
Noname manuscript No.
(will be inserted by the editor)

XCSF with tile coding in discontinuous action-value
landscapes

Pier Luca Lanzi · Daniele Loiacono

the date of receipt and acceptance should be inserted later

Abstract Tile coding is an effective reinforcement learning method that uses a
rather ingenious generalization mechanism based on (i) a carefully designed pa-
rameter setting and (ii) the assumption that nearby states in the problem space
will correspond to similar payoff predictions in the action-value function. Previ-
ously, we extended XCSF with tile coding prediction and compared it to tabular
tile coding, showing that (i) XCSF performs as well as parameter-optimized tile
coding, while also (ii) evolving individualized parameter settings in each problem
subspace. Our comparison was based on a set of well-known reinforcement learning
environments (2D Gridworld and the Mountain Car) that involved no action-value
discontinuities and so posed no challenge to tabular tile coding.

In this paper, we go a step further and test XCSF with tile coding on a set of
problems designed to challenge tile coding by introducing discontinuities in the ac-
tion value landscape. The new testbed (called MazeWorld) extends 2D Gridworld
with impenetrable obstacles, a conceptually simple modification that can dramat-
ically increase the problem complexity for tabular tile coding. We compare four
versions of XCSF with tile coding (each adapting a different set of parameters)
to tabular tile coding on four problems of increasing complexity. We show that
our system (i) needs fewer training problems than standard tile coding to reach
an optimal policy; (ii) it can evolve adequate coding parameters in each subspace
without any previous knowledge; and that (iii) even when XCSF is not allowed to
evolve these parameters, the genetic algorithm will still adapt classifier conditions
to properly decompose the problem into subspaces thus being much less sensitive
to the parameter settings than tabular tile coding.

P.L. Lanzi
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
E-mail: pierluca.lanzi@polimi.it

D. Loiacono
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
E-mail: daniele.loiacono@polimi.it

2 Pier Luca Lanzi and Daniele Loiacono

1 Introduction

In Reinforcement Learning [12], an agent learns to solve a problem through trial-

and-error interactions with an unknown environment. Its goal is to maximize the
total amount of future reward it will receive. To achieve such simple goal, the
agent has to learn an action-value function Q(s, a) that computes an estimate of
the cumulative reward it will receive by performing the action a when the problem
is in state s (and then continuing to act using its best known policy). In small
problems, the action-value function can be implemented using a look-up table,
however in large problems look-up tables are infeasible and it is only possible to
learn an approximation of the optimal action-value function.

Tile coding [11] is a popular approach to approximate action-value functions
in large reinforcement learning problems. It couples a simple linear function ap-
proximator to the partitioning of the state space into overlapped areas called tiles.
The performance of tile coding heavily relies on a proper setting of the parame-
ters that defines the partitioning of problem space: (i) the number of tiling t, i.e.,
the number of tiles that overlap in any point of the problem space; (ii) the tiling
resolution r, i.e., the smallest offset between two partially overlapped tiles. Unfor-
tunately, the best setting for this parameters is problem dependent and might also
change during the learning process [10]. Glaubius and Smart [4] note that tabular
tile coding relies on Euclidean distance as a source of generalization within the
problem space, and this constitutes one of its major limitation.

Learning classifier systems take another approach to the approximation of the
action-value function they represent through a set of condition-action-prediction

rules, called classifiers. Each classifier represents a part of the overall action-value
function: classifier conditions identify problem subspaces and associate a constant

prediction value p [14] or a prediction function p(s,w) [15] to the classifier action.
The prediction function p(s,w) computes the actual classifier prediction based
on the current state s and on a parameter vector w associated to each classifier;
p(s,w) is usually implemented using a linear approximator (i.e. sw), but more
complex functions can be used [5,6].

In [8], we extended Wilson’s XCSF [15] with tile coding prediction by replacing
the original classifier prediction function with a tile coding approximator. We
compared our version of XCSF to the tabular tile coding implementation on three
well-known reinforcement testbeds, the 2D gridworld [1], the puddle world [1], and
the mountain car [11]. Our results showed that XCSF with tile coding prediction
can solve reinforcement learning problems which would be too challenging for plain
XCSF. In addition, they showed that the evolutionary component of XCSF can
partition the problem space effectively to cover different subspaces with the most
adequate approximators while also adapting the values of t and r. Finally, our
analysis showed that the parameters’ adaptation would follow the rules of thumb
delineated by human experts [10].

All the problems in [8] involved rather simple action-value functions that posed
no difficulty to tile coding. Accordingly, all the results in [8] show that XCSF
with tile coding performs as well as tabular tile coding using the best parameters
possible and that evolution did not require more training problems than tabular
tile coding to adapt the tile coding parameters t and r associated to each classifiers.
In this paper, we take a step further and analyze the generalization capabilities
of XCSF with tile coding on a set of problems that put a main limitation of

An Analysis of Generalization in XCSF using Tile Coding Prediction 3

tile coding to test. In fact, tile coding heavily relies on Euclidean distance as
the basis for generalization and assumes that nearby states in the problem space
will correspond to similar values of the action-value function [4]. To challenge
this assumption, we introduced a new testbed, called MazeWorld, that extends 2D
gridworld [1] with impenetrable obstacles. This relatively simple modification to
2D gridworld introduces discontinuities in the action-value function that challenge
the generalization capabilities of tile coding since nearby areas that are separated
by (thin) obstacles might now correspond to very different action-value function
landscapes. At the same time, XCSF should still be able to evolve local models
that properly generalize the target action-value function in each problem subspace.
We compared four versions of XCSF with tile coding (each one adapting a different
set of tile coding parameters) to plain tile coding using four different MazeWorld

environments. Our results show that XCSF can adapt the tile coding parameters
locally (any one of them) and reach the same performance as the best possible
tabular tile coding configuration. Interestingly, even when XCSF is not allowed to
adapt any tile coding parameter (not t nor r) and these are set to values which
prevent tabular tile coding to solve the problem, XCSF can still work on classifier
conditions to decompose the problem space so as to reach a near optimal solution.
Furthermore, XCSF with tile coding requires fewer training problems than plain
tile coding in almost all the problems and for almost all the parameter settings.
Finally, our results also confirm our previous finding [8] showing that in XCSF the
tile coding parameter adaptation follows the rules of thumb suggested by human
experts [10].

2 Tile Coding

Reinforcement learning (RL) is defined as the problem of an agent that learns
through trial-and-error interaction with an environment [12] that provides feed-
back only by means of a numerical reward. At time step t, the agent perceives
the current state of the environment st and performs an action at following its
current action selection policy. As a consequence, the agent reaches state st+1 and
receives a numerical reward rt+1. The goal of the agent is to maximize the amount
of reward received from the environment. To succeed the agent can learn either
an action-value function Q(st, at) that maps the current state action pair into the
amount of expected reward or a value function V (st) that maps the current state
into amount of expected reward.

Reinforcement learning algorithms rely on two rather impractical assumptions:
(i) the action-value Q(s, a) (or the value function V (st)) is represented by a look-up

table and (ii) the agent visits each state-action pair a large number of times. These
assumptions do not apply to problems involving large and continuous state-action
spaces. To solve this problem, some form of generalization is necessary, that is,
how to represent the action-value Q(s, a) (or the value function V (st)) compactly
and, at the same time, how to reuse collected experience in areas of the problem
space scarcely or even never visited.

Generalization in reinforcement learning is usually implemented by methods
of function approximation: Q(s, a) (or V (st)) is represented as a function f pa-
rameterized by a vector θ which is learned online from the interaction between
the agent and the environment. Apart from the type of approximator used (e.g.,

4 Pier Luca Lanzi and Daniele Loiacono

Fig. 1: Example of tile coding on an input space S with a single variable; the input
space is covered with 4 tilings, i.e., t = 4; each tile covers one third of the input
space, i.e., w = |S|/3, for a total of 15 tiles; accordingly resolution is r = w/4. As
an example the input state s∗ is covered by tiles {t2, t6, t9, t13}.

linear [11] or neural networks [13]), these methods are also characterized by an
input mapping function φ(s) that translates the input space into a feature space
more favorable to the approximator (e.g., φ(s) can be used to map a continuous
space into a discrete one).

Tile coding [11] is a popular method of function approximation in reinforcement
learning. It exploits an input mapping function φ(s) to map a continuous state
space s into a vector of m binary features 〈φ1(s), . . . φm(s)〉; thus, it computes the
value of Q(s, a) as φ(s)θa, where θa is a vector of m parameters associated to
action a which are updated with gradient descent.

Function φ(s) maps the state space into a set of t overlapping tilings; each
tiling partitions the state space into a set of non-overlapping tiles; each tile is an
hyper-rectangle (i.e., a collection of intervals, one for each state variable) in the
state space and it is associated to an element of the parameter vector θ. Given the
state s, the component φi(s) of the features vector associated to the i-th tile ti is
computed as,

φi(s) =

{
0 if s /∈ ti,
1 if s ∈ ti.

(1)

Tilings are usually positioned to cover the whole input space uniformly: if each
tiling consists of tiles of size w and consecutive tilings are displaced by a resolution
r, then t (t = w/r) tilings are used to represent the input space. Resolution r

represents the minimum distance allowed between two states which guarantees
that tile coding can associate different values to each state. Figure 1 shows the tile
coding of a single variable input space S. The input space S is covered by 4 tilings

An Analysis of Generalization in XCSF using Tile Coding Prediction 5

(t = 4); each tile covers a third of the input space (w = |S|/3); thus, the input space
S is mapped into 15 tiles { t1, . . . , t15 } with a resolution r = w/4. Accordingly,
the input state s∗ is covered by tiles {t2, t6, t9, t13} and, thus, is mapped into the
binary vector 〈0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0〉 in which ones correspond to the
active tiles in s∗ (i.e., those that cover s∗).

Sutton et al. [11] provided limited insight on how to choose the parameters t,
w and r. Later, Sherstov and Stone [10] performed an empirical analysis about the
effect of different parameters configurations on the performance of tile coding. In
[10], they showed that the choice of resolution affects the learning speed as well
as the quality of the action-value function approximation whereas the choice of
different number of tilings and width, leading to the same resolution, affects the
learning speed. In fact, a higher resolution (i.e., a lower value of r) allows a better
approximation of the action-value function but generally requires a longer learning
process; at the same time, a higher number of tilings leads to faster learning at
the beginning, but it might be disruptive at the end of the learning process.

3 Problems that Challenge Tile-Coding

Tile coding has been successfully applied to many reinforcement learning prob-
lems [11,12], yet it has several limitations. Sherstov and Stone [10] noted that the
choice of the parameters r, t and w, plays a key role in tile coding. Firstly, in
complex problems and when little domain knowledge is available, finding a suit-
able parameter setting might be a tough and expensive task. Secondly, the results
reported in [10] also suggest that often is not possible to identify a set of optimal
parameters but these should be adapted during learning. In [10], they show how
the parameters of tile coding should ideally (i) encourage broad generalization in
the initial stage of the learning process (i.e., when action-value function is rapidly
changing), while (ii) discourage generalization in the final stage of the learning
process (i.e., when the action-value function is near to convergence). In addition,
Glaubius and Smart [4] suggest that one of the major limitation of tile coding is
that it relies on Euclidean distance as a source of generalization within the prob-
lem space (i.e., similarity in the problem space is measured on the basis of the
Euclidean distance). Accordingly, when this assumption does not hold, due to the
topology of the input space induced by the problem dynamics, tile coding may
easily lead to a poor approximation of the action-value function.

In our previous work [8], we tested XCSF with tile coding prediction on well
known problems taken from the reinforcement learning literature [12], i.e., the 2D
gridworld [1], the puddle world [1], and the mountain car [11]. Our experimental
results (see [8] for more details) showed that XCSF with tile coding can evolve
an optimal solution as fast as plain tile coding but can also adapt the tile coding
parameters during learning effectively.

However, all the environments in [8] involved a problem space topology that
allows a simple generalization based on the Euclidean distance. In fact, as Figure 2
clearly shows, both the 2d gridworld (Figure 2a) and the puddle world (Figure 2b)
have a rather smooth value function in that states which are near in the input space
have very similar values; the mountain car (Figure 2c) involves a value function
with a quite steep slope in few areas of the problem space, but it still allows a
rather broad generalization.

6 Pier Luca Lanzi and Daniele Loiacono

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−20

−15

−10

−5

0

xy

V
(x

,y
)

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−20

−15

−10

−5

0

xy

V
(x

,y
)

(b)

−1.5

−1

−0.5

0

0.5

−0.1

−0.05

0

0.05

0.1
−150

−100

−50

0

50

xy

V
(x

,y
)

(c)

Fig. 2: Value function of typical problems taken from the reinforcement learning
literature: (a) the 2D gridworld, (b) the puddle world, and (c) the mountain car.

In this work, we take our previous analysis [8] a step further and we investigate
how XCSF with tile coding prediction performs on problems where generalization
in the problem space is not based on the Euclidean distance. In particular, we study
whether XCSF can exploit its capabilities of decomposing the problem space to
provide a reliable generalization in problem with a more complex space topology
and how it compares with plain tile coding. To this purpose, we introduce a new class
of problems, called MazeWorld, which extends 2D gridworld testbed by adding one
or more impenetrable obstacles in the environment. Similarly to the 2D gridworld,
the agent state is defined by a pair of real coordinates 〈x, y〉 in [0, 1]2 and there are
four possible actions, {left, right, up, down}, which correspond to a step of fixed
size s = 0.05 in one of the main four directions (as in the original 2D gridworld [2]);
the agent must reach an area of the problem space defined as goal, that is when both

its coordinates are greater than 1− s. In contrast to the 2D gridworld, MazeWorld

environment contains one or more impenetrable obstacles that cannot be traversed
by the agent. Any action that would take the agent outside the domain [0, 1]2 or
inside an obstacle will take the agent to the nearest empty position of the grid
border. The agent can start anywhere but in the goal position or in a position
occupied by an obstacle. It is possible to design several instances (or mazes) of the

An Analysis of Generalization in XCSF using Tile Coding Prediction 7

(a) (b)

(c) (d)

Fig. 3: The four MazeWorld problems used for the experimental analysis in this
work: (a) Maze1, (b) Maze2, (c) Maze3, and (d) Maze4; the black regions are impen-
etrable obstacles; the red regions are goal areas.

MazeWorld environment by changing the position of the obstacles in the problem
space. The instances of the MazeWorld environment considered in this work are
depicted in Figure 3.

Although with MazeWorld we introduce only small changes to the problem defi-
nition of the popular 2D gridworld testbed, these changes still lead to rather large
differences in the problem space. In fact, as Figure 4 shows, the value function
in the MazeWorld problems presents several discontinuities that prevent a sim-
ple generalization within the problem space and thus challenge a global function
approximators like tile coding.

8 Pier Luca Lanzi and Daniele Loiacono

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(a)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(b)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(c)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−10

−8

−6

−4

−2

0

xy

V
(x

,y
)

(d)

Fig. 4: Optimal value function of the four MazeWorld problems used for the ex-
perimental analysis in this work: (a) Maze1, (b) Maze2, (c) Maze3, and (d) Maze4.

4 XCS with Tile Coding Prediction

XCSF with tile coding prediction extends XCSF [15] by replacing the usual linear
prediction with a tile coding approximator. The system has the same structure as
XCSF except for (i) two additional parameters, r and t, added to each classifier
which define the structure of the tiles over the problem subspace identified by the
classifier condition; (ii) the weights vector w associated to each classifier that has
now a weight wi for each tile in the input domain defined by the condition C of
the classifier; (iii) the discovery component that can also evolve the values of r
and t.

Classifiers consist of a condition, an action, and six parameters. The condition
specifies which input states the classifier matches and it is represented by a con-
catenation of intervals (li, ui) where the lower and upper bound, li and ui, are real
values. The action specifies the action for which the payoff is predicted; in our
case, there are four possible actions, one for each direction of movement. The six
parameters are: the weight vector w associated to the classifier’s tiling; the number
of tilings t and their resolution r; the prediction error ε, that estimates the error
affecting the classifier prediction; the fitness F that estimates the accuracy of the
classifier prediction; and the numerosity num, a counter used to represent different
copies of the same classifier;

Performance Component. At time step t, the system builds a match set [M]
containing the classifiers in the population [P] whose condition matches the cur-
rent sensory input st; if [M] contains less than θmna actions, covering takes place

An Analysis of Generalization in XCSF using Tile Coding Prediction 9

and creates a new classifier that matches the current inputs and has a random
action [15]. The prediction of all the classifiers in [M] is computed using the clas-
sifier’s tile coding. First, the tile coding mapping function (Equation 1) is applied
to the input state st to compute the binary vector φ(st) (Section 2). Then, the
classifier prediction is computed as φ(st)w. For each action ai in [M], the system
computes the system prediction as in XCSF,

P (st, a) =

∑
cl∈[M]|a cl.p(st)× cl.F∑

cl∈[M]|a cl.F
(2)

where cl is a classifier, [M]|a represents the subset of classifiers in [M] with action
a, cl.F is the fitness of cl ; cl.p(st) is the prediction of cl computed in the state st as
φ(st)w. Next, the system selects an action to perform. The classifiers in [M] that
advocate the selected action are put in the current action set [A]; the selected action
is sent to the environment and a reward r is returned to the system together with
the next input state st+1. The incoming reward r is used to update the weights
vector w, the prediction error ε and the fitness F of the classifiers in the action
set [A] as done in XCSF [15].

Discovery Component. Similarly to XCSF [15], a genetic algorithm (GA) is ap-
plied to the classifiers in the current action set [A] when the average time since the
last GA application to the classifiers in [A] exceeds a threshold θga. Two offspring
classifiers are generated by reproducing, crossing, and mutating the parents. The
genetic algorithm can also mutate the new additional parameters r and t. During
the learning process these parameters can be either fixed or they can be adapted.
Accordingly, we identify four versions of XCSF with tile coding prediction:

– XCSF-C, where the genetic algorithm acts only on classifier condition (as in
XCSF) while the number of tilings t and the resolution r are constant.

– XCSF-TC, where the genetic algorithm acts on classifier condition and on the
number of tiling t, while the resolution r is constant.

– XCSF-RC, where the genetic algorithm acts on classifier condition and on the
resolution r, while the number of tiling t is constant.

– XCSF-RTC, where the genetic algorithm acts on the classifier condition, on
the number of tiling t and on the resolution r.

5 Design of Experiments

In this paper, we applied the standard experimental design used in the literature
which that we also followed in our first work on XCSF with tile-coding predic-
tion [8]. Each experiment consists of a number of problems that the system must
solve. Each problem is either a learning problem or a test problem. In learning

problems, XCSF selects actions randomly from those represented in the match
set. In test problems, XCSF always selects the action with the highest prediction.
The genetic algorithm is enabled only during learning while it is turned off dur-
ing testing. The covering operator is always enabled, but operates only if needed.
Learning problems and test problems alternate. The performance is computed as
the average number of steps needed to reach the goal during the last 10 test prob-
lems. To speed up the experiments, problems can last at most 1000 steps; when

10 Pier Luca Lanzi and Daniele Loiacono

this limit is reached the problem stops even if the system did not reach the goal.
To evaluate the learning speed and the final performance achieved by the differ-
ent settings and systems, we collected also the average number of steps needed to
reach the goal respectively during the first 100 test problems and during the last
100 test problems. All the statistics reported in this paper are averaged over 10
experiments.

Statistical Analysis. To analyze the results reported in this paper, we followed
the procedure introduced in [9] for the comparison of performance curves. For each
experiment, for every setting we tested, we considered all the performance curves;
we sampled the curves and considered only one point every 100 problems; we
applied an analysis of variance (ANOVA) [3] on the resulting data to test whether
there was some statistically significant difference; finally, we applied four post hoc

tests [3], Tukey HSD, Scheffé, Bonferroni, and Student-Neumann-Keuls, to find
which settings/systems performed significantly different. The same analysis, i.e.,
the analysis of variance and the four post hoc tests, has been also applied to the
average performance of each setting/system during the first 100 test problems and
during the last 100 test problems.

6 Experiments

We performed a series of experiments to compare XCSF with tile coding predic-
tion and the plain tabular tile coding on the four MazeWorld problems (Figures 3).
In particular, we compared the four versions of XCSF we introduced in Section 4
(XCSF-C, XCSF-TC, XCSF-RC, and XCSF-RTC), which differ only in their dis-
covery component.

6.1 Adapting Conditions

In the first set of experiments, we compared tabular tile coding and the simpler
version of XCSF with tile coding in which only conditions are evolved during
learning (XSCF-C). The parameters of XCSF-C were set following the typical
setup used for Gridworld problems [7,8]: N = 5000; ε0 = 0.05; β = 0.2; α = 0.1;
γ = 0.95; ν = 5; χ = 0.8, µ = 0.04, pexplr = 0.1, θdel = 50, θGA = 50, and
δ = 0.1; GA-subsumption is on with θsub = 50; while action-set subsumption is
off; m0 = 0.25, r0 = 0.25 [15]; for tile coding prediction, the resolution r is 0.05
and different values of number of tilings t have been tested.

Figure 5 compares the performance of XCSF-C (solid dots) with that of tab-
ular tile coding (empty dots) applied to Maze1, Maze2, Maze3, and Maze4 with
t ∈ {1, 16, 256}. Overall, the results shows that XCSF-C is slightly faster than
tabular tile coding when using the same settings. In particular, Figure 5a shows
that the performance of the systems are very close in Maze1, while the differences
are more evident in Maze2, in Maze3 and in Maze4 (Figure 5b-d). However, XCSF-C
and tabular tile coding achieve almost the same final performance at the end
(with few exceptions). Table 1a and Table 1b summarize the average performance
of XCSF-C and tabular tile coding in the first 100 test problems and in the last
100 test problems. In Maze1, a higher value for t (t = 64, 256) leads to a very
good performance in the first 100 problems both with tabular tile coding and with

An Analysis of Generalization in XCSF using Tile Coding Prediction 11

XCSF (Table 1a). In contrast, in the more challenging problems, smaller values of
t (t = 4, 16) lead to similar or even better performance. In fact, as the complexity
of the MazeWorld environment increases generalization is more difficult to achieve
and higher values of t can lead to overgeneralization in the problem space. Simi-
larly, Table 1b shows that in the more complex environments (Maze3 and Maze4) a
higher value of t can even disrupt the performance achieved by tabular tile coding
in the final 100 episodes. However, in XCSF the choice of t seems to affect the
final performance only slightly (Table 1b). This is not surprising, since XCSF can
properly decompose the problem space through the classifiers condition so as to
achieve the suitable generalization in different areas.

We performed a statistical analysis (see Section 5) to check whether there are
statistically significant differences (i) between tabular tile coding and XCSF; and
(ii) between the different values of t considered. The analysis suggests that, in
all the problems XCSF-C performs similarly to tabular tile coding using the best
settings for both the systems. However, in all the more complex problems (Maze2,
Maze3 and Maze4) the analysis shows that XCSF-C performs significantly better
than tabular tile coding when we use a non optimal setting of t.

Initial Performance. The analysis on the first 100 test problems (Table 1a) shows
that XCSF-C is significantly faster than tabular tile coding in all the four mazes,
when the same number of tiling t is used for both the systems. The same analysis
also reports significant differences with respect to the tiling number t. In Maze1,
Maze2, and Maze3, t = 1 is significantly slower than t = {4, 16, 64, 256}, which
instead have a similar performance. Instead, in Maze4, t = 256 is significantly
slower than t = {1, 4, 16, 64} which perform similarly.

Final Performance. The analysis of the average performance over the last 100
test problems returns unclear results with statistical differences between XCSF-C
and tabular tile coding in only two mazes out of four. In Maze1, tabular tile coding
achieves a final performance that is significantly better than the one achieved by
XCSF-C, conversely, in Maze4, XCSF-C performs better than tabular tile coding.
Concerning the number of tilings t, the analysis of final performance shows that
using t = 1 always leads to a final performance that is significantly worse than the
one achieved with t = {4, 16, 64, 256}, the only exception being tabular tile coding
with t = 256 in Maze4.

6.2 Adapting Conditions and Number of Tilings

In the second set of experiments, we focused on XCSF-TC, which also adapts the
number of tilings t during learning. The parameters of XCSF-TC were set as in
the previous set of experiments. Figure 6 compares XCSF-TC (solid dots) to the
tabular tile coding (empty dots) with t ∈ {1, 16, 256} applied to the four MazeWorld

environments. The results show that XCSF-TC learns either as fast as or even
slightly faster than tabular tile coding with the best parameter setting in Maze1,
Maze2, and Maze3. In contrast, in Maze4 (Figure 6d), XCSF-TC seems initially
slower than tabular tile coding with the best parameter setting (i.e., t = 16)
although it quickly reaches the same performance.

To test whether the differences among the curves are statistically significant,
we performed the usual statistical analysis (Section 5). The analysis suggests that

12 Pier Luca Lanzi and Daniele Loiacono

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

TC t=1 r=0.05
XCSF-C t=1 r=0.05

TC t=16 r=0.05
XCSF-C t=16 r=0.05

TC t=256 r=0.05
XCSF-C t=256 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

TC t=1 r=0.05
XCSF-C t=1 r=0.05

TC t=16 r=0.05
XCSF-C t=16 r=0.05

TC t=256 r=0.05
XCSF-C t=256 r=0.05

(a) (b)

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

TC t=1 r=0.05
XCSF-C t=1 r=0.05

TC t=16 r=0.05
XCSF-C t=16 r=0.05

XCSF-C t=256 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

TC t=1 r=0.05
XCSF-C t=1 r=0.05

TC t=16 r=0.05
XCSF-C t=16 r=0.05

XCSF-C t=256 r=0.05

(c) (d)

Fig. 5: Performance of XCSF-C and tabular tile coding applied to (a) Maze1, (b)
Maze2, (c) Maze3, and (d) Maze4. In Maze3 and in Maze4 tabular tile coding with
t = 256 is not reported in the figures due to its poor performance. Curves are
averages over 10 runs.

XCSF-TC performs similarly to tabular tile coding with the best setting over the
whole learning process in all the problems but Maze3, where XCSF-TC performs
significantly better. The analysis shows that tabular tile coding with t = 1 performs
significantly worse than the other settings in the simplest environments, Maze1 and
Maze2; instead, in the most complex environments, Maze3 and Maze4, tabular tile
coding with t = 256 performs significantly worse than the others.

Initial Performance. Table 2a shows that, in the first 100 test problems, XCSF-TC
(i) performs slightly better than tabular tile coding in Maze1 and Maze2; (ii) has
a performance very close to the best setting of tabular tile coding in Maze4; (iii)
performs slightly worse than the best settings of tabular tile coding in Maze3. The
statistical analysis of the performance gives the following outcome. In Maze1 and
in Maze2 the post-hoc tests [3] identifies three groups: (i) XCSF-TC that performs
significantly better than all the settings of tabular tile coding, (ii) tabular tile
coding with t ∈ 4, 16, 64, 256 which perform similarly, and (iii) tabular tile coding
with t = 1 which performs significantly worse than all the other settings and than
XCSF-TC. In Maze3, no significant differences are reported from the analysis. In

An Analysis of Generalization in XCSF using Tile Coding Prediction 13

t Maze1 Maze2
TC XCSF-C TC XCSF-C

1 485.90 ± 42.99 440.14 ± 23.00 534.16 ± 23.92 517.78 ± 21.34
4 289.51 ± 25.63 268.80 ± 30.11 394.03 ± 33.62 330.91 ± 25.25
16 294.25 ± 47.93 176.53 ± 23.32 425.29 ± 67.13 285.50 ± 50.63
64 232.84 ± 42.55 135.98 ± 26.48 441.62 ± 76.16 308.98 ± 93.44
256 259.00 ± 47.53 160.34 ± 49.16 388.73 ± 52.68 292.46 ± 51.56

Maze3 Maze4
TC XCSF-C TC XCSF-C

1 515.28 ± 38.95 460.61 ± 29.11 654.03 ± 33.56 581.15 ± 30.74
4 375.49 ± 45.55 255.79 ± 19.16 547.53 ± 52.73 459.59 ± 43.43
16 334.77 ± 67.14 179.20 ± 31.70 596.10 ± 53.32 429.59 ± 68.61
64 510.96 ± 31.00 479.09 ± 46.07 708.06 ± 48.95 617.58 ± 99.67
256 655.60 ± 41.35 573.63 ± 40.64 668.36 ± 101.56 606.86 ± 68.15

(a)

t Maze1 Maze2
TC XCSF-C TC XCSF-C

1 41.81 ± 3.57 50.61 ± 4.53 59.83 ± 14.73 55.61 ± 5.62
4 33.94 ± 2.01 32.91 ± 2.00 40.84 ± 3.03 40.47 ± 2.33
16 38.38 ± 12.06 33.63 ± 1.52 42.73 ± 2.36 39.71 ± 2.57
64 33.50 ± 2.43 33.39 ± 1.79 41.71 ± 3.15 40.00 ± 2.16
256 34.46 ± 2.86 32.40 ± 2.10 47.01 ± 9.34 38.89 ± 2.80

Maze3 Maze4
TC XCSF-C TC XCSF-C

1 30.23 ± 3.08 34.26 ± 2.19 57.38 ± 3.95 66.07 ± 5.74
4 28.63 ± 1.53 29.36 ± 1.45 57.79 ± 4.22 56.13 ± 3.41
16 33.93 ± 3.13 29.61 ± 2.29 82.07 ± 38.91 57.77 ± 4.12
64 36.13 ± 6.43 30.24 ± 1.55 131.03 ± 53.90 63.06 ± 7.53
256 114.64 ± 56.71 29.78 ± 2.06 125.73 ± 56.05 71.10 ± 23.98

(b)

Table 1: XCSF-C and tabular tile coding (TC) applied to Maze1, Maze2, Maze3,
and Maze4: (a) average performance in the first 100 test problems and (b) average
performance in the last 100 test problems. Statistics are averages over 10 runs.

Maze4, post-hoc tests identifies three groups: (i) tabular tile coding with t = 4 and
t = 16, that perform better than all the other settings; (ii) then, XCSF-TC and
tabular tile coding with t = 1 and t = 64; (iii) tabular tile coding with t = 256,
that performs worse than all the other settings.

Final Performance. Table 2b shows that XCSF-TC always reaches a performance
similar or better than the one achieved by tabular tile coding with the best setting
(the only exception being Maze4 where the final performance is slightly worse than
the one achieved by tabular tile coding with t = 1 and t = 4). We performed an
one-way ANOVA [3] to test whether these differences are statistically significant.
In Maze1, Maze2, and Maze3 the analysis does not report any statistically significant
difference: XCSF-TC and tabular tile coding reaches a similar final performance
for all the settings. In Maze4 tabular tile coding with t = 256 achieves a final
performance significantly worse than XCSF-TC and tabular tile coding with the
other settings.

Finally, Figure 7 shows the average number of tiling t of the classifier evolved
by XCSF-TC during the learning process in all the four environments. The more

14 Pier Luca Lanzi and Daniele Loiacono

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-TC r=0.05
TC t=1 r=0.05

TC t=16 r=0.05
TC t=256 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-TC r=0.05
TC t=1 r=0.05

TC t=16 r=0.05
TC t=256 r=0.05

(a) (b)

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-TC r=0.05
TC t=1 r=0.05

TC t=16 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-TC r=0.05
TC t=1 r=0.05

TC t=16 r=0.05

(c) (d)

Fig. 6: Performance of XCSF-TC and tabular tile coding (TC) applied to (a) Maze1,
(b) Maze2, (c) Maze3, and (d) Maze4. In Maze3 and in Maze4 tabular tile coding with
t = 256 is not reported in the figures due to its poor performance. Curves are
averages over 10 runs.

complex is the maze the smaller is the number of tiling t evolved; in fact a high
number of tiling leads to a broad generalization that is useful only in the simplest
environments.

6.3 Adapting Conditions and Tiling Resolution

In the third set of experiments, we tested XCSF-RC which adapts the resolution
of the tiling r during the learning process. The parameters of XCSF-RC were set
as in the previous experiments except for number of tiling t that was set to 16 for
tabular tile coding as well as for XCSF-RC.

Figure 8 compares XCSF-RC (solid dots) to the tabular tile coding (empty
dots) with r ∈ {0.0125, 0.025, 0.05} in the five MazeWorld environments (tabular
tile coding with values of r bigger than 0.05 are not reported due to the poor
performances). The figure shows that XCSF-RC learns generally faster than tabu-
lar tile coding with the best parameter setting in all the problem except in Maze3,

An Analysis of Generalization in XCSF using Tile Coding Prediction 15

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 T

IL
IN

G
 N

U
M

B
E

R

NUMBER OF LEARNING PROBLEMS

Maze1
Maze2
Maze3
Maze4

Fig. 7: Average number of tilings evolved by XCSF-TC in Maze1, Maze2, Maze3,
and Maze4. Curves are averages over 10 runs.

System Maze1 Maze2 Maze3 Maze4

TC t = 1 485.90 ± 42.99 534.16 ± 23.92 515.28 ± 38.95 654.03 ± 33.56
TC t = 4 289.51 ± 25.63 394.03 ± 33.62 375.49 ± 45.55 547.53 ± 52.73
TC t = 16 294.25 ± 47.93 425.29 ± 67.13 334.77 ± 67.14 596.10 ± 53.32
TC t = 64 232.84 ± 42.55 441.62 ± 76.16 510.96 ± 31.00 708.06 ± 48.95
TC t = 256 259.00 ± 47.53 388.73 ± 52.68 655.60 ± 41.35 668.36 ± 101.56
XCSF-TC 124.16 ± 24.82 211.92 ± 43.65 491.28 ± 59.67 594.08 ± 73.88

(a)

System Maze1 Maze2 Maze3 Maze4

TC t = 1 41.81 ± 3.57 59.83 ± 14.73 30.23 ± 3.08 57.38 ± 3.95
TC t = 4 33.94 ± 2.01 40.84 ± 3.03 28.63 ± 1.53 57.79 ± 4.22
TC t = 16 38.38 ± 12.06 42.73 ± 2.36 33.93 ± 3.13 82.07 ± 38.91
TC t = 64 33.50 ± 2.43 41.71 ± 3.15 36.13 ± 6.43 131.03 ± 53.90
TC t = 256 34.46 ± 2.86 47.01 ± 9.34 114.64 ± 56.71 125.73 ± 56.05
XCSF-TC 34.69 ± 1.37 38.96 ± 2.20 28.82 ± 1.67 64.95 ± 11.67

(b)

Table 2: XCSF-TC and tabular tile coding (TC) applied to Maze1, Maze2, Maze3,
and Maze4: (a) average performance in the first 100 test problems and (b) average
performance in the last 100 test problems. Statistics are averages over 10 runs.

where it learns slower than tabular tile coding, although it quickly reaches a similar
performance.

The statistical analysis of the learning curves suggest that some of these differ-
ences are statistically significant. In particular, in Maze1 tabular tile coding with
r = 0.0125 performs significantly worse than the other systems/settings which
perform similarly; in Maze2 and in Maze4 the post-hoc tests identify three different
groups: (i) XCSF-RC, that performs better than tabular tile coding with any set-
ting, (ii) then, tabular tile coding with r = 0.025 and r = 0.05, and (iii) tabular
tile coding with r = 0.0125 that performs worse than all the others; in Maze3 the
analysis shows that tabular tile coding with r = 0.025 and r = 0.05 both performs

16 Pier Luca Lanzi and Daniele Loiacono

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RC t=16
TC t=16 r=0.0125

TC t=16 r=0.025
TC t=16 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RC t=16
TC t=16 r=0.0125

TC t=16 r=0.025
TC t=16 r=0.05

(a) (b)

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RC t=16
TC t=16 r=0.0125

TC t=16 r=0.025
TC t=16 r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RC t=16
TC t=16 r=0.05

(c) (d)

Fig. 8: XCSF-RC and tabular tile coding applied to (a) Maze1, (b) Maze2, (c) Maze3,
and (d) Maze4. In Maze4 tabular tile coding with r = 0.025 and r = 0.0125 are not
reported in the figure due to their poor performances. Curves are averages over 10
runs.

significantly better than tabular tile coding with r = 0.0125 and XCSF-RC, that
instead performs similarly.

Initial Performance. Table 3a reports the average performance of the systems
during the first 100 test problems. r = 0.05 and r = 0.025 are the best settings for
tabular tile coding in all the four environments. In particular, in the most complex
problem, Maze4, r = 0.025 allows to tabular tile coding to learn rather faster than
the other settings, as this environment does not allow a broad generalization in
the problem space. Similarly, XCSF-RC exploits at best the possibility of adapting
the tiling resolution in all the environments but Maze3, where a coarser resolution
(e.g., tabular tile coding with r = 0.1 and with r = 0.2) appears to be more
disruptive. The statistical analysis of the data in Table 3a shows that almost
all these differences are statistically significant. In particular, in Maze1 and in
Maze2, XCSF-RC requires significantly fewer episodes than tabular tile coding
with the best settings; in Maze3, tabular tile coding with the best settings (r = 0.05
and r = 0.025) requires significantly fewer episodes than XCSF-RC; in contrast,

An Analysis of Generalization in XCSF using Tile Coding Prediction 17

System Maze1 Maze2 Maze3 Maze4

TC r = 0.0125 423.18 ± 29.74 508.64 ± 15.50 455.20 ± 15.05 615.91 ± 21.74
TC r = 0.025 249.50 ± 30.32 328.88 ± 18.26 244.67 ± 18.50 479.43 ± 21.47
TC r = 0.05 243.26 ± 47.57 406.51 ± 64.94 284.26 ± 82.18 602.71 ± 83.44
TC r = 0.1 610.86 ± 111.04 667.23 ± 81.42 723.48 ± 103.32 881.85 ± 25.70
TC r = 0.2 643.77 ± 51.88 736.37 ± 51.85 956.40 ± 40.42 873.38 ± 31.55
XCSF-RC 150.94 ± 26.66 224.20 ± 69.40 613.58 ± 86.85 584.26 ± 96.30

(a)

System Maze1 Maze2 Maze3 Maze4

TC r = 0.0125 58.21 ± 5.44 89.59 ± 19.20 39.47 ± 3.17 397.90 ± 29.31
TC r = 0.025 33.07 ± 1.37 45.82 ± 4.69 30.58 ± 1.47 270.38 ± 37.68
TC r = 0.05 34.36 ± 1.17 41.10 ± 2.69 35.81 ± 5.39 77.38 ± 28.21
TC r = 0.1 350.11 ± 108.41 341.47 ± 161.55 517.91 ± 86.51 863.39 ± 42.52
TC r = 0.2 624.82 ± 61.21 727.10 ± 45.59 923.87 ± 25.84 850.81 ± 44.71
XCSF-RC 33.59 ± 1.55 38.55 ± 2.88 29.07 ± 1.84 55.16 ± 3.40

(b)

Table 3: XCSF-RC and tabular tile coding (TC) applied to Maze1, Maze2, Maze3,
and Maze4: (a) average performance in the first 100 test problems and (b) average
performance in the last 100 test problems. Statistics are averages over 10 runs.

 0

 0.05

 0.1

 0.15

 0.2

 0 200 400 600 800

A
V

E
R

A
G

E
 T

IL
IN

G
 R

E
S

O
LU

T
IO

N

NUMBER OF LEARNING PROBLEMS

Maze 1
Maze 2
Maze 3
Maze 4

Fig. 9: Average tiling resolution evolved by XCSF-RC in Maze1, Maze2, Maze3, and
Maze4. Curves are averages over 10 runs.

in Maze4, the differences between XCSF-RC and tabular tile coding (with r ∈
{0.0125, 0.025, 0.05}) are not statistically significant.

Final Performance. Table 3b reports the average performance during the last
100 test problems. The data show that XCSF-RC always reach a performance
that is similar (Maze1 and Maze3) or slightly better (Maze2 and Maze4) than the
one achieved by tabular tile coding with the best settings; in Maze2 and Maze4 the
difference is also statistically significant.

Finally, Figure 9 shows the average tiling resolution r evolved by XCSF-RC
over the whole learning process. The results show that the average tiling resolu-

18 Pier Luca Lanzi and Daniele Loiacono

tion decreases over time during the learning process when it reaches a value close
to r = 0.05 in all the four environments, being just slightly lower in Maze3. This
emergent behavior of XCSF-RC follows the same strategy suggested by Sherstov
and Stone in [10]: a larger tiling resolution can be exploited in the early stages
to improve the learning speed and then it should be reduced to improve the final
performance. It is interesting to note that in XCSF-RC the time required to de-
crease the average tiling resolution increases in the more complex problems. This
suggests that, despite adapting the tiling resolution turns out to be very powerful
to improve the learning speed in simple problems, it might actually slow down the
learning process when the problem is more challenging. Nevertheless, the same
results suggest that XCSF-RC is actually able to adapt the tiling resolution even
in the more complex problems effectively without following any specific strategy.

6.4 Adapting All the Parameters at Once

At the end, we tested XCSF-RTC which adapts both the tiling number t and
the tiling resolution r. Figure 10 compares XCSF-RTC (solid dots) to XCSF-TC
(empty dots) and XCSF-RC (empty boxes) on the same four environments. The
results show that XCSF-RTC performs similarly to the other systems in Maze1,
Maze2, and Maze4, while it seems to perform worse in Maze3. However, all the three
versions of XCSF achieve a similar final performance in all the environments.
The statistical analysis of the learning curves confirms that the only significant
difference is between XCSF-RTC and the other two systems in Maze3. This confirms
what found in previous experiments: a non optimal setting for the tiling number t
and for the tiling resolution r might be rather disruptive in term of performance
in some environments (like Maze3); accordingly, XCSF-RTC requires a rather large
number of learning problems to properly adapt both r and t.

Initial and Final Performance. Table 4 reports the average performance of
XCSF-RTC, XCSF-TC, and XCSF-RC in the first and in the last 100 test prob-
lems (Table 4a and Table 4b). Both the initial and the final performance of the
three versions of XCSF are similar. The statistical analysis reported only one sig-
nificant difference: XCSF-TC learns significantly faster than XCSF-RTC and than
XCSF-RC in Maze3 (see Table 4a). These results further confirm that the choice
of tiling resolution is very critical especially in the Maze3 environment.

7 Conclusions

We compared XCSF with tile coding prediction and tabular tile coding using
a new set of problems (called MazeWorlds) designed to challenge tile coding by
introducing discontinuities in the action value landscape. MazeWorlds extend well-
known 2D gridworlds [1] by adding thin impenetrable obstacles, that break broad
generalizations in the action-value landscape. Our goal was to investigate whether
XCSF could exploit its effective problem decomposition capabilities and provide
a more reliable performance than tabular tile coding over such more complex
action-value landscapes.

In [8], we considered problems that could be solved optimally by tabular tile
coding and XCSF adapted an ensemble of tile coding parameters locally while

An Analysis of Generalization in XCSF using Tile Coding Prediction 19

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RTC
XCSF-RC t=16

XCSF-TC r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RTC
XCSF-RC t=16

XCSF-TC r=0.05

(a) (b)

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RTC
XCSF-RC t=16

XCSF-TC r=0.05

 0

 60

 120

 180

 240

 300

 0 200 400 600 800 1000

A
V

E
R

A
G

E
 N

U
M

B
E

R
 O

F
 S

T
E

P
S

NUMBER OF LEARNING PROBLEMS

XCSF-RTC
XCSF-RC t=16

XCSF-TC r=0.05

(c) (d)

Fig. 10: XCSF-RC, XCSF-TC, and XCSF-RTC applied to (a) Maze1, (b) Maze2,
(c) Maze3, and (d) Maze4. Curves are averages over 10 runs.

System Maze1 Maze2 Maze3 Maze4

XCSF-TC 124.16 ± 24.82 211.92 ± 43.65 491.28 ± 59.67 594.08 ± 73.88
XCSF-RC 150.94 ± 26.66 224.20 ± 69.40 613.58 ± 86.85 584.26 ± 96.30

XCSF-RTC 140.58 ± 44.87 255.41 ± 51.15 610.90 ± 138.42 496.33 ± 56.83

(a)

System Maze1 Maze2 Maze3 Maze4

XCSF-TC 34.69 ± 1.37 38.96 ± 2.20 28.82 ± 1.67 64.95 ± 11.67
XCSF-RC 33.59 ± 1.55 38.55 ± 2.88 29.07 ± 1.84 55.16 ± 3.40

XCSF-RTC 34.46 ± 1.58 38.33 ± 1.39 29.42 ± 2.22 58.70 ± 4.43

(b)

Table 4: XCSF-RC, XCSF-TC, and XCSF-RTC applied to Maze1, Maze2, Maze3,
and Maze4: (a) average performance in the first 100 test problems and (b) average
performance in the last 100 test problems. Statistics are averages over 10 runs.

20 Pier Luca Lanzi and Daniele Loiacono

also learning how to solve the problem. Accordingly, XCSF with tile coding could
perform almost as well as tabular tile coding (both in terms of learning speed
and final performance) without requiring prior knowledge of the problem domain
which was instead needed to reach optimal performance using tabular tile coding.
In this paper, we tackled problems that tabular tile coding may not solve because
of the discontinuities in the prediction landscape.

We compared four versions of XCSF with tile coding prediction (XCSF-C,
XCSF-TC, XCSF-RC, and XCSF-RTC) to tabular tile coding using four Maze-

World environments. Each version of XCSF involved a different flavor of parameter
adaptation: in XCSF-C the genetic algorithm was only applied to classifiers’ condi-
tions; in XCSF-TC and in XCSF-RC evolution also acted on the number of tiling
t and the tiling resolution r, respectively; in XCSF-RTC the genetic algorithm
was applied on everything at once. Our results suggest that, in terms of number
of learning problems, XCSF with tile coding requires significantly less training
problems than tabular tile coding in almost all the problems. Moreover, the evo-
lution of the tile coding parameters speeds up learning and does not introduce an
overhead. When the adaptation of tiling parameters (t and r) was turned off and
the parameters were set to inadequate values (which would make tile coding fail)
XCSF outperformed tabular tile coding and it was still capable to learn a better
solution by properly partitioning the problem space using classifier conditions. Fi-
nally, an analyses we performed on the evolution of the tiling parameters showed
XCSF was able to evolve the most adequate parameters in each subproblem and
it was always able to learn an optimal solution. Overall, our results confirm that
ability of effectively decompose the problem space is a major feature of the learning
classifier systems inspired to XCS which should be exploited even more.

All the experiments were performed with a rather basic version of the genetic
algorithm and much of what is known about tile coding [10] might be used to
implement heuristics to speed up learning in XCSF with tile coding. For example,
we initialized the population completely at random, but a heuristic could be added
to set better initial values of t and r; similarly, the mutation operator could be
modified to increase the likelihood of producing values that encourage generalisa-
tion decreases over the course of learning, for instance taking Sherstov and Stone’s
[10] adaptive method as inspiration.

Acknowledgments

The authors wish to thank the reviewers for their invaluable comments and sug-
gestions regarding possible extensions of the approach using a more competent
genetic algorithm.

References

1. Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,
Advances in Neural Information Processing Systems 7, pages 369–376, Cambridge, MA,
1995. The MIT Press.

2. Justin A. Boyan and Andrew W. Moore. Generalization in reinforcement learning: Safely
approximating the value function. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,

An Analysis of Generalization in XCSF using Tile Coding Prediction 21

Advances in Neural Information Processing Systems 7, pages 369–376, Cambridge, MA,
1995. The MIT Press.

3. S. A. Glantz and B. K. Slinker. Primer of Applied Regression & Analysis of Variance.
McGraw Hill, 2001. second edition.

4. Robert Glaubius and William D. Smart. Manifold representations for value-function ap-
proximation. In Daniela Pucci de Farias, Shie Mannor, Doina Precup, and Georgios
Theocharous, editors, Learning and Planning in Markov Processes — Advances and Chal-
lenges: Papers from the 2004 AAAI Workshop, pages 13–18, June 2004. Available in AAAI
Technical Report WS-04-08.

5. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Extend-
ing XCSF beyond linear approximation. In Genetic and Evolutionary Computation –
GECCO-2005, pages 1859–1866, Washington DC, USA, 2005. ACM Press.

6. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. XCS
with computed prediction for the learning of boolean functions. In Proceedings of the
IEEE Congress on Evolutionary Computation – CEC-2005, pages 588–595, Edinburgh,
UK, September 2005. IEEE.

7. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Xcs with
computed prediction in multistep environments. In Genetic and Evolutionary Computa-
tion – GECCO-2005, pages 1827–1834, Washington DC, USA, 2005. ACM Press.

8. Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and David E. Goldberg. Classifier
prediction based on tile coding. In GECCO ’06: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 1497–1504, New York, NY, USA, 2006.
ACM Press.

9. Justus H. Piater, Paul R. Cohen, Xiaoqin Zhang, and Michael Atighetchi. A Randomized
ANOVA Procedure for Comparing Performance Curves. In Machine Learning: Proceedings
of the Fifteenth International Conference (ICML), pages 430–438, Madison, Wisconsin,
July 1998. Morgan Kaufmann, San Mateo, CA, USA.

10. Alexander A. Sherstov and Peter Stone. Function approximation via tile coding: Au-
tomating parameter choice. In Proc. Symposium on Abstraction, Reformulation, and
Approximation (SARA-05), Edinburgh, Scotland, UK, 2005.

11. Richard S. Sutton. Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,
editors, Advances in Neural Information Processing Systems 8, pages 1038–1044. The MIT
Press, Cambridge, MA., 1996.

12. Richard S. Sutton and Andrew G. Barto. Reinforcement Learning – An Introduction.
MIT Press, 1998.

13. Gerald Tesauro. TD-gammon, a self-teaching backgammon program, achieves master-level
play. Neural Computation, 6(2):215–219, 1994.

14. Stewart W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation,
3(2):149–175, 1995.

15. Stewart W. Wilson. Classifiers that approximate functions. Natural Computing, 1(2-
3):211–234, 2002.

