the possibility to do not find any good solution within the allocated
time slot. To reduce this risk, the designer can allocate a fraction of the
exhaustive search (e.g., 1% as for the analyzed case) that makes him confi-
dent with the results and then converting it in the actual stopping criterion.
For tuning this stopping criterion in an unknown design space, an approxi-
mate estimation of the length of the sequential exhaustive exploration time
can be extrapolated once the first γ architectural configurations in the base
population P are simulated, i.e., after the first algorithm iteration. This is done
by computing the average simulation time over P and multiplying it for the
number of design configurations in the design space.

(a) (b)

(c) (d)

Fig. 10. Speedup of DESPERATE++ with respect to the reference state-of-the-art algorithms by varying the number of simulation nodes and the ADRS.
Comparison to (a) MOA (parallel), (b) NSGA-II (parallel), (c) MA-NSGA-II (parallel and prediction-based, γ = 128), and (d) OSCAR (sequential and prediction-
based).

(a) (b) (c)

Fig. 11. ADRS improvement after 3.5 days of exploration run-time (i.e., 1% of the sequential exhaustive exploration time) for different optimization
algorithms and number of simulation nodes. (a) Using 16 simulation nodes. (b) Using 32 simulation nodes. (c) Using 64 simulation nodes.

single number two sets of Pareto points in a multidimensional
objective space would be otherwise troublesome [54].

Given the variability introduced by the randomness in the
optimization algorithms, Fig. 11 reports by box-plot diagrams
the median and the distribution of the ADRS improvement.
We focused the analysis for those cases where the number of
simulation nodes are equal to 16, 32, and 64. In those cases,
DESPERATE++ overcomes on average all reference method-
ologies with an ADRS improvement greater than 50%. More
compact distributions are shown for the ADRS improvement in
the cases of NSGA-II and OSCAR with respect to MA-NSGA-II

and MOA. This was expected considering the results shown
previously in Fig. 10 since DESPERATE++ is converging faster
to good solutions and thus the additional time can be used to
refine the quality of the results.

4) Utilization of the Host Computing Resources: Fig. 12
reports the analysis of the average system utilization obtained
when running the exploration until reaching a Pareto front
characterized by 1% of ADRS.

In this analysis, MA-NSGA-II algorithm is evaluated for
all the considered settings γ ∈ {64, 128, 256}. The sys-
tem utilization improves significantly when increasing the
population size. However, when using 64 simulation nodes,
MA-NSGA-II provides the best exploration performance with
γ = 128 (Fig. 8). In fact, by increasing the population
size to γ = 256, MA-NSGA-II performance degrades and
DESPERATE++ reports larger speedups (Fig. 8). Increasing
the population size to 256 makes every generation longer.
Regardless of the better utilization (Fig. 12), a population set-
ting of γ = 256 has a worse exploration performance than

Fig. 12. Utilization of the simulation nodes when running the exploration
until a Pareto front with 1% ADRS is reached.

a population setting of γ = 128 (Fig. 8). In fact, a smaller
population size might reduce the system utilization but avoids
to waste time in simulating suboptimal configurations during
the earliest generations and gives the possibility to quickly
exploit the new knowledge gathered at each generation. The
best setting of γ is strongly problem dependent and cannot be
generalized.

The worst case in terms of system utilization is OSCAR that
is a sequential DSE strategy [11] thus using a single simulation
node regardless the available number of nodes (Fig. 12). The
MA-NSGA-II − γ = 64 (population size set to γ = 64) follows
with the lowest utilization among the remaining approaches.
The NSGA-II and MOA algorithms (both with a population size
set to γ = 64) are characterized by an utilization higher than
MA-NSGA-II − γ = 64 since their population is not shrunk
down by predictive simulation pruning techniques.

The proposed predictive simulation scheduler integrated in
DESPERATE++ represents the best methodology to exploit par-
allel DSE environments with an utilization very close to the
one obtained for MA-NSGA-II − γ = 256 (Fig. 12) but with
a significant exploration speedup (Fig. 8).

C. Validation of the Prediction Models

Results on the accuracy of the analytic models estimating
the simulation time and the nondominated rank are reported
respectively in Fig. 13(a) and (b). Relative model errors are
inferred at run-time during the algorithm execution. At each
generation g, we estimate the mean relative error (MRE)
relatively to the metric excursion measured so far.

Fig. 13 shows the MRE trends depending on the algorithm
generation in terms of mean, 10th and 90th percentile of the
MRE. The simulation time prediction model [Fig. 13(a)] has
an initial mean MRE of 10% that decreases quickly below 5%
within few generations. The MRE for the nondominated rank
model [Fig. 13(b)] has a peculiar behavior where the mini-
mum mean MRE is obtained between the 5th and the 10th
generation. After reaching its minimum, the MRE increases
slightly. In fact, the nondominated rank is defined on the base
of the simulations launched so far (Fig. 14). By increasing the
number of simulated design configurations, the nondominated
ranking function r(x) becomes more complex. We represent
this concept graphically in Fig. 14, where an additional simula-
tion launched during the generation g increases the granularity

(a)

(b)

Fig. 13. Relative errors for the analytic prediction models. (a) Relative
error for the simulation time prediction model. (b) Relative error for the rank
prediction model.

Fig. 14. Variation in the nondominated ranking function introduced by the
execution of a single simulation after the generation g.

representation of the nondominated rank for the generation
g + 1. By adding one simulation, the ranking of some points
changes and additional complexity in modeling the new rank-
ing function is introduced. At initial generations, the prediction
accuracy of r̂(x) ∼ r(x) is improving, but after some gen-
erations the MRE increases again. Regardless this peculiar
behavior, the rank model is characterized by an MRE between
15% and 5%.

D. Overhead Analysis

The overall exploration time is the sum of two components:
1) the evaluation time needed to gather results from the simu-
lation nodes and 2) the overhead of the exploration algorithm
needed to implement the optimization including the time spent
to train and to use the analytic models.

Fig. 15. Box-plot of execution time distribution of algorithm overheads for
identifying a solution characterized by 1% of ADRS.

Fig. 15 reports the box-plot of the distribution of the algo-
rithms’ overhead accumulated during the exploration process
until solutions characterized by 1% ADRS are identified.
Overheads are subject to variations that depend on different
sources such as the number of points in the model training
sets and the number of simulations actually launched at each
generation.

OSCAR shows the highest overhead that is most of the times
from 100 to 1000 s with a mean of 450 s. The proposed
DESPERATE++ follows with an overhead from 50 to 125 s
and a mean value of 80 s. The difference between the two
approaches is due to the simpler prediction model adopted by
the proposed techniques with respect to OSCAR.

The overhead of DESPERATE++ is mainly related to the
nondominated rank prediction model that must be retrained at
every generation in order to learn the new ranking function.
The baseline DESPERATE version not including the nondomi-
nated rank prediction model has a significantly lower overhead
with a mean of 20 s. The overhead difference of 60 s in average
between the two methods shall be traded off in reference to
the DESPERATE++ exploration speedup of 1.3× (Fig. 7). The
proposed methodology saves about 30% of simulation time
that is generally much longer than 60 s overhead.

The MOA algorithm has an overhead very close to the DES-
PERATE algorithm. The main difference of DESPERATE with
respect to MOA is the inclusion of the simulation time predic-
tion model [the same model as in DESPERATE++, (7)]. The
small overhead difference of DESPERATE in reference to MOA

demonstrates the efficiency of the simulation time prediction
model.

The NSGA-II has a very low overhead due to its simplicity in
selecting the simulations to run. The MA-NSGA-II overhead is
about 15 s due to the necessity of managing the analytic perfor-
mance model [23]. A similar overhead characterizes the MOA

algorithm. The MOA overhead is mainly related to the man-
agement of the Markov model for the probability distribution
of good solution candidates.

Note that, the average simulation speed of the SESC simula-
tor on our machines (Intel Xeons cores at 3 GHz) for executing
the applications under study is about 381 Kcycles/s. This
means that the average execution time overhead for the entire
exploration of DESPERATE++ is equivalent to the simulation
run-time of approximately 30 Mcycles. Thus, it is negligi-
ble with respect to the actual simulation requirements of the

applications investigated in this paper. It is worth noting that,
the longer the simulations the lower is the relative algorithm
overhead, since it is not dependent on the complexity of the
simulated application.

E. Analysis on the Generality of Results

The results presented so far have been obtained by using
the SESC simulator [7] for a set of 12 benchmarks repre-
senting three data-sets for each one of the four considered
SPLASH-2 applications [17]. The target platform modeled by
SESC is homogeneous, however, the proposed approach is not
only limited on this class of architectures and we envision the
possibility to adopt it for other problems, such as in the context
of heterogeneous architectures.

To support our claim, we complement the results reported
so far by evaluating the proposed approach for different DSE
problems. We adopt the DTLZ test problems [59], a set of
seven analytic multiobjective test problems explicitly designed
for evaluating the performance of DSE heuristics. By using
these analytic test problems it is possible to compute the exact
Pareto optimal solutions without facing the computational
burden of actually running several computational expensive
simulations.

For modeling the execution time variability typical of archi-
tectural simulators (Fig. 1), the optimization algorithms are
evaluated by considering the last objective function of each
DTLZ problem as simulation time cost. Thus, we consider
as cost of evaluating a given design configuration the value
returned by an analytic function at that design configuration.

The DTLZ design space we used is composed of seven
design parameters, each one spanning over 30 different values.
Overall, the design space consists of about 2 · 1010 different
configurations.

Results in terms of exploration speedup are reported in
Fig. 16. As noted for the SESC optimization, the proposed
DESPERATE++ approach overcomes all the reference method-
ologies by reporting in general a speedup factor higher than
1. An exception is the OSCAR methodology, that represents
the fastest sequential exploration approach reporting a speedup
factor smaller than one when considering one or two simula-
tion nodes. Speedup values are generally lower for the DTLZ
problems (Fig. 16) than for the SESC optimization problem
(Fig. 10). This result is mainly related to the error in the
simulation time prediction model of (7). For each of the mul-
tiobjective DTLZ problems, we represent the simulation time
as the last objective function of the multiobjective problem.
The DTLZ problems include strong nonlinearities that let the
prediction be more difficult than for the simulation time of
the SESC simulator. Fig. 17 reports the MRE of the approx-
imate simulation time prediction model in (7) for the DTLZ
test problems. We can observe that its mean value at the first
generation is about 30% that is significantly larger than what
measured for the SESC problem [Fig. 13(a)]. This error in
turn influences negatively the performance of the proposed
DESPERATE++ algorithm.

Note that, the simulation time prediction model presented
in this paper can be easily replaced by other analytic models.

(a) (b)

(c) (d)

Fig. 16. Speedup of DESPERATE++ by varying the number of nodes hosting the simulations and the ADRS. Comparison to (a) MOA (parallel), (b) NSGA-II
(parallel), (c) MA-NSGA-II (parallel and prediction-based, γ = 128), and (d) OSCAR (sequential and prediction-based).

Fig. 17. Simulation time prediction error for the DTLZ test problems.

The model in (7) has been chosen in this paper because: 1)
it has been previously proposed in the context of EDA such
as the baseline MOA [53]; 2) it is accurate enough to provide
acceptable approximation errors [Figs. 13(a) and 17]; and 3) it
introduces low overheads (see Fig. 15).

VI. CONCLUSION

In this paper, we presented DESPERATE++, a DSE method-
ology to jointly using analytic prediction models and parallel
computing resources to speedup the optimization process
for multicore systems. The proposed approach exploits two
orthogonal analytic prediction models. A simulation time pre-
diction model defines a simulation schedule aware of the
underlying computational resources. A configuration quality
prediction model speeds-up the optimization by focusing the
exploration process on the most promising design region.

The proposed approach has been evaluated in reference to
state of the art DSE strategies reporting up to 4× speedup
in reference to parallel DSE approaches. A speedup of up
to 16× has been obtained with respect to the best sequential
exploration method.

REFERENCES

[1] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: Orthogonalization of concerns and platform-
based design,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[2] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem
in multiprocessor system-on-chip design,” IEEE Trans. Evol. Comput.,
vol. 10, no. 3, pp. 358–374, Jun. 2006.

[3] G. Palermo, C. Silvano, and V. Zaccaria, “Multi-objective design space
exploration of embedded system,” J. Embedded Comput., vol. 1, no. 3,
pp. 305–316, 2006.

[4] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant colony
heuristic for mapping and scheduling tasks and communications on het-
erogeneous embedded systems,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 29, no. 6, pp. 911–924, Jun. 2010.

[5] G. Palermo, C. Silvano, and V. Zaccaria, “ReSPIR: A response surface-
based Pareto iterative refinement for application-specific design space
exploration,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 28, no. 12, pp. 1816–1829, Dec. 2009.

[6] R. Jahr, H. Calborean, L. Vintan, and T. Ungerer, “Boosting design
space explorations with existing or automatically learned knowledge,”
in Measurement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance (Lecture Notes in Computer Science
7201), J. Schmitt, Ed., Berlin, Germany: Springer, 2012, pp. 221–235.

[7] J. Renau et al., (Jan. 2005). SESC Simulator. [Online]. Available:
http://sesc.sourceforge.net

[8] B. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD: A timely
research agenda for EDA,” in Proc. 45th ACM/IEEE Design Autom.
Conf. (DAC), Anaheim, CA, USA, Jun. 2008, pp. 12–17.

[9] L. Stok, “Developing parallel EDA tools [the last byte],” IEEE Des.
Test, vol. 30, no. 1, pp. 65–66, Feb. 2013.

[10] K. Keutzer, P. Li, L. Shang, and H. Zhou, “A special section on multicore
parallel CAD: Algorithm design and programming,” ACM Trans. Design
Autom. Electron. Syst., vol. 16, no. 3, pp. 21:1–21:2, Jun. 2011.

[11] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “OSCAR: An
optimization methodology exploiting spatial correlation in multicore
design spaces,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 31, no. 5, pp. 740–753, May 2012.

[12] B. Li, L. Peng, and B. Ramadass, “Accurate and efficient processor per-
formance prediction via regression tree based modeling,” J. Syst. Archit.,
vol. 55, nos. 10–12, pp. 457–467, 2009.

[13] G. Ascia, V. Catania, A. G. D. Nuovo, M. Palesi, and D. Patti, “Efficient
design space exploration for application specific systems-on-a-chip,”
J. Syst. Archit., vol. 53, no. 10, pp. 733–750, 2007.

[14] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal., Seatle,
WA, USA, Nov. 2011, pp. 1–12.

[15] J. Chen, M. Annavaram, and M. Dubois, “SlackSim: A platform for
parallel simulations of CMPs on CMPs,” SIGARCH Comput. Archit.
News, vol. 37, no. 2, pp. 20–29, Jul. 2009.

[16] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system sim-
ulator for multicore x86 CPUs,” in Proc. 48th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), New York, NY, USA, Jun. 2011, pp. 1050–1055.

[17] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. 22nd Annu. Int. Comput. Archit. Symp.,
Santa Margherita Ligure, Italy, 1995, pp. 24–36.

[18] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “DeSpErate:
Speeding-up design space exploration by using predictive simulation
scheduling,” in Proc. Design Autom. Test Europe Conf. Exhibit. (DATE),
Mar. 2014, pp. 1–4.

[19] C. Silvano, W. Fornaciari, and E. Villar, Multi-objective Design Space
Exploration of Multiprocessor SoC Architectures: The MULTICUBE
Approach. New York, NY, USA: Springer, 2011.

[20] C. Erbas, System-level Modelling and Design Space Exploration for
Multiprocessor Embedded System-on-chip Architectures. Amsterdam,
The Netherlands: Amsterdam Univ. Press, 2007.

[21] J. Panerati and G. Beltrame, “A comparative evaluation of multi-
objective exploration algorithms for high-level design,” ACM Trans.
Design Autom. Electron. Syst., vol. 19, pp. 15:1–15:22, Mar. 2014.

[22] G. Martin, “Overview of the MPSoC design challenge,” in Proc.
43rd Annu. Design Autom. Conf. (DAC), New York, NY, USA, 2006,
pp. 274–279.

[23] G. Mariani, G. Palermo, C. Silvano, and V. Zaccaria, “A design space
exploration methodology supporting run-time resource management
for multi-processor systems-on-chip,” in Proc. IEEE 7th Symp. Appl.
Specific Process. (SASP), San Francisco, CA, USA, 2009, pp. 21–28.

[24] R. Piscitelli and A. Pimentel, “Design space pruning through hybrid
analysis in system-level design space exploration,” in Proc. Design
Autom. Test Europe Conf. Exhibit. (DATE), Dresden, Germany, 2012,
pp. 781–786.

[25] G. Palermo, C. Silvano, and V. Zaccaria, “Discrete particle swarm opti-
mization for multi-objective design space exploration,” in Proc. 11th
EUROMICRO Conf. Digit. Syst. Design Archit. Methods Tools (DSD),
Parma, Italy, 2008, pp. 641–644.

[26] A. Tumeo et al., “Mapping pipelined applications onto heterogeneous
embedded systems: A Bayesian optimization algorithm based approach,”
in Proc. 7th IEEE/ACM Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), New York, NY, USA, 2009, pp. 443–452.

[27] M. Ceriani, F. Ferrandi, P. L. Lanzi, D. Sciuto, and A. Tumeo,
“Multiprocessor systems-on-chip synthesis using multi-objective evo-
lutionary computation,” in Proc. ACM 12th Annu. Conf. Genet. Evol.
Comput. (GECCO), New York, NY, USA, 2010, pp. 1267–1274.

[28] H.-Y. Liu and L. Carloni, “On learning-based methods for design-space
exploration with high-level synthesis,” in Proc. 50th ACM/EDAC/IEEE
Design Autom. Conf. (DAC), Austin, TX, USA, May 2013, pp. 1–7.

[29] D. Sheldon, F. Vahid, and S. Lonardi, “Soft-core processor customization
using the design of experiments paradigm,” in Proc. Conf. Design Autom.
Test Europe (DATE), Nice, France, 2007, pp. 821–826.

[30] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proc. ACM 30th Annu. Int. Symp. Comput. Archit. (ISCA),
New York, NY, USA, 2003, pp. 84–97.

[31] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and
B. Calder, “Using SimPoint for accurate and efficient simulation,” ACM
SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1, pp. 318–319, 2003.

[32] M. V. Biesbrouck, B. Calder, and L. Eeckhout, “Efficient sampling
startup for SimPoint,” IEEE Micro, vol. 26, no. 4, pp. 32–42, Jul. 2006.

[33] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Faraboschi,
“How to simulate 1000 cores,” SIGARCH Comput. Archit. News, vol. 37,
pp. 10–19, Jul. 2009.

[34] O. Villa, A. Tumeo, S. Secchi, and J. B. Manzano, “Fast and accurate
simulation of the Cray XMT multithreaded supercomputer,” IEEE Trans.
Parallel Distrib. Syst., vol. 23, no. 12, pp. 2266–2279, Dec. 2012.

[35] R. Sinha, A. Prakash, and H. Patel, “Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs,” in Proc.
2012 17th Asia South Pac. Design Autom. Conf. (ASP-DAC), Sydney,
NSW, Australia, Jan. 2012, pp. 455–460.

[36] S. Khan, P. Xekalakis, J. Cavazos, and M. Cintra, “Using predictive mod-
eling for cross-program design space exploration in multicore systems,”
in Proc. 16th Int. Conf. Parallel Archit. Compilation Tech. (PACT),
Brasov, Romania, Sep. 2007, pp. 327–338.

[37] H. Cook and K. Skadron, “Predictive design space exploration using
genetically programmed response surfaces,” in Proc. ACM 45th Annu.
Design Autom. Conf. (DAC), New York, NY, USA, 2008, pp. 960–965.

[38] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and
use of linear regression models for processor performance analysis,” in
Proc. Symp. High Perform. Comput. Archit., Austin, TX, USA, 2006,
pp. 99–108.

[39] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive
performance model for superscalar processors,” in Proc. 39th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), Washington, DC, USA,
2006, pp. 161–170.

[40] E. Ipek et al., “Efficient architectural design space exploration via pre-
dictive modeling,” ACM Trans. Archit. Code Optim., vol. 4, no. 4,
pp. 1–34, 2008.

[41] Q. Guo, T. Chen, Y. Chen, L. Li, and W. Hu, “Microarchitectural design
space exploration made fast,” Microprocess. Microsyst., vol. 37, no. 1,
pp. 41–51, 2013.

[42] M. Zuluaga, A. Krause, P. Milder, and M. Püschel, “‘Smart’ design
space sampling to predict Pareto-optimal solutions,” in Proc. 13th ACM
SIGPLAN/SIGBED Int. Conf. Lang. Compilers Tools Theory Embedded
Syst. (LCTES), New York, NY, USA, 2012, pp. 119–128.

[43] G. Mariani et al., “A correlation-based design space exploration method-
ology for multi-processor systems-on-chip,” in Proc. 47th ACM/IEEE
Design Autom. Conf. (DAC), Anaheim, CA, USA, 2010, pp. 120–125.

[44] W. Zhi-xin and J. Gang, “A parallel genetic algorithm in multi-objective
optimization,” in Proc. Control Decis. Conf. (CCDC) Chinese, Guilin,
China, Jun. 2009, pp. 3497–3501.

[45] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in prac-
tice: The Condor experience,” Concurr. Pract. Exp., vol. 17, nos. 2–4,
pp. 323–356, 2005.

[46] H. Jordan et al., “A multi-objective auto-tuning framework for parallel
codes,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
Los Alamitos, CA, USA, 2012, pp. 10:1–10:12.

[47] J. L. Risco-Martín, D. Atienza, J. Manuel Colmenar, and O. Garnica,
“A parallel evolutionary algorithm to optimize dynamic memory man-
agers in embedded systems,” J. Parallel Comput., vol. 36, pp. 572–590,
Oct. 2010.

[48] T. Stanley and T. Mudge, “A parallel genetic algorithm for multiobjec-
tive microprocessor design,” in Proc. 6th Int. Conf. Genet. Algorithms,
San Francisco, CA, USA, 1995, pp. 597–604.

[49] E. K. Ardestani and J. Renau, “ESESC: A fast multicore simulator using
time-based sampling,” in Proc. 2013 IEEE 19th Int. Symp. High Perform.
Comput. Archit. (HPCA), Washington, DC, USA, pp. 448–459.

[50] S. Shakya and R. Santana, “An EDA based on local Markov prop-
erty and Gibbs sampling,” in Proc. 10th Annu. Conf. Genet. Evol.
Comput. (GECCO), New York, NY, USA, 2008, pp. 475–476.

[51] R. Santana et al., “MATEDA: A suite of EDA programs in Matlab,”
Dept. Comput. Sci. Artif. Intell., Univ. Basque Country, Leioa, Spain,
Tech. Rep. EHU-KZAA-IK-2/09, Feb. 2009.

[52] A. Blum, Neural Networks in C++: An Object-Oriented Framework for
Building Connectionist Systems. New York, NY, USA: Wiley, 1992.

[53] M. Pelikan and K. Sastry, “Fitness inheritance in the Bayesian optimiza-
tion algorithm,” in Genet. Evol. Comput. (Lecture Notes in Computer
Science 3103), Berlin, Germany: Springer, 2004, pp. 48–59.

[54] T. Okabe, Y. Jin, and B. Sendhoff, “A critical survey of performance
indices for multi-objective optimization,” in Proc. IEEE Congr. Evol.
Comput., Canberra, ACT, Australia, 2003, pp. 878–885.

[55] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[56] Y. Jin, M. Olhofer, and B. Sendhoff, “Managing approximate models in
evolutionary aerodynamic design optimization,” in Proc. Congr. Evol.
Comput., vol. 1. Seoul, Korea, 2001, pp. 592–599.

[57] P. van Stralen and A. D. Pimentel, “Using chip multithreading to speed
up scenario-based design space exploration: A case study,” in Proc. ACM
6th Workshop Rapid Simulat. Perform. Eval. Methods Tools (RAPIDO),
New York, NY, USA, 2014, pp. 1:1–1:7.

[58] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “Design-space
exploration and runtime resource management for multicores,” ACM
Trans. Embedded Comput. Syst., vol. 13, pp. 20:1–20:27, Sep. 2013.

[59] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable
multi-objective optimization test problems,” in Proc. Congr. Evol.
Comput. (CEC), vol. 1. Honolulu, HI, USA, 2002, pp. 825–830.

