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Following thepublicationof theTaskForcedocumentonheart ratevariability (HRV) in1996, anumberof articleshavebeenpublished todescribenew
HRV methodologies and their application in different physiological and clinical studies. This document presents a critical review of the new methods. A
particular attention has been paid to methodologies that have not been reported in the 1996 standardization document but have been more recently
tested in sufficiently sized populations. The following methods were considered: Long-range correlation and fractal analysis; Short-term complexity;
Entropy and regularity; and Nonlinear dynamical systems and chaotic behaviour. For each of these methods, technical aspects, clinical achievements,
and suggestions for clinical application were reviewed. While the novel approaches have contributed in the technical understanding of the signal char-
acter of HRV, their success in developing new clinical tools, such as those for the identification of high-risk patients, has been rather limited. Available
resultsobtained in selectedpopulationsofpatientsbyspecialized laboratories areneverthelessof interestbutnewprospectivestudies areneeded.The
investigation of new parameters, descriptive of the complex regulation mechanisms of heart rate, has to be encouraged because not all information
in the HRV signal is captured by traditional methods. The new technologies thus could provide after proper validation, additional physiological, and
clinical meaning. Multidisciplinary dialogue and specialized courses in the combination of clinical cardiology and complex signal processing methods
seem warranted for further advances in studies of cardiac oscillations and in the understanding normal and abnormal cardiac control processes.
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Introduction
Heart rate variability (HRV) analysis is widely used to characterize
the functions of the autonomic nervous system (ANS). Both physio-
logical cardiovascular models and the development of new clinical
characteristics benefit from HRV analyses.

In 1996, the Task Force set-up by the European Society of Cardi-
ology and the North American Society of Pacing and Electrophysi-
ology suggested HRV standards. This standardization document1

became widely referenced with more than 5000 citations (Scopus).
The 1996 ‘standards of measurement, physiological interpretation,
and clinical use’ were related to time- and frequency-domain HRV
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analysis for short- and long-term recordings (Table 1). Since the
publication of the Task Force standards, thousands HRV-related
articles appeared. Broadly speaking, they belong to two different
categories. Technically oriented articles report new HRV analysis
technologies, while medically oriented publications deal with HRV
assessment in different physiological and clinical conditions. Unfortu-
nately, there is presently noticeable disconnect between these
two categories. Biomedical engineering literature includes many
methods that have never been prospectively applied to clinical
data. Practical value of advanced novel HRV technologies might
thus be difficult to judge.

For this reason, the e-Cardiology Working Group of the European
Society of Cardiology and the European Heart Rhythm Association
have jointly charged the authors of this text with researching and
summarizing the value of those HRV methods that have not been
addressed in the original standards1 while leading to medically rele-
vant results in recent literature. This document has also been
co-endorsed by the Asia Pacific Heart Rhythm Society.

Methodology of the study
Increasing numbers of HRV-related publications (Figure 1) are likely
facilitated by the ease of collecting RR intervals series and by the avail-
abilityof differentmethodologies. This document is basedon thepos-
ition that every new HRV analysis parameter should address some
unmet clinical or research need which is not solved by more trad-
itional approaches, and preferably also validated on a solid database
of annotated cardiovascular signals. Based on this premise, we
identified a number of new methodologies reported in more than
800 publications during the last two decades, and selected those
dealing with clinical studies fulfilling all of the following criteria:
(i) published in a selected group of clinically relevant high-ranking
journals after the 1996 Task Force document; (ii) enrolled at least
200 subjects; and (iii) contained the words ‘heart rate’ and ‘variability’
in the title or abstract. (The journals considered were, in alphabetical
order: American Heart Journal, American Journal of Cardiology,
American Journal of Physiology: Heart and Circulatory Physiology,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Standard time- and frequency-domain parameters, as defined by the 1996 Task Force document on heart rate
variability. Adapted from Ref. 1

Variable Units Description

Time domain, statistical measures

SDNN ms Standard deviation of all NN intervals

SDANN ms Standard deviation of the averages of NN intervals in all 5-min segments of the entire recording

RMSSD ms The square root of the mean of the sum of the squares of differences between adjacent NN intervals

SDNN index ms Mean of the standard deviations of all NN intervals for all 5-min segments of the entire recording

SDSD ms Standard deviation of differences between adjacent NN intervals

NN50 count Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording

pNN50 % NN50 count divided by the total number of all NN intervals

Time domain, geometric measures

HRV triangular index Total number of all NN intervals divided by the height of the histogram of all NN intervals measured
on a discrete scale with bins of 1/128 s

TINN ms Baseline width of the minimum square difference triangular interpolation of the highest peak of the
histogram of all NN intervals

Differential index ms Difference between the widths of the histogram of differences between adjacent NN intervals
measured at selected heights

Logarithmic index ms–1 Coefficient f of the exponential curve ke−ft , which is the best approximation of the histogram of
absolute differences between adjacent NN intervals

Frequency domain, short-term recordings (5 min)

Total power ms2 Variance of all NN intervals (≈≤0.4 Hz)

VLF ms2 Power in VLF range (f ≤ 0.04 Hz)

LF ms2 Power in LF range (0.04 ≤ f ≤ 0.15 Hz)

LF norm LF power in normalized units: LF/(Total power 2 VLF) × 100

HF ms2 Power in HF range (0.15 ≤ f ≤ 0.4 Hz)

HF norm HF power in normalized units: HF/(Total power 2 VLF) × 100

LF/HF Ratio LF/HF

Frequency domain, long-term recordings (24 h)

Total power ms2 Variance of all NN intervals (≈≤0.4 Hz)

ULF ms2 Power in the ULF range (f ≤ 0.003 Hz)

VLF ms2 Power in the VLF range (0.003 ≤ f ≤ 0.04 Hz)

LF ms2 Power in the LF range (0.04 ≤ f ≤ 0.15 Hz)

HF ms2 Power in the HF range (0.15 ≤ f ≤ 0.4 Hz)

a Slope of the linear interpolation of the spectrum in a log–log scale (f ≤ 0.01 Hz)
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Cardiovascular Research, Circulation, Circulation: Arrhythmia and
Electrophysiology, Circulation Research, Europace, European
Heart Journal, Heart, Heart Rhythm, International Journal of Cardi-
ology, Journal of the American College of Cardiology, Nature,
Science, The Lancet, and The New England Journal of Medicine.)

As of December 2013, some 130 articles fulfilled these criteria.
Most of them employed solely the ‘standard methods’ as previously
summarized by the Task Force.1 Only 21 studies used ‘non-standard
methods’, commonly referred to as ‘nonlinear’. Some of these pub-
lications described similar HRV characteristics (Table 2). Heart rate
turbulence (HRT), included in 7 of the 21 studies,2 –10 was not con-
sidered because of the recent independent consensus document.11

The following text describes technical aspects of these methods,
their clinical achievements, and suggestions for clinical application.
Standards of implementation of the methods areproposed in Appen-
dix together with more detailed technical information. This docu-
ment aims at facilitating the understanding of the advances offered
by the new methods in physiological and clinical studies.

Methods description
The following methods satisfied the described criteria: (i) Long-range
correlation and fractal analysis; (ii) Short-term complexity; (iii)
Entropy and regularity; and (iv) Nonlinear dynamical systems and
chaotic behaviour. For each method, we provide the ‘background con-
cepts’ and the ‘contributions to HRV understanding’. All these methods
dealwith the time series of normal-to-normalRR interval (NN intervals).

Long-range correlation and fractal scaling
Many methods have been proposed to estimate the fractal-like
behaviour of HRV.24 The most representative methods are the
1/f a power-law exponentaof the spectrum and the detrended fluc-
tuation analysis (DFA) long-term exponent a2.

Background concepts
The term fractal is most often associated with geometrical objects. It
describes an entity too irregular for traditional geometrical shapes
( fractional dimensionality) which shows some degree of self-similarity.

That is, it resembles a common pattern when seen on different scales.
Analogously, a temporal stochastic process is said to be self-similar,
when its fluctuations on small time scales are statistically equivalent
to those on large time scales. Mathematically, this is formalized by re-
quiring that time series x(t) and y(t) = shx(t/s) have identical statistic-
al properties for a certain range of scales s. The real number h is called
the scaling exponent and characterizes the self-similarity of series x(t).

Fractal properties of NN series have been extensively research-
ed.24,18,25–29 Fluctuations on multiple scales make fractal time
series seemingly irregular. In fractal analysis, NN series are consid-
ered generated by a random stochastic process (such as tossing of
a coin) rather than by a deterministic system (such as implementing
a precise mathematical equation).

Self-similar signals display a power-law spectral density30 in the
very low-frequency range. The exponent a of the 1/f pattern mea-
sures the self-similarity scaling (Figure 2). The generalized correlation
function of fractal NN signals decays very slowly, implying that the
contemporary value of the series is significantly affected by its past.
The self-similar (fractal) processes are also often referred to as ‘long-
memory’ or ‘long-range dependence’ processes. Non-stationary self-
similar processes display a variance increasing with the length of the
series. The so-called DFA allows quantifying the process by measur-
ing how the variance is affected by the length of the NN series.

More recent studiesdealt with a higherorder approach, called mul-
tifractal analysis in which a fractal is composed by a set of fractals.31,32

Different sub-parts of the signal are characterized by local regularities
with different fractal dimensions. While the theoretical framework is
rather complex, multifractal signals are in practice characterized by
more than one scaling coefficient h.

Contribution to heart rate variability understanding
Self-similar (fractal) measures provide quantitative description of
irregularities present in physiologic signals. Contrary to spectral tech-
niques, fractal analysis studies the irregularityof the NN series assum-
ing that it is not characterized by any fixed time scale.

Similar to other system studies, the main limitation of fractal ana-
lysis is the lack of direct correspondence to physiology. Changes of
scaling exponent observed in different clinical conditions are not spe-
cific for underlying physiologic and/or pathologic mechanisms.

Short-term complexity
Background concepts
While fractal analysis quantifies long-term irregularity, these techni-
quesquantify irregularitiesonshorter scales (at most 10 NN intervals).
The short-term analysis reflects both the continuous adaptations
of several regulatory processes operating at different time scales,
and the different capacity for cardiovascular adaptation over different
short scales.25,33 There are several methods in this category differing in
their value for HRV analysis.

Contribution to heart rate variability understanding
Detrended fluctuation analysis short-term exponent
Detrended fluctuation analysis is derived from fractal analysis and is
suitable for processing of scale-invariant signals (i.e. signals show-
ing the same statistical properties on a broad time-scale range).
Already seminal applications showed that HRV has different proper-
ties on short or long scales.
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Figure1 Number of citations returned by PubMed when search-
ing for ‘heart rate variability’ in the title or abstract, for each year
between 1980 and 2013. The total of the citations exceeds 10 000.
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Table 2 Overview of the non-standard metrics in publications fulfilling the selection criteria

References Patients a DFA a2 DFA a1 Poincaré plot ApEn DC/AC HRT Others

Perkiömäki et al. 20113

Europace
292 AMI 3 3

CARISMA ,0.77

Gang et al. 20114

Europace
292 AMI 3* 3 3

CARISMA .1.5 ,0.9

Cygankiewicz et al. 200910

Am J Cardiol
294 CHF 3

MUSIC

Rashba et al. 200912

Circulation
300 AMI 3

AET-EP

Mozaffarian et al. 200813

Circulation
1152 H ≥ 65 years 3 3

Cygankiewicz et al. 20069

Am J Cardiol
487 CHF 3

MUSIC

Beckers et al. 200614

Am J Physiol Heart Circ Physiol
276 H 3 3 3 3 3 (1)

Bauer et al. 200615

Lancet
2711 AMI 3

Bauer et al. 20068

Int J Cardiol
608 AMI 3

EMIAT

Guzzetti et al. 200516

Eur Heart J
330 CHF 3

.1.33

Hallstrom et al. 20057

Int J Cardiol
744 AMI 3

CAST

Wichterle et al. 20042

Circulation
2027 AMI 3 3 (2)
EMIAT + ATRAMI ≥0.1

Osman et al. 20046

Am J Cardiol
799 BHyT 3

Jokinen et al. 20035

Am J Cardiol
600 AMI 3* 3 3

MRFAT .1.55 ,0.65

Sosnowski et al. 200317

Int J Cardiol
594 AMI 3 (3)

,35%

Tapanainen et al. 200218

Am J Cardiol
697 AMI 3 3 3*

.1.55 ,1.05 ,0.65

Mäkikallio et al. 200119

J Am Coll Cardiol
325 H ≥ 65 ys 3 3*
Turku, Finland .1.5 ,1.0

Mäkikallio et al. 200120

Am J Cardiol
499 CHF 3

DIAMOND CHF ,0.9

Pikkujämsä et al. 200121

Am J Physiol Heart Circ Physiol
389 H 3 3

≈1 ≈1

Huikuri et al. 200022

Circulation
446 AMI 3 3 3* 3

DIAMOND MI .1.5 ,0.85 ,0.75 SD2,55

Continued
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The DFA short-term exponent a1 estimates the self-similarity
properties of HRV on short scales (Figure 2) and is highly effective
in clinical applications (Table 2). However, it does not describe the
overall self-similarity characteristics of HRV. Nevertheless, it seems
suitable to quantify short-term changes caused by NN interval oscil-
lations that may be affected by autonomic activation34,35 and are
often wrongly related solely to respiration.

Poincaré plot analysis
A Poincaré plot (or recurrence map) is obtained by simplistically
plotting the values NNn+1 against the values of NNn. The name
stems from dynamical systems theory (a Poincaré map is a reduction
of a N-dimensional continuous system to a (N – 1)-dimensional

map,36 see also ‘Nonlinear dynamical systems and chaotic behav-
iour’ section).

In HRV applications, the mainstream usage of Poincaré plots
has been limited to a ‘tool for graphically representing summary
statistics’37 with little connections to nonlinear dynamical systems
theory (Figure 3). Typical parameters derived from Poincaré plots,
such as SD1, SD2, or SD12 (see ‘Poincaré plot analysis’ section
in Appendix) are directly related to standard temporal indices
SDNN and SDSD37 and provide the same information. The sole
benefit of visual analysis of Poincaré plot is in confirming
the adequate editing of the NN interval series, e.g. separating
ectopic beats from random oscillations of sinus beats without
compensatory pauses (Figure 3B).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Continued

References Patients a DFA a2 DFA a1 Poincaré plot ApEn DC/AC HRT Others

Huikuri et al. 199823

Circulation
325 H ≥ 65 ys 3

Turku, Finland .1.5

Dichotomization thresholds are reported when applicable. An asterisk marks the technique which was comparably better than others. The ‘Patients’ column reports the number and
clinical class of patients investigated: H, healthy; AMI, acute myocardial infarction survivors; CHF, congestive heart failure; BHyT, biochemical hyperthyroidism. Where available, the
trial name is included. Column ‘Others’ refers to: (1) Fractal dimension, correlation dimension D2, and largest Lyapunov exponent. (2) Prevalent low-frequency oscillation. The
technique, locates the frequencyof the predominant peak in the LF band (with similarities to methodswhich locate the frequencyof the predominant pole of an autoregressive model).
(3) Heart rate variability fraction, a measureof concentration of the bi-dimensional histogramof consecutiveRR intervals (closely related to the Poincaréplot) arounda most common
pattern.
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Figure 2 Self-similar tachograms resemble a common pattern when inspected on different scales (A). Self-similarity manifests itself into a power-
law power spectral density (PSD) in the very low frequency (B and C) and DFA for long scales (D and E). The scaling does not continue indefinitely as
frequency increases (or scale decreases) and breaks down when the other typical HRV spectral components become dominant (e.g. the peak in the
PSD at about 0.3 Hz). Self-similarity is affected by many pathological conditions like myocardial infarction. The healthy subject in (B) and (D) has
a ¼ 1.07 and DFA long-term exponent a2 ¼ 1.04 while the post-MI patient in (C) and (E) has a ¼ 1.44 and a2 = 1.18. The linear scaling of the
short-term DFA exponent a1 is also included in (D) and (E) for scales ≤11 (a1 = 1.54 and 1.08, respectively).
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Heart rate variability fraction17 has been proposed as a measure
of concentration of the bi-dimensional histogram of RR intervals
(a discretized Poincaré plot).

Deceleration and acceleration capacity
The underlying hypothesis of these analyses is that heart rate
changes due to a particular trigger event are repetitive. Phase recti-
fied signal averaging (PRSA) selects instances of particular events,
aligns them in phase, and performs signal averaging of the time
series to extract the information of interest.33,38 Phase rectified
signal averaging thus allows detecting and quantifying oscillations
masked by the non-stationary nature of the analysed signal. The
simplest events in the NN series are when heart rate decelerates
or accelerates.15 By using these two triggers, the PRSA allows
to quantify deceleration-related (deceleration capacity—DC) and
acceleration-related (acceleration capacity—AC) modulations of
NN series separately. The same averaging method may be used
to study interactions of different signals (e.g. blood pressure,
respiration) with NN series.39

Entropy and regularity
Background concepts
In physics, entropy describes, loosely speaking, the amount of ‘dis-
order’ of particles in a system. In information theory,40 entropy
relates to the probability density function of a variable. When
applied to a sequence (e.g. using a histogram), it is often termed
‘Shannon’ entropy and quantifies its complexity by means of an
average information content. The entropy rate measures the in-
crease of entropy of a sequence when an extra sample is added.
Clearly, if the entropy rate drops when the sequence grows, the
process is very regular and predictable. Conversely, a constant

entropy rate suggests that each new sample is not completely pre-
dictable (Figure 4). In HRV analysis, the entropy rate is often simplis-
tically referred to as ‘entropy’.

Metrics such as approximate entropy (ApEn) and sample entropy
(SampEn) were proposed to quantify the entropy rate of short- to
mid-length NN series. The conditional corrected entropy (CCE)
provides similar information after NN intervals of similar length are
represented with a common label (the so-called ‘symbolic represen-
tation’, ‘Symbolic dynamics’ section in Appendix).

Contribution to heart rate variability understanding
The ANS adapts the heart rate to the current needs which might
change continuously. Thus, the NN series is irregular with high
entropy. However, when the system becomes less responsive to en-
vironmental stimuli, entropy decreases and the NN signal becomes
more ‘ordered’. Highly ordered (low entropy) signals are more pre-
dictable than low ordered (high entropy) signals. Entropy measure-
ments are particularly sensitive to transient irregularity and changes
in HRV, especially in short-term recordings.39,19

Approximate entropy, SampEn, and CCE were shown to progres-
sively decrease during sympathetic activation induced by gradual
head-up tilt test,41 thus offering an alternative measurement of sym-
pathovagal balance.

Nonlinear dynamical systems and chaotic
behaviour
Over short time scales, autoregressive models of NN series are gen-
erally suitable for statistical prediction and studies of the underlying
evolution of physiological systems42 if no abrupt changes alter the
physiologic regulation. In long series, however, abrupt changes may
occur frequently. Then, a ‘dynamical’ system analysis might be used,
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Figure 3 Traditional parameters obtained from a Poincaré plot (A). SD1 and SD1 are mathematically equivalent to linear HRV indices (‘Poincaré
plot analysis’ section in Appendix). Poincaré plots are effective in detecting errors in the labelling procedure, ectopic beats, or other rhythm
abnormalities as shown in (B).
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where the position-in-time (or ‘trajectory’) of a point within a geo-
metrical (or ‘state’) space, is determined by a fixed mathematical
law specifying the immediate future. The coordinates of the point
are called ‘state variables’ and their number defines the dimension
of the system (the ‘degrees of freedom’). Unless the dynamical rule
is a linear combination of state variables, the system is called a non-
linear dynamical system. Many biophysical phenomena can be mod-
elled as dynamical systems.

Theories of nonlinear dynamical systems and of chaotic behaviour
may be used to study the HRV predictability and complexity. In such
studies, NN series represents the output of a ‘nonlinear’ dynamical
system (Figure 5).

Background concepts
Nonlinear dynamical systems might show sensitive dependence on
initial conditions (Figure 5). That is, limited error in the knowledge
of the initial state leads to an ‘unlimited’ error in the orbits. Such
systems are called chaotic.36 They are characterized by a positive
Lyapunov exponent, which is a mathematical measure of the rate of
divergence of neighbouring trajectories. Another usual characteristic
of nonlinear dynamical systems is that trajectories at equilibrium are
often limited by a ‘strange’ attractor (a geometrically fractal entity).

Since the initial proposal of chaotic nature of human HRV,43 many
attempts have been made to find the evidence of chaos. After recon-
structing the trajectories of the hypothetical system, investigations
looked for (i) a positive Lyapunovexponent, (ii) a non-integer correl-
ation dimension D2

44 or fractal box-counting dimension of the

attractor, and (iii) a decrease in nonlinear predictability, and other
characteristics.

Contribution to heart rate variability understanding
The results collected so far are very limited. Glass recently clearly
summarized:45 ‘Although there have been some spectacular advan-
ces in understanding the nonlinear dynamics of complex arrhythmias,
the application of these insights into clinically useful procedures and
devices has been more difficult than I imagined’.

Possible explanations for these inconclusive findings include the
sensitivity of investigated measures (i.e. Lyapunov exponent and
D2) to the limited length and noise of NN series.46 Also, long-range
correlated random processes (stochastic, hence non-chaotic)
which also possess fractal properties (‘Long-range correlation and
fractal scaling’ section), easily produce false positive test-results
for deterministic chaos. Thus, in our opinion, it is impossible to
draw the conclusion that human HRV arises from a chaotic behav-
iour of the cardiovascular system.45 However, techniques (or their
variants) developed in the context of nonlinear dynamical system
were successfully employed to characterize HRV irregularity and
in risk stratification.47,48

Clinical achievements
The novel approaches characterizing complex systems require
sophisticated theoretical and computational background. This re-
stricts successful application of the new methods to centres with
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Figure 4 Schema of entropy in the HRV context. The quantity of information carried by an event is computed as the logarithm of its inverse prob-
ability: rare events (low probability) carry large informative contents. (A) A tachogram in which NN intervals was classified into four possible classes,
labelled A–D. To compute the information carried by class A, the probability of the class is first estimated by an histogram. Then the (Shannon)
entropy of the NN series is obtained as the average of the information provided by each NN class. The same can be done for any number m of con-
secutive NN interval classes (B for m = 2). Entropy rate measures how much entropy changes from m to m + 1, i.e. Em+1 − Em. Approximate
entropy and SampEn estimate the entropy rate of the NN series (C). Instead of building an histogram of NN durations, the number of intervals
which do not differ more than r from a given NN interval (arrow) are counted (highlighted area in C ).
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advanced knowledge in both medical and engineering/computer
science fields. So far, this prevented widespread clinical utilization
of these methods.

Although it is possible to hypothesize theoretically that some of
the new metrics quantify HRV characteristics, such as self-similarity
and complexity, which cannot be explored by traditional methods,
clinical advances of the new methods are not entirely supported by
the presently available data.

Myocardial infarction
Bigger et al.49 were the first to report the clinical relevance of a
(‘Long-range correlation and fractal scaling’ section) after acute myo-
cardial infarction (AMI). In a survival analysis,a . 1.372 was linked to
increased mortality during follow-up.

Subsequently, Huikuri et al.22 reported that in AMI survivors with
left ventricular ejection fraction (LVEF) ≤ 35%, a . 1.5 (and also
DFA a2 , 0.85) was superseded by DFA a1 , 0.75 as the most
powerful predictor of all-cause mortality, after adjusting for other
factors including age, LVEF, NYHA class, and medications.

These findings were confirmed by Tapanainen et al.18 who also
showed that DFA a1 , 0.65 was the most powerful predictor of
mortality among AMI survivors. In a subsequent study by the same
group,5 multivariate analysis showed that, after adjustment of clinical
variables, DFA a1 , 0.65 and a . 1.55 (as well as HRT slope and
onset) predicted subsequent cardiac death. The predictive value of
both parameters was retained when measured at the convalescent
or late phase after AMI.

No significant differences at 1 year were also found in DFA a1

changesbetweenpatients randomizedafterAMI to receivepercutan-
eous coronary intervention and stenting or optimal medical therapy
alone.12

CARISMA substudy4 noticed that 1/f power-law exponent
a . 1.5 was the most effective HRV-related risk predictor of devel-
oping high-degree atrioventricular block after AMI. Subsequently,
in another CARISMA substudy,3 DFA a1 , 0.77 adjusted for rele-
vant clinical variables, was a significant predictor of ventricular
tachyarrhythmias.

Available evidence thus suggests that DFA short-term exponent
might be an effective predictor of cardiac death whilst self-similarity
properties of the NN series over long period of time (e.g. 1/f power-
law exponent a) might be a more general predictor of all-cause
mortality. This is consistent with the fact that the properties of long-
term recordings reflect a combination of different control mechan-
isms and are thus affected by both cardiac and extra-cardiac factors.
On the contrary, analysis of short-term recording reveals the failure
to adapt to cardiac stimuli, such as transient myocardial ischaemia,
with implications for cardiac prognosis.

In respectof the predictive values of Poincaré plots, SD2 , 55 was
a significant predictor of all-cause and non-arrhythmic cardiac mor-
tality in AMI survivors,22 after adjustment for traditional risk factors
(age, LVEF, NYHA class, and medication). The same study showed
that traditional HRV parameters, including VLF and LF power, dis-
played similar or higher predictive values. The additional clinical
value of Poincaré plot analysis is thus limited.

Deceleration capacity was evaluated in a large multicentre study15

of post-AMI patients and proved to be a better predictor of mortality
than LVEF and SDNN. In addition, when dichotomized at 2.5 ms, DC
was the highest relative predictive risk parameter in a multivariate
Cox regression analysis. Deceleration capacity was also shown of
increased clinical value when combined with HRT.50

Finally,Voss et al.51 reported that the high-riskpredictionafterAMI
by traditional time- and frequency-domain HRV parameters was
further improved by the addition of symbolic dynamics.
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Figure 5 (A) Approximately 4 min. of NN series of a healthy subject embedded in a space of M dimension (M ¼ 3). Each point is constructed by
taking delayed samples of the HRVseries, XM(i) = [NNi,NNi+1,NNi+2]. Under the hypothesis thatHRV is dictated by a low-order nonlinear system,
the reconstructed trajectory is used to infer properties of the unknown system. In a chaotic nonlinear system, distance between nearby trajectories
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sensitivity to initial conditions’. Even if trajectories are forced to diverge they are also bounded to a subspace: the attractor. To stay bounded they
need to ‘fold back’. Since they cannot cross each-other, they often wander over a fractal geometrical entity.
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Congestive heart failure
In the DIAMOND study patients, Mäkikallio et al.20 reported that
DFA a1, together with conventional HRV parameters, predicted
mortality univariately. After age, functional class, medication, and
LVEF adjustment, DFAa1 , 0.9 remained an independent mortality
predictor, also in patients with most severe functional impairment.

In a large congestive heart failure (CHF) population, Guzzetti
et al.16 reported that the power-law exponent a ≥ 1.33 was signifi-
cantly univariately related to the extent of ventricular dysfunction in
whereas traditional spectral parameters (VLFcomponents in particu-
lar) had greater prognostic value. In multivariable analyses, a was no
longer a significant risk predictor.

In a study comparing the predictive value of several HRV nonlinear
parameters in CHF patients, Maestri et al.48 showed that only symbolic
dynamics added prognostic information to traditional clinical para-
meters. More recently, DFA a1 has been confirmed affective in pre-
dicting cardiovascular death in GISSI-HF population,52 also when
taking into account traditional clinical variables and HRV parameters.

Thus, in CHF, where HRV is known to decrease and to reflect
disease progression, novel short-term measures provide quantitative
description of the residual variability but their advantages in clinical
studies of risk prediction are at best modest.

Subjects without evidence of heart disease
Huikuri et al.23 reported that a value ofa . 1.5 was the best predict-
orof all-cause mortality in a largepopulationof subjects over65 years
of age, even after adjustment for several clinical parameters. Subse-
quently, Mäkikallio et al.19 showed that DFA a1 , 1.0 was an inde-
pendent predictor of sudden cardiac death among HRV-related
indexes whereas the power-lawexponenta . 1.5 was the strongest
predictor of all-cause mortality. Mozaffarian et al.13 confirmed the
association of DFA a1 with cardiac death risk (after adjusting for
age, gender, race, education, smoking, diabetes, treated hyperten-
sion, and body mass index) and also showed, that fish consumption
(v3 fatty acids) was significantly correlated with DFA a1. Finally, in
a large community-dwelling adult population (age 65–93 years),
the combination of low DFA a1 with abnormal HRT was a strong
risk factor for cardiovascular death evenafter adjustment for conven-
tional cardiovascular risk parameters.53

Beckers et al.14 studied age effects in a population of healthy sub-
jects with ages between 18 and 71. Both a and DFA a2 increased
with age, whereas gender differences were less pronounced.

In subjects with no evidence of heart disease and history of parox-
ysmal atrial fibrillation, ApEn was found to decrease before the onset
of arrhythmic events.54 Sample entropy also predicted sepsis in
prematurely born infants.55

Suggestions for clinical use
The following suggestions aim at placing the utility of the novel HRV
technologies in the appropriate context.

Notwithstanding the new methods described in this text, trad-
itional time and frequency-domain HRV analysis remain the
methods of choice for the assessment of ANS physiology and patho-
physiological modelling. In fact, the long experience and validation of
traditional techniques make them the most reliable tools. Therefore,

we suggest using the new techniques in conjunction with more trad-
itional ones, to enrich our physiological and clinical understanding of
the mechanisms underlying HRV. Available data indicate that these
novel methods have provided more information on the complexity
and mathematical or physical characteristics of the variability signal
than on sympathetic or parasympathetic neural control mechanism,
even if they were originally developed to clarify the physiological
correlates of HRV.

As with traditional HRV techniques, the recording conditions
(duration, body position, free or controlled breathing, etc.) can sub-
stantially affect short-term metrics, thus making comparison of differ-
ent studies challenging. There is also limited information on the
reproducibility of new methods. Studies performed on small subjects
population hint that the intra-subject repeatability for short-term
metrics is comparable with that of traditional HRV indexes, but
further evidence is necessary.

Available studies of post-AMI risk suggest that short-term fractal
scaling (DFA a1) may successfully predict cardiac mortality while
other novel methods appear to predict all-cause mortality. Never-
theless, available comparisons of the traditional and novel HRV
analyses do not show consistent superiority of the new methods
in clinical risk stratification studies. Systematic statistical evaluation
of the additive prognostic value of the new methods is presently
lacking. Comprehensive comparisons of the traditional and novel
methods are needed based on new prospective clinical studies and/
or meta-analyses of large existing databases. Without such compar-
isons, widespread use of the novel methods in clinical risk studies
cannot be recommended.

Although in CHF patients, short-term DFA measures appear ef-
fective in identifying high-risk patients, there are many categories of
clinically well-defined populations in which the use of novel HRV
techniques has not been attempted.

Similar to the conventional HRV methods, the results of the new
methods are affected by age. The extent and the character of this
age dependency are less known compared with that of the conven-
tional HRV methods. In physiologic and clinical studies, age depend-
ency should therefore be carefully considered, e.g. by including
age-matched control groups.

Conclusions
The novel approaches to HRV analysis summarized in this text con-
tributed in the technical understanding of the signal character of NN
sequences. On the other hand, their success in developing new clin-
ical tools, such as those for the identification of high-risk patients, has
been so far rather limited. Some of the novel parameters correlate
with more traditional measurements, demonstrating a consistency
that, nevertheless, does not allow substituting the latter with the
former. In many instances, however, the new parameters seem to
provide different information about the complexity of the physio-
logical underlying mechanisms which constitutes an important step
for the future. The physiological and clinical impact of the observed
physical signal processing properties seems to still suffer from the
conceptual disconnect between clinical cardiologists on the one
side and mathematicians and engineers involved in signal processing
theories on the other side. At the same time, available results obtai-
ned in selected populations of patients researched by specialized
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laboratories are of interest and potential promise. Multidisciplinary
dialogue and specialized courses in the combination of clinical cardi-
ology and complex signal processing methods seem warranted
for further advances in cardiac physiology and in the understanding
normal and abnormal cardiac control processes. Additional clinical
validation of existing novel methods is needed in multicentre
studieswith large cohorts of patients to define their clinical predictive
value as well as their robustness in relation to reproducibility, clinical
widespread use, and possibly, implementation in commercial devices.
Before such validations are available and before the clinical use
of existing novel techniques becomes more widespread, it is difficult
to encourage the development of new variants of the novel methods
or of completely new methods based on highly sophisticated signal
processing techniques. Signal processing HRV techniques that do
not reflect unmet clinical needs are of little value irrespective of
the depth of their mathematical apparatus.

Appendix

Implementation standards

Long-range correlation and fractal scaling
1/f power-law exponent a
Two main computational strategies for the 1/f power-law exponent
awere proposed. The earlier one22,19,23 was used by Bigger et al.49,56

It requires resampling the NN series to obtain a regularly spaced time
series. Subsequently, the power spectrum (FFT-based) is integrated
(‘logarithmic smoothing’) over frequency with an equal number
of bins per decade (60 bins/decade). A robust regression is applied
in the log(power) vs. log(frequency) axis, in the range of 10–4

, f , 10–2 Hz. The slope of this line is the scaling exponent a. The
other method is described in the 1996 Task Force document1 and is
analogous to the first one except that the NN series is not resampled
and the logarithmic smoothing is not performed. Both methods are
technically equivalent. The logarithmic smoothing (sometimes called
‘boxed’ or ‘modified’ periodogram method) was introduced to com-
pensate the unevenly distribution of points in the log(frequency) axis
and the possible bias due to the larger number of points at the higher
frequencies.30,57 However, technical studies validating the long-term
scaling exponent estimators on synthetic series of known properties
have shown that compared with the simple periodogram method,
estimates obtained with logarithmic smoothing lead to slightly larger
variance57 or bias.58,59 The fitting range 10–4 , f , 10–2 is a de facto
standard, and f , 10−2 is in principle preferable to f , 0.04.1

Detrended fluctuation analysis long-term exponent
The DFAalgorithmwasdescribed in Penget al.,25 with small additions
in Peng et al.,60 and a practical implementation becomes soon avail-
able.61 As a result, the computation has been fairly consistent in
the literature. Only one detail needs discussing. The range of scales
n . 11 employed to compute DFA a2 in Huikuri et al.22 and
Beckers et al.14 is smaller than that n . 16 proposed in the intro-
duction of DFA.25,26 The upper scale limit is implicitly imposed by
the DFA software to one-fourth the length of the input series, and
it is seldom reported.24,26 Detrended fluctuation analysis was
introduced to reduce the bias possibly produced by spurious

non-stationarity when estimating the scaling exponent in stationary
self-similar time series. However, in comparative analysis, it per-
formed similarly to the simple periodogram method described in
the previous section.57,59

Remarks
The two metrics a and DFA a2 are meant to quantify long-range
dependence in a given series. However, they operate differently.
Detrended fluctuation analysis a2 is directly related to the self-
similarity scaling exponent h which it estimates (h = DFA a2, for
0 , DFAa2 , 1, while h = DFA a2 − 1 for 1 , DFA a2 , 2).
A scaling relation must be used to obtain a corresponding estimate
of the slope of the spectrum for frequencies close to zero,
â = 2DFAa2 − 1.24,59 Similarly, an equivalent scaling exponent
ĥ can be obtained from a (ĥ = (a+ 1)/2 for −1 , a , 1, while
ĥ = (a− 1)/2 for 1 , a , 3).

The fractal dimension D is related to a by the algebraic relation
a = 5 − 2D.

Both the periodogram method and DFA provide estimates linearly
related to a in the range of physiological interest (typically between
1 and 2). It may thus serve as the reference benchmark techniques.

Finally, fractal analysis is preferable for NN time series from long-
term recording (e.g. 24 h and longer).

Short-term complexity
Detrended fluctuation analysis short-term exponent
The short-term DFA scaling exponent a1 is obtained using the same
computational steps employed for the long-term DFA exponent a2.
However, the range of scales is different, typically between 4 and
�11.14,21 The lower bound n = 4 is the smaller scale allowed by
the standard code.61 Although short time scales might containbroad-
band noise induced by electrocardiogram (ECG) sampling,31 the
results reported in Table 2 suggest that it is not too important.

Poincaré plot analysis
Quantitative analysis of Poincaré plot is typically performed62 fitting
an ellipse to the plot. In practice, a new axis is aligned with the
line-of-identity. The standard deviation of the cloud of points in the
direction traverse to the line-of-identity is usually called SD1, and it
is a measure of short-term (‘instantaneous’) HRV. On the contrary,
the standard deviation of the cloud of points in the direction of the
line-of-identity is termed SD2 and it is a measure of long-term (‘con-
tinuous’) HRV. The ratio SD1/SD2 is then termed SD12.

As Brennan et al.37 pointed out, ‘these popular techniques that
characterize the geometry of a Poincaré plot are related to linear
indexes of HRV’. It is easy to prove mathematically that

SD12 = 1
2

SDSD2,

SD22 = 2SDNN2 − 1
2

SDSD2,

where both SDNN and SDSD are computed on the same NN series
used to construct the Poincaré plot. Other indexes describing Poin-
caré plot have been developed.63,64 Nevertheless, SD1, SD2, and
SD12 are commonly used, due to their computational simplicity.
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The SD12 ratio was empirically found to be highly correlated with
DFA a1 (r = −0.92) in a large study of subjects aged 65 years and
above.13

Deceleration and acceleration capacity
Deceleration capacity and AC computation depends on three para-
meters: T acts on the selection of the anchor points (the trigger
events located on the ECG), L is the width of the averaging window,
and s is the number of acceleration/deceleration cardiac cycles.
Usually but not always s ¼ T (e.g. T ¼ 1 and s ¼ 2 in Bauer et al.15).
In first approximation (the superposition principle does not hold
with a nonlinear metric), the values of s and T implicitly enhance
HRV oscillations of certain frequency bands, the larger their values
the smaller frequencies emphasized. It is sufficient that L . max(T, s).

Remarks
Short-term measures of complexity, such as the DFA short-term
scaling exponent and ApEn, were found to show relatively little inter-
individual variation in sufficiently large populations and proved more
normally distributed that SDNN and spectral measures.27 They also
showed an intra-subject repeatability, comparable with that of the
mean NN interval65 although their absolute values decrease with ad-
vancing age.14 Gender-related differences were reported for these
indices14 but without substantial relation to gender-related differ-
ences in cardiovascular risk factors in healthy subjects.27

Entropy and regularity
Approximate and sample entropies
Approximate entropy66,67 was originally devised as a practical imple-
mentation of the Kolmogorov–Sinai entropy of a nonlinear dynam-
ical system. It can also be seen as an approximation of the
differential entropy rate68 of a process. More recently, SampEn69

was introduced to improve over ApEn. Sample entropy converges
more rapidly (when computed on shorter series) at the expenses
of a larger variance of the estimates.

Approximate entropy and SampEn measure the likelihood that
runs of templates that are close for m points remain close (less
than a certain tolerance level r) for m + 1 points in a given sequence
of length N. Small values of ApEn or SampEn identify more regular,
predictable, processes. There is no fail-proof rule for the selection
of the parameters r and m. Values of r between 10 and 25% (usually
20%) of the standard deviation of HRV are typically employed. For
template length, m = 2 is often used; m = 1 is used with very short
time series.

Symbolic dynamics
Symbolic dynamics try to recognize a general tendency of the NN
series by reducing its complexity.70 –72 The idea is to associate
symbols to states of the ANS, and then quantify the complexity of
their evolution in time (i.e. their entropy). In practice, the range of
possible NN values is subdivided into a certain number of levels j
and each NN sample is mapped with a symbol representing the cor-
responding level. L consecutive symbols are grouped together to
create a word. The complexity of the signal is assessed computing
either the Shannon entropy of the sequence of words or the CCE
(an entropy rate).71 There is no definite rule for the selection of
the number of levels j or length of words L. Typically, j = 4 or

L = 3 and L = 3 are used (which corresponds in first approximation
to computing ApEn with m = 2 and r = 0.5). Combination of words
is also possible.71

Nonlinear dynamical systems and
chaotic behaviour
The analysis starts with the reconstruction of the system trajector-
ies in a phase space from a single HRV record. The common strategy
is to construct an M-dimensional trajectory vector XM(t) by
taking delayed samples of the HRV time series x(t), such that
XM(t) = [x(t), x(t + L), . . . , x(t + ML − L)], where L is a selected
fixed lag.73

The largest Lyapunov exponent, the average exponential growth
rate of the initial distance between two neighbouring points in
XM(t) as time evolves, is often practically estimated.74 A positive
Lyapunov exponent is the hallmark of a chaotic system. First, it quan-
tifies the rate at which a system creates information by increasing the
degree of uncertainty about the initial conditions with increasing time
steps, or the so-called Kolmogorov–Sinai entropy, of which various
real-world estimates have been used to characterize HRV complex-
ity. Secondly, it relates to fractal geometry of phase space trajectories
and to non-integer dimensional estimates, such as correlation dimen-
sion D2. Finally, it also relates directly to abrupt drops in nonlinear
predictability, due to the exponential growth of the variance of
the error between observed and predicted values. Short-term pre-
diction is possible in chaotic systems due to their deterministic
nature. The term complexity, different from ‘irregularity’ of stochas-
tic systems, is often used to describe a dynamic change in the predict-
ability. A widespread measure of fractal dimension of the manifold
enclosing the trajectories of nonlinear dynamical system is the correl-
ation dimension D2.44,75
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