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I. INTRODUCTION

ECONSTRUCTING an acoustic scene through sound

analysis is a goal that has captivated the research com-
munity for decades. The literature is rich with solutions that use
arrays of microphones for capturing, analyzing and character-
izing the objects that the acoustic scene is made of. Numerous
algorithms have been proposed for acoustic source localization
and tracking [1], [2], [3], [4], [5]; as well as for localizing
reflectors from measurements of TOA [6], [7], TDOA [8], [9]
and DOA [10], [11], [12]. More recently, a novel soundfield
imaging method has been proposed [13], which is inspired
by the concept of plenoptic analysis [14], [15]. Its goal is to
capture the acoustic counterpart of the plenoptic function, the
directional plenacoustic function [16], [17], defined as the
contribution of the sound field at a given position coming from
a given direction. The spatial region in which the plenacoustic
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function is measured is called “Observation Window” (OW).
The result is a new image-like representation of the sound field.
The generation of the soundfield image does not require other
than standard array processing techniques, widely used for
many different tasks.

The key advantage of soundfield images is in the fact that
they gather and organize at once and in a single representation
all the information that we need in order to develop a wide
range of acoustic scene analysis applications. The generation
of the soundfield image is, therefore, a highly parallelizable
application-independent processing stage that could be easily
implemented in hardware form. The application-dependent
processing stage that follows takes advantage of the fact
that the objects that constitute the acoustic scene are always
mapped onto our soundfield representation as spatially ex-
tended linear features which are easier to extract and identify
using algorithms taken from the wide literature of pattern and
image analysis. The image of such features carries an inherent
representational redundancy that is exploited to improve ac-
curacy. With this approach, the soundfield image can be used
to facilitate various tasks that entail the localization and the
analysis of acoustic sources in the scene: multiple acoustic
source localization, tracking and separation; estimation of the
room geometry; estimation of the radiance pattern of a source;
estimation of reflection properties of walls. Furthermore, the
range of possible applications of the soundfield imaging is not
limited to acoustic scene analysis. These techniques could also
be applied for wave field rendering [18], [19].

The soundfield imaging method proposed in [13] works with
planar geometry, therefore the OW of the acoustic scene is a
simple line segment. The device that captures the soundfield
image is the soundfield camera and it is implemented by an array
of microphones subdivided into overlapped sub-arrays. Using
a beamforming technique each sub-array estimates the plena-
coustic function in its center, i.e. the acoustic image from that
position. Each acoustic image becomes one row of the sound-
field image as shown in Fig. 1. The domain of the soundfield
image is called “ray space” because each point in the domain
corresponds to a ray crossing the OW. More specifically, rays
are identified by the parameters of the line on which they lie,
referred to a frame that is attached to the OW itself. In partic-
ular, the OW lies on the y axis with the origin in its middle. The
image coordinates are therefore the slope m and the intercept g
with the y axis of this frame. As the equation of the line does
not specify a direction, the ray will be conventionally assumed
as crossing the OW in only one of the two possible directions.
This means that half of all possible rays as well as the rays that
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Fig. 1. Creating the soundfield image.

are parallel to the OW cannot be parameterized. This represen-
tational limitation is not so crucial in the case of a single sound-
field camera, since rays parallel to the y axis cannot be sensed.
However, this limitation becomes overly restricting when the
goal is to jointly use multiple soundfield cameras and we have
to represent all possible rays.

In this paper we redefine the representation adopted in [13]
by introducing a new ray parameterization that enables the si-
multaneous use of multiple soundfield cameras in different lo-
cations that observe the same acoustic scene. This more general
setup poses new challenges but, as we will show in this paper,
brings relevant benefits to applications of soundfield imaging.
The parameterization of rays that we define in this paper is pro-
jective, as it uses three homogeneous (scalable) parameters to
describe the line on which the ray lies. In particular, the rep-
resentation will be based on “oriented projective geometry”, in
order to keep track not just of orientations but also of directions
of rays. We will see that a wide range of geometric transforma-
tions of interest, such as change of reference frame, projection,
reflection, etc., can be represented as linear transformations (ho-
mographies) [20] using the projective parameterization.

Depending on the geometric configuration of the array that
implements the soundfield camera, the soundfield image ex-
hibits a loss of resolution (blurring) that changes from ray to
ray, according to its orientation with respect to the array. We
will show that one immediate advantage of defining a ray space
that does not have to be “attached” to a specific OW is that we
can better control the loss of resolution as all the rays are equally
visible in the newly defined representation. This fact has impor-
tant benefits on the applications of soundfield imaging. In partic-
ular, we will show that the accuracy of source localization from
soundfield images captured from multiple smaller OW’s greatly
improves with respect to the single-OW case. The fact that ob-
serving the scene from different viewpoints improves the ability
to assess the distance of a source, is well-known in the literature.
Examples of methodologies that exploit this very fact are Global
Coherence Field [21], Steered Response Power and variations
thereof [22] [23]. Despite the change of representation, we will
see that the advantages of the previous approach described in
[13] for source localization are fully preserved. Acoustic primi-
tives are still mapped onto linear (planar) patterns, therefore the
localization of multiple sources consists in finding such linear
patterns in the soundfield images and inferring their parameters.
The projective parameterization also allows us to address the
problem of determining the mutual locations of the soundfield
cameras from acoustic measurements, known in the literature as

self-calibration, and approached in various ways [24][25][26].
In this paper we approach self-calibration as the estimation of
the homographies that map the reference frames of the indi-
vidual cameras onto the global reference frame.

The rest of the paper is organized as follows: Section II de-
scribes the projective ray space; its relationship with the Eu-
clidean ray space of [13]; and the homographies of the most
typical camera configurations. Section III describes the process
of acquisition of soundfield images, from both theoretical and
implementation standpoints. Section IV discusses two possible
applications of multi-view soundfield imaging, namely that of
self-calibration of arrays and that of source localization. In order
to validate the proposed methodologies, we show the results of
an extensive simulation campaign and experiments on real data.
Finally, Section V draws some conclusions and offers a perspec-
tive on the next research steps.

II. THE PROJECTIVE RAY SPACE

In order to capture the plenacoustic function, in this paper we
consider two dimensional geometries, i.e. microphone arrays
lie on the same plane of the acoustic primitives in the scene.
The planar arrays are practical to implement and, at the same
time, retain validity for a variety of applications, e.g. tracking
and separation of acoustic sources, acquisition of signals for
data-based rendering, etc. The parameterization of rays in 3D
requires the adoption of a different ray space, for example based
on Plucker coordinates [27]. Such parameterizations, however,
work in projective spaces. The results achieved in this paper,
therefore, can be considered as a prerequisite for soundfield
imaging in 3D space. Let us consider a region of space V C R?
that is free of scatterers, and let us denote with z = [z,y]7 a
point in V. In planar geometry, the sound-field can be written as
p(x,w,t), but since we are particularly interested in the depen-
dency on position (z,y), in what follows we will omit ¢. The
sound field p(z, w) is a solution of the homogeneous Helmholtz
equation

Vplz,w) + |k|*p(z,w) =0, Vz eV, 40

where k is the wavenumber oriented as the propagation vector
and | k|| = w/e. A widely accepted decomposition for an
arbitrary solution of (1) requires the explicit modeling of every
directional contribution to the sound field at point z, i.e. the
sound field is modeled as a superposition of plane waves
with wavenumbers 1A<(0) This representation is known as
Plane-Wave Decomposition [28]

27
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where the integration is taken over the contour of a notional unit
circle [29]. The term ¢(6, w) is a complex-valued function that
modulates each plane wave component in amplitude and phase.
This function is usually referred to as spatial spectrum [30] or
Herglotz density function [31], [32].
We are interested in estimating the contribution from direc-
tion 8 to the sound field in z at frequency w. At this purpose, the
Plenacoustic Function is defined as the integrand in (2), i.e.
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Fig. 2. The local (Euclidean) and the global (projective) parameterization of
rays. The two OWs have reference frames attached to them, (x, y) and (2, y').
The Euclidean parameterization of rays (m, q) is defined with respect to the
local reference frame. The line incident on the second OW, y' = m'z’ + ¢’,
cannot be represented in the reference frame of the first camera (z, y) as it does
not allow the representation of rays with directions coming from the negative
half-space z < 0. Using the projective parameterization of rays (I1, 13, l3) we
can use any reference frame as a global reference frame and therefore we are
able to write the line incident on the second OW in the (z, y) frame asl{z + 1,y
Jr l3 = 0

In what follows, where not differently specified, we also omit
the dependency of the plenacoustic function on w. We remark
that the estimation of the directional contributions of the sound
field from array processing is not novel in the literature. In fact,
it has been shown in [33], [34], [29] that the plane-wave com-
ponents of the sound field in a point x can be estimated through
beamforming. On the other hand, in [13], the output of multiple
beamformers is used for estimating and representing the mod-
ulus of the plenacoustic function over an extended observation
window in a suitable fashion.

Under the hypotheses of validity of geometrical acoustics
[35], the plenacoustic function can be thought of and expressed
as a function of the acoustic rays. An acoustic ray is an oriented
line that identifies a planar wavefront with wavenumber k(8),
and is locally orthogonal to it. A beam of acoustic rays fanning
out of an acoustic source, therefore, identifies an infinite combi-
nation of infinitesimal planar wavefront contributions. One key
fact of geometrical acoustics is that we can rely on the Radiance
Invariance Law (RIL) [36] to reduce the dimensionality of our
representation. The RIL states that the acoustic radiance (the ab-
solute value of f(z,y, 8)) remains constant along the acoustic
path, which implies that the planar plenacoustic function only
has two degrees of freedom instead of three. In the next para-
graph we shortly summarize the parameterization adopted in
[13], identifying its drawbacks when multiple observation win-
dows are in use. With reference to Fig. 2, the y axis is aligned
with the OW with the origin in the middle (the OW is between
—gp and gy). A ray crossing the OW is represented by the line of
equation y = mx + g, with parameters m and ¢, and a crossing
direction. We conventionally assign to all lines the direction
coming from the positive half-space > 0. This Euclidean def-
inition of the ray space (m, ¢) has the advantage of being simple
as well as compatible with the parameterization defined in [37],
[38]. However, it has the disadvantage of being OW-dependent
(local) and exhibiting “blind spots”. This is why we need to gen-
eralize it in order to render it suitable for multi-OW operation.

A. Parameterization

As mentioned above, we want to define a parameterization
that accommodates all possible rays irrespective of the reference
frame of choice. Through this parameterization we must be able
to tell which way a ray is pointing, so that we can easily work
with one-directional OWs. Oriented projective geometry [39]
allows us to do that.

The equation of a line referred to any reference frame is /24
loy 4 I3 = 0, which can be written in vector form as
T1=0o,

P 1= [ll7l25l3]Ta

4)

This representation is homogeneous as all vectors of the form
1 = k[ly,15,13]7, k # 0 represent the same line, and therefore
they form a class of equivalence (projective space). The homo-
geneous coordinates 1 are suitable for describing rays with arbi-
trary orientation. In order to distinguish between two oppositely
directed rays, all we need to do is limit the range of the scaling
factor k to either positive or negative values only. This is how
we define the oriented projective space T2 [39]. As a generic
point [I1,12,13]% corresponds to a ray in the geometric space,
the oriented projective space will be here referred to as the Pro-
Jective Ray Space P.

In order to simplify the visualization of this ray space we will
often reduce its dimensionality by slicing 7 with a prescribed
plane. The resulting section is called in the paper Reduced Ray
Space. The choice of the plane that we use for slicing it, how-
ever, must be made in such a way that all the rays crossing the
OW’s in the right direction are visible in the resulting reduced
ray space.

P= [‘raya 1]T‘

B. Acoustic Primitives in the Projective Ray Space

1) Rays: As discussed above, an acoustic ray in the geometric
space is a projective point in 7, visualized as a half-line of co-
ordinates k[ly,l2,13]7, k > 0 passing through the origin in the
ray space.

2) Sources: An acoustic source is a point of “outward” ori-
entation in the geometric space, as it can be thought of as the
set of all possible rays that originate from it. Let us consider a
source of coordinates p4 = k[z.4,ya,1], & > 0. A ray passes
through this point if and only if

phl=0. )

The parameters of all such rays are therefore given by the set
Zp, = {1 € PIpkl = 0}, which in the following will be re-
ferred to as the image of p 4. In the projective ray space, the
image of this point corresponds to a projective line, which is vi-
sualized as a plane passing through the origin (the parameters
of this plane are the projective coordinates p 4). This plane di-
vides P into the two half-spaces Pp = {1 € P|pj1 > 0} and
Pp, ={l¢€ P|p%l < 0}. The former corresponds to all the
rays that pass by p4 leaving it on their left, whereas the latter
identifies those that leave p 4 on their right. Fig. 3 shows Zp ,
'P;A and ’PI;A in the reduced ray space.

3) Segments: Oriented segments are important elements of
the acoustic scene because they model both observation win-
dows and acoustic reflectors. Consider a segment whose end-
points are p 4, and pg, as shown in Fig. 4(a). The ray space rep-
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Fig. 3. Representation Zp , of a point p, in the reduced ray space and half-
spaces T’;A and T’ITA in the reduced ray space.

resentation of this segment is shown in Fig. 4(b). As we can
see, the images of p,4 and pp are the lines Z,, and 7, re-
spectively. We want to be able to tell which direction a ray is
crossing the window p 4pz. We can do so by keeping track of
those that leave p 4 on their left and pp on the right (rays of
type 1, e.g. 1; in Fig. 4) and those that leave p 4 on the right and
Pz on the left (rays of type 2, e.g. 14 in Fig. 4). Recalling the
definition of the half-spaces 7:’5 and Pp for a generic point p
given above, it is quite easy to verify that the image of rays of
type 1 is

+ + —
Ip,p, =Fpy " Prp:
whereas the image of rays of type 2 is
— - +
Ip.p, = Pp A N Pp B’
The images I D5 and Zp, ., are wedge-shaped regions,

bounded by the planes Ipa and Zp,, which meetinlp p_ . In
the geometric space, the ray lp,p, corresponds to the oriented
line that passes through the segment P4pg- In the example of
Fig. 4, therays 1; and 14 are 1nI and Zp, o , respectively.
The other two rays, 1, and 13, do 1ot cross the OW, therefore
they lie outside of both IPAPB and Z, PPy The image of a
non-oriented segment is the union of the two images of the
oppositely oriented segments
Ip.ps = Tp,p, Y I, 0,
Observation windows—We are interested in OW’s that are one-
sided, i.e. able to “sense” the rays that cross them in one of the
two directions only. Furthermore, we want to be able to manage
multiple OW’s, each corresponding to a different soundfield
camera. In what follows, we will use the superscrlpt (i) to iden-
tify the ith OW. The ray space region V%) that identifies the
rays crossing the ith OW in the correct direction is called “visi-
bility” of that OW. From the previous discussion, V%) is one of
the two wedge-shaped regions that combine into the image of
the segment that the OW lies upon.
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Fig.4. Areflector in the geometric space and its image in the reduced ray space.
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Fig. 5. A source in the geometric space sensed by the OW p ,py and its ROI
in the reduced ray space.

Acoustic reflectors—The wavefront reflected by a planar wall
can be thought of as originating from an image source, whose lo-
cation is determined by mirroring the source about the reflector
line. As all rays coming from the image source are bound to pass
through the reflector, we can think of the it as an “illuminating
window”, i.e. an aperture that casts reflected acoustic radiance
onto the scene. With reference to Fig. 4, if the segment p ,pp
is a reflector, the set of rays that can originate from a reflec-
tion against its left-face is completely contained in Zp ,pp
Conversely, Zp , p 1 includes the rays that originate from a re-
flection against the right face of p ,pz. Notice that a reflector
casts (reflected) acoustic radiance in front of it, but it also casts
an acoustic shadow behind it. This will be discussed later in
Section II-C2 when handling occlusions.

4) Regions of Interest: We define the Region Of Interest
(ROI) of a primitive (a source or of a reflector) on the ¢th Ob-
servation Window as the portion of the image of that primitive
visible from the OW. The ROI can be readily obtained by
intersecting V*) with the image of the primitive.

Sources—The ROI of a source located in pg in the visibility
V() is given by

Ry =Tp V. (6)
Fig. 5(b) shows the ROI of the source pg, corresponding to
the intersection between the image of the source Zp_ and the
visibility of the OW (i.e. the wedge delimited by the images of
the points p 4 and py). The resulting segment parameterizes all
the ray originated by the source and passing through the OW
(shaded region in Fig. 5(a)).

Reflectors—The ROI of the reflector p,pp in the visibility
V@ s

(i)
Rp'p, = Ip,p, N ION (7
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Fig. 6. The reflector p 4, p5 and the OW p,p,, in the geometric space and the
ROI of the reflector in the reduced ray space as the intersection of the visibility
region of the OW and the image of the reflector.
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Fig. 7. Region of Visibility of the source.

Fig. 6 shows the ROI of the reflector p 4,pp in the visibility of
the OW ppp, given by the intersection of the image Zp , pp of
the reflector with the visibility of the OW V().

C. Managing Multiple Primitives

In general, an acoustic scene is made of multiple reflectors
and/or sources. In this case ROIs frequently overlap in the pro-
jective ray space. When this happens, it becomes important to
understand which ROI covers which. This problem was already
discussed in [13] and led to the determination of the Region Of
Visibility (ROV), based on the culling of the respective ROIs.
In this paragraph we revisit the definition of ROVs in the pro-
jective space. When working with multiple OW’s, however, the
situation becomes more complex, and will be discussed later.

1) Sources: Consider the setup in Fig. 7, corresponding to the
acoustic scene of Fig. 5 with the added reflector p.~pp,. The seg-
ment p~pp acts like an obstacle for pg, therefore the acoustic
rays departing from pg and visible from p ,pp range from 1; to
I;.

Using the above notation, the rays produced by the source pg
and visible from the OW p,ppy can be identified by the region
of visibility R;,‘:’l) of the source pg from the ith OW

(Vi) _ p(i) ~ 73
Rps B psﬁRpch ®)

where ﬁglpD is the region of V() that is not occupied by

(1) :
Rpch, ie.

Ry p =V — R

Dby PPy ©)

This definition of Region of Visibility holds valid for image
sources as well. In fact, an image source is only visible through
the reflector that generated it. We need to remember, however,

Reduced ray space

Geometric space

Fig. 8. The region of visibility of the reflectors as visibility culling of the ROIs
in the visibility region of the OW.

that this very reflector will act like an occluder for all the other
sources.

2) Reflectors: The situation becomes more complicated when
the acoustic scene under study has multiple reflectors. Let us
consider the example of Fig. 8. Here the ith OW, with endpoints
p. and py, senses an acoustic scene in which the three reflec-
tors p 4P, PcPp,. PEPF are present. Notice that there are direc-
tions for which p 4pg occludes popp, and both p 4pg and popp
occlude pip;-. The region of visibility Rj(ﬂ‘gzp of the reflector

popp in the visibility region V() is given by

Vi) _ o) (i) @)
Rpop, = Rp.p, — ( pop, " RpApB) :

Similarly, the region of visibility R;,‘;QF of the reflector pypp

(10)

in the visibility region V) is
(Vi) _ (i) (4) (i) Q)

Rpepr = Rppp, ~ (RpEpF a (RpCpD Y RpApB)) - (1D
In this specific case R;,Z;;F = 0, Whilie RSZQB = Rg;pB.
When a source is present in the acoustic scene, only a linear
portion of the ROV is visible. Indeed, only the rays departing
the image source, obtained by mirroring the real source against
the considered reflector, and not occluded by other reflectors are
visible in the soundfield image. These rays are organized in the
Ray Space on a linear pattern.

D. Managing Multiple OW's

When multiple OW’s are present, we can define the global
region of visibility of an acoustic primitive as the union of all
the ROVs relative to the individual soundfield cameras that
are present in the acoustic scene. In order to do so, however,
we need to make sure that all ROV’s are referred to the same
(global) reference frame. As for the sources, the global region
of visibility Rj(,,‘;) of a source pg when viewed by all OW’s
1 =1,..., N is defined as

N
(V) _ {V.i)
Rps o U Rps ’ (12)
i=1
As for reflectors, the global region of visibility RI()VA)PB of the
reflector p ,pp when viewed by all OW’si =1,..., N is
(V) N i
v Vii
Rpps = U Rp.p, (13)
i=1



E. Relationship with the (m, q) Ray Space

The parameterization defined in [13] identifies a ray with the
pair (m, ¢) of the equation y = max + ¢ of the line that the ray
lies upon, with a conventionally assigned direction (see Fig. 2).
This Euclidean parameterization, therefore, is not of global va-
lidity, as it only accommodates rays that cross the ¥ axis in one
direction and are not parallel to it. This, indeed, was not an issue
when working with a single OW, but becomes a strong limita-
tion when working with multiple OWs. Nonetheless, it has the
advantage of displaying the soundfield image in a “normalized”
fashion. The Euclidean ray space (m, ¢) can be readily derived
from the projective ray space, as it represents a special case of
reduced ray space, obtained by setting

m=_4 (14)
Iy
l

g=-7- (15)
2

F. From Local to Global Projective Ray Spaces

When working with multiple OW’s, one simple choice
could require each device to acquire a soundfield image that
is referred its own (local) reference frame. These images can
then be mapped onto each other’s reference frame or onto a
global reference frame. In this section we derive the equations
that map the local projective ray spaces onto the global one.
This analysis will become particularly useful later on, when
using data coming from multiple camera or when performing
self-calibration.

Each OW corresponds to a soundfield camera that works on a
local reference frame. As mentioned before, the superscript (7)
identifies the OW. In what follows, unless differently specified,
we will assume that the reference frame is the local one, i.e. that
attached to the OW.

Let pa = [24,v4,1]7 be the homogeneous coordinates of
the point A in the global reference frame and p(j) the coordi-
nates of the same point in the reference frame relative to the ith
OW. It is well known [20] that pa4 = [z 4,74, 1]T and pfi) are
related by

pa=HOpY (16)

where

) OREO)

@ _ |R
H [ 0 1 ] ; (17)
and R(® and t( are the rotation matrix and translation vector,
respectively, that characterize the rigid motion from local to
global frame. Eq. (4) can be rewritten as

I"py =10 pf), (18)
therefore, using Eq. (16) in Eq. (18) we obtain
1= (H®D) 110, (19)

III. SOUNDFIELD IMAGES IN THE PROJECTIVE RAY SPACE

In this Section we describe the formation of soundfield im-
ages from both theoretical and implementation standpoints.

Geometric space

Reduced ray space

Fig. 9. Acoustic scene with the source pg, the reflector p ,p 5, the image
source pgs and two OW’s.

A. The Ideal Scenario

In this section we aim at mapping the plenacoustic function
f(z,y,8) onto the global visibility V. In order to progressively
introduce the discussion, we first assume that our soundfield
cameras are ideal, meaning that they are able to capture the
acoustic radiance (plenacoustic function) of all rays crossing the
OW from the correct side, with no resolution losses or aliasing
phenomena.

A ray passing through a generic point p = [, y]” with direc-
tion # has parameters
Iy = ksin(d)
ly = —kcos(0)
I3 = k[ycos(f) — xsin(6)], k > 0. (20)

If we parameterize the plenacoustic function using these param-
eters, we obtain the soundfield map p(1). The domain of this
function is now the projective ray space. Using Eq. (20), we
can write that

f (:E, ——l”i;% , — arctan %) , Ia#£0
f(7%7y777/2)7 l2:0

Notice that, if we scale 2 (or y in the second case), the plena-
coustic function is picked at a different point that lies on the
same ray. Thanks to the Radiance Invariance Law (RIL), how-
ever, its value will not change. Notice also that the plenacoustic
function is complex-valued as it carries the phase information
at the considered frequency.

For example, consider the acoustic scene of Fig. 9: the source
pg faces the reflector located on p 4, pz. The OW’s 1 and 2 (lying
on the segments p-pp and ppp;, respectively) observe the
scene. For the sake of simplicity, and with no loss of generality,
we assume the reference frame to be centered on the first sound-
field camera, with the y axis aligned with p~pp. In this per-
pendicular configuration, the visibility region of the first camera
takes on the shape of a strip in the reduced ray space. This was
the choice of frame adopted in [13]. The obstacle causes a re-
flection, which is modeled by the image source pg.. Shaded re-
gions denote the acoustic beams that depart from pg and pg, and
cross the OW’s. Fig. 9(b) shows the regions of visibility of pg
and pg,. Each acoustic source is characterized by its radiance
pattern (denoted with b.(1), where - is replaced by the source
name), which describes the way in which the source radiates
the sound in space. For the scene in Fig. 9, bp_(1) and bp_, (1)

p(l) = (21)



parameterize the radiance of the soundfield emitted by the di-
rect and image sources, respectively, along the ray 1. Under the
hypotheses of validity of the Radiance Invariance Law, we can
express the contribution of the source in pg to the soundfield

image pp_(1) as

bp. (1) 1eRY
N=<% Ps . 22
bp S( ) { 0 ° elsewhere 22)
The contribution of the image source in pg; is, instead
bp_ (1) le Ry
pp., (1) =< Ps Ds: 23
rps () { 0 elsewhere 23)

In the presence of multiple reflectors we can expect the
soundfield image to exhibit higher-order reflections as well.
Although, due to the lower amplitudes and resolution limits
of a real soundfield camera, the linear patterns associated to
higher-order image sources are more difficult to detect and
extract, there are methods that allow us to account for such con-
tributions [37], [38]. Using direct and first-order contributions,
for example, we can estimate the corresponding reflector [13],
and higher order reflection paths could, in principle, help us
estimate the environment geometry [11]. However, as mapping
higher order reflection paths is out of the scope of this paper,
for reasons of illustrational simplicity we will limit our analysis
to first-order reflections.

B. Capturing Soundfield Images

Multiple soundfield cameras, in principle, could be designed
to operate and process data in the same (global) projective ray
space. In order to do so, however, such camera would need to
exchange information about their mutual locations. Requiring
the cameras to work in their own (local) reference frame sim-
plifies things a lot. The change of frame can be done afterwards
through some calibration process. We will see later that cali-
bration can be performed acoustically, using (local) soundfield
images. For the acquisition of soundfield images referred to a
local frame we can proceed as described in [13]. This approach
is briefly summarized here for the reader’s convenience.

We assume, for illustrational simplicity, that all the cameras
have identical geometries. The discussion can be straightfor-
wardly extended to the case of cameras with different geometry.
Each local reference frame is defined in such a way that the rela-
tive OW lies is on the y axis between 3 = —gq and ¥ = .
Each OW is spatially sampled with a uniform arrangement of A/
microphones. The soundfield image P (m(), ¢(*)) acquired
by the ith camera is related to the (complex valued) soundfield
map p(m®, ¢(9) through

p('i)(m(i)7 q('i)) — Hp(m(i)7 q(i))||2.

We divide the ith array into M — W + 1 overlapping sub-ar-
rays, each made of W microphones. We implement a bank of
wideband MVDR beamformers, each producing a pseudospec-
trum H7) (@), where (i, j) identifies the jth sub-array on the
ith camera. The pseudospectrum can be thought of as the an-
gular power distribution of the acoustic rays passing through
the center of the sub-array. We can therefore write

POm®, q") = HOD (arctan(m ™). (24)
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Fig. 10. Example of a soundfield image acquired by two cameras (C1 and C2)
made of 16 microphones each. Values of the soundfield images are expressed in
dB (a) Setup (b) PV (m, q) (¢c) PP (m®,¢>) (d) Pe(m, q).

qj(i) being the y coordinate of the center of the jth sub-array in
the reference frame of the sth camera.

C. Using Multiple Soundfield Images

With no loss of generality, we assume the global ref-
erence frame to be centered on the first camera, i.e.
[z,y]T = [, yM]T. We also choose the reduced ray space
to match the normalized (m, q) ray space of the first camera.
This will help us assess the advantages of our new represen-
tation with respect to the old one. In order to jointly use the
information coming, for example, from two cameras, we need
to be able to map P (m, ¢@) onto PO (1),i = 1,...,N.
This can be done in two steps. We first need to turn the Eu-
clidean soundfield image P (m(®), ¢(*)) into a projective one
PO M) i e. “lift” the reduced ray space to a (local) projective
ray space. In practice, with reference to Eq. (14), this consists
of adopting homogeneous coordinates

pOAD) = p (—z@/lg“, _léw/lg)) . 25)
Notice that rays that are parallel to the axis ¥ cannot be rep-
resented in the form P (m(, ¢()) but they can be readily
represented in the form P () (l(i) ), though this has no practical
impact, as OW cannot sense rays with that orientation. We can
now use the transformation (19) to map the local ray space 1¢)
onto the global one

POy = PO ((Hu))T 1) ,

where PC(;) (1) represents the contribution of the ith image in the
global ray space.

Merging the information coming from individual soundfield
images is rather straightforward when the visibility regions
of the related OWs are disjoint, i.e. Yo n oyl = 0,47
=1,...,N,i # j, in which case we have

(26)

N
Pe(l) = J P ). 27)
i=1
A more interesting case is given by overlapping visibility re-
gions of the cameras. In this situation multiple local soundfield
images convey information about the same acoustic rays. The
reliability of the information brought by the individual cameras
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Acoustic scene composed by a source (pg) and a reflector that generates an image source (pg ), observed by four soundfield cameras (C1, C2, C3 and

C4); the global ray space; and the individual soundfield images captured by the four cameras.

in these regions of overlap could be different, due to differences
inresolution depending on the relative positioning of the camera
and the acoustic source. A typical situation where visibility re-
gions heavily overlap is that of a single moving OW that cap-
tures a static acoustic scene at a steady pace. In this paper, how-
ever, we will be primarily concerned with the case of multiple
static cameras with non-overlapping regions, i.e. acquiring dif-
ferent rays. We will not consider the problem of fusing images
in the possible overlaps, because this would require us working
with (complex-valued) soundfield maps instead of (real-valued)
soundfield images.

Fig. 10 shows an example of a multiview soundfield image
with non-overlapping visibility regions. The scene is made of
a single acoustic source, with no obstacles/reflectors. The two
cameras are made of 16 microphones each. The distance be-
tween adjacent microphones is 13.3 cm, corresponding to an
aliasing frequency of about f, = 1.3 kHz [13]. We simulated
the source emitting a narrowband signal with a center frequency
of f,/2. Fig. 10 shows the individual soundfield images (i.e. in
the local reference frames) and the global one. Notice that (as
expected) R;,ls) and Rgs) lie on small segments of Il(,ls) and II(JQS)
In a single-camera case, we would localize the source by deter-
mining the parameters of the line on which R(l) or Rm lie. The
resulting accuracy would become worse as the d1stance from
the source increases. Using multiple cameras simplify this task
a lot, as the parameters of the line Zp_ can be estimated from
multiple segments. Notice also that the linear pattern associated
to the source looks sharper in the normalized image referred to
the local ray space of the second camera (Fig. 10(c)) than in
its remapped version of Fig. 10(d). This is due to the choice of
the reduced ray space, which introduces a distortion. This dis-
tortion, however, is only in the visualization. If we develop a
localization algorithm that inherently works in the global pro-
jective ray space, this distortion will not have an impact on the
localization accuracy.

In order to better understand the usefulness of the global pro-
jective ray space and its relation with local reduced ray spaces
we consider the ideal scenario of Fig. 11, in which four sound-
field cameras capture an acoustic scene made of a source and a
reflector. This is an interesting case because, although the global
projective ray space is able to accommodate all rays of interest,
there is no single reduced ray space that allows us to simultane-
ously display all of them. We recall that a reduced ray space is
obtained by slicing the space of homogeneous coordinates with

a plane and there is no plane that slices through all visibility re-
gions at the same time. One alternate way to visualize these data
is to slice the space of homogeneous coordinates with a spher-
ical surface instead. This is easily done by constraining the norm
ofthe rays (k1 kept constant), as shown in Fig. 11 and visualizing
the radiance of the individual rays on this new spherical “re

duced” ray space. Different cameras capture different views of
the scene: the first camera sees both the source and its reflected
image; the second camera sees the source as partially occluded
by the reflector; the third camera sees the source and a part of the
image source within the reflector’s region of visibility; and for
the fourth camera the source is nearly completely occluded. All
this data cannot be represented in a single reduced ray space. For
example, the shaded plane l; = —1 ofthe Fig. 11 (in the middle)
represents the reduced ray space of the first camera. The rays
parallel to this plane map to infinity on the reduced ray space
and cause the distortion we observed in Fig. 10 when we try to
represent data of other cameras. Furthermore, the rays with op-
positely oriented rays are not distinguishable, which means we
can not represent the data captured by the fourth camera in the

{(m, q) ray space.

IV. EXAMPLES OF APPLICATION

In this Section we propose two examples of application of
multiview soundfield imaging, aimed at illustrating the effec-
tiveness of the projective soundfield representation: localization
of acoustic sources and autocalibration of arrays, i.e. the estima-
tion of the relative position and orientation of all arrays using
acoustic data only.

A. Source Localization

In [13] we showed that single-camera soundfield images en-
able the localization of multiple acoustic sources. Here we sum-
marize the procedure and extend it to the multiple camera sce-
nario.

The sources map to linear features on the soundfield image
and, therefore, they can be localized estimating the parameters
of the corresponding lines. In particular, in a first stage, the
soundfield image is analyzed in order to find relevant features.
This is done finding peaks above a prescribed threshold. These
features of the soundfield image are then matched to sources
present in the scene. For this purpose the Hough transform ([40],
[41]) is used to cluster the selected features into linear patterns



and discard outliers. Finally, the location of the sources are esti-
mated through linear regression on the estimated linear patterns.
The features of the soundfield image correspond to the acoustic
rays and, therefore, to directions-of-arrival (DOAs). As a con-
sequence, this is essentially a DOA-based localization. How-
ever, the use of the ray space representation brings a number of
important benefits. The usually difficult problem of matching
acoustic measurements to multiple acoustic sources and dis-
carding outliers can be performed in a robust and efficient way
using methods found in the rich literature of computer vision.
Furthermore, localization becomes a linear estimation problem.
The use of multiple cameras, however, poses some challenges.
The same source could be seen under very different angles from
the two arrays, causing the resolution of the two soundfield im-
ages to differ a lot. This means that the accuracy of peak local-
ization could be uneven for the two cameras and a suitable data
fusion strategy becomes necessary.

Let us consider a source with position given in projective
coordinates p = k[z, 7, 1]7. We know that all the lines that
pass through P must satisfy the equation 17p = 0. Through
the Hough transform we find the features that are aligned in the
soundfield image. The location of these features is denoted by
li,...,1p. They represent peaks in the soundfield images, i.e.
the rays produced by the acoustic source and captured by the
soundfield cameras. In an ideal condition, these rays pass ex-
actly through p, so that we can write

¥p =0
p =0 28)

These equations can be rearranged in a matrix form as Lp = 0,
where L = [lj,...,1p]T. Estimating p is based on obtaining
the null-space of L. In order to do so, we first define L, = WL
where W = diag(1/ey,...,1/ep) is a weighting diagonal ma-
trix, and e;,% = 1,..., P is the error introduced in the system
of Eq. (28) by the peak-picking algorithm. We compute the
singular value decomposition of the 3 x 3 matrix LIL,, =
U;D LV% , where U, and Vf are the singular vectors matrices
of the decomposition and Dy, = diag(o1r, 021,030}, 010 >
021, > 031, contains the singular values of LZ;Lw. The esti-
mate p (in homogeneous coordinates) of the source location is
given by the singular vector of V1, related to the smallest sin-
gular value of Dy,

p="Vyls, (29)

where V|3 is the third column of the matrix V.

As for the matrix W, we estimate the errore;, i = 1,..., P,
of the peak location as the width at —3 dB of the lobe containing
the local maximum 1;. This is based on the observation that the
peak location becomes more sensitive to errors as the width of
the lobe increases.

In order to validate the proposed solution and show the bene-
fits with respect to the single-camera case, we conducted a sim-
ulation campaign using the setup of Fig. 12. The two cameras
are made of 9 microphones each, uniformly spaced at a step of
0.06 m. In the simulations we vary the distance d of the source
from the center of the two cameras; and the SNR of the signal

1 | )/
71‘/2\
d
2
Fig. 12. Simulation setup used for the localization.
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Fig. 13. RMSE of the localization error, expressed as distance between the
estimated and actual position, shown for different values of SNR (a) and d (b).
Localization is performed using: only camera 1; only camera 2; single extended
camera; both cameras in reduced ray space; and both cameras in the projective
ray space.

acquired by microphones. The angle formed by the lines joining
the center of the two cameras and p is set to ¢ = /2. For all
the experiments, the source signal is a white noise in the band-
width [300 Hz, 2.5 kHz]. We tested the localization accuracy as
the distance between the estimated and actual position over 200
realizations. In these tests, the performance of the localization
from two cameras in the projective ray space is compared with:

* localization with the camera 1 or 2 only;

* localization with a single extended camera of 18 micro-
phones spaced by 6 cm, whose center coincides with the
center of camera 1;

* localization from the joint soundfield image of camera 1
and 2 in the reduced ray space.

The first simulation is aimed at testing the robustness of the
localization algorithm against noise. In this experiment the
Signal to Noise Ratio varies within the range [—15 dB, 20 dB]
(see Fig. 13(a)). The other parameters of the simulation are
kept constant: d = 2 m, o = = /2. Notice that the localization
in the projective ray space outperforms the other methodolo-
gies, including the localization in the reduced ray space using
data from camera 1 and 2. This is due to the fact that the
transformation from the projective ray space to the reduced
one introduces a relevant distortion in the resulting image, as
already shown in Fig. 10. After peak detection in the reduced
ray space, performing localization in the global projective
ray space significantly reduces the error and improves the
localization accuracy. Notice also that the proposed algorithm
outperforms the localization using the extended camera.

In the second experiment we vary the distance d of the
source from the center of the cameras, while keeping oo = 7/2



and SNR = 0 dB. Results are shown in Fig. 13(b). Also in
this case the localization accuracy turns out to outperform the
other techniques, when done in the projective ray space. The
advantage over the single-camera case, especially at large dis-
tances, can be explained from the fact that using two soundfield
images we are effectively performing a triangulation. This be-
comes particularly helpful when the source is far. In this case
the estimation of the source distance is typically affected by
relevant errors. Using multiple arrays that are spatially dis-
tributed increases the baseline and helps us reduce this error.
Finally, notice that the error relative to the localization using
joint cameras in the reduced ray space (green line) suffers
from outliers, which cause the irregular trend from d = 8 m to
d =10 m.

B. Self-calibration

The problem of self-calibration date back to 90°s for what
concerns video signals (e.g. [42]). Self-calibration of mul-
tiple microphone arrays has been approached more recently
[24]-[43]. We can divide self-calibration algorithms in two
classes, according to the specific goal. Some self-calibration
algorithms are aimed at localizing microphones of an array
(intrinsic calibration) and others are aimed at estimating the
mutual position and orientation of different arrays (extrinsic
calibration). In this paragraph we refer to the second class, and
we aim at estimating the homography H that maps the second
reference frame onto the first one. The advantage brought by
the plenacoustic analysis on self-calibration lies in the ability of
the source localization algorithm to work with multiple sources;
and perform clustering in the ray space to match acoustic events
with sources. This allows us to perform self-calibration when
multiple sources are simultaneously active. For illustrational
simplicity, we focus on the case of two cameras, although a
generalization to more cameras is possible. In our case, the
homography H is a simple isometry of the form

cos(f) —sin(6) Awx
H= |sin(d) cos(d) Ay, 30)
0 0 1

where 0 and [Az, Ay]? are the rotation angle and the trans-
lation vector that make the second camera move onto the first
one. We begin with localizing S sources with the cameras
1 and 2. The source locations in homogeneous coordinates
referred to the local reference frame of the ith camera are

pﬁ), . ,P() and pg) = [aﬁ),yﬁ),wﬁ)] , while their es-
timates are pg), . ..,f)g and p, = [Lﬁ’), 5l )7w( )] We
adopt the notation pg & p(z) to indicate that pE ) and p(2)

are estimates of the same source in the reference frames of
the two cameras. In accordance with (16) we can write that
pgl) = le(-z). Notice, however, that we cannot treat this
equation in a conventional fashion, because homogeneous
coordinates are inherently scalable therefore that equality is to
be intended up to a scaling factor. The method that we propose
is based on the Direct Linear Transformation (DLT), typically
used in applications of 3D vision [20]. An alternate way of
rewriting pgl) = Hp,gz) that does not suffer from the problem
of being valid up to a scaling factor is pl(-l) X Hpgz) = 0,

Fig. 14. Setup of the simulations for the autocalibration.

where “x“ denotes the vector product. This constraint can be
reformulated into
( )h3T 52) L(l)hQTPE2)
(1) « Hp(z) ( )th 52) 51)h3T 2 31
‘l(l)hQT (2) yl(l)th 1(2)
which can be rewritten into
ol 7w(1)p(2) (l)p( ) [hl-l
w{'p{? 0T  —z{Vp{? th =0, (32)
_yz‘(l)Pz(‘z) xl(l)pz(l) o” h

where h?7" is the jth row of H. Notice that only two out of the
three rows of the coefficient matrix in (32) are linearly indepen-
dent. The third row, in particular, can be obtained by summing
the first row multiplied by ;L’El) and the second row by y,gl). If
we drop the third equation, we find that each source generates
two equations in the form

T @ (1) @7 h,
(1? @7 Y qu)Z (1)pl(z) ] h, | =Ah=0.
w; P, 0 —z;7'p; hs
(33)

If we consider all the sources, we obtain the system Ah = 0,
where A = [ATAT ... AT]T Notice that the above system is
homogeneous. This fact reduces the degrees of freedom of the
vector h. We observe that § = 4 sources generate eight con-
straints on h. We also impose that ||h| = 1 in order to prevent
the trivial solution h = 0 and to remove the scalability of the
solutions. Notice that H has the structure in (30), since it is an
isometry. If we also use this constraint, the number of unknowns
drops, and consequently the number of sources needed for the
autocalibration is reduced to S = 3, (as long as they are not
collinear). We remark, however, that the dependency of H on €
is non-linear, thus making the estimation more complex. When
more than S = 4 sources are available, we resort to the least
squares solution of Ah = 0. In this case the estimate h of the
vector h is given by the singular vector associated to the least
singular value of the SVD of AT A, similarly to the localiza-
tion. In particular, we define ATA = U,D4 VY, where D 4
contains the singular values, and U 4 and V 4 are the singular
vector matrices of dimensions 9 x 9. The estimate h is obtained
as

h =V (34)

In order to validate the autocalibration algorithm, we conducted
an extensive simulation campaign. The setup of the simulation
is shown in Fig. 14. The two cameras are identical and accom-
modate each 9 microphones spaced by 0.06 m, for an overall
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Fig. 15. RMSE of the autocalibration errors, expressed as distance between the
estimated camera center and its actual location and error on the orientation of
the second camera. With reference to Fig. 14,1.5m < d < 4mand o = /4.

length of the array of 0.48 m. In the simulations we varied the
number of sources S, the distance d between the cameras and
the centroid of the cluster of sources, and the angle o formed by
the lines joining the center of the cameras and the centroid of
the cluster of sources. The sources have been simulated to pro-
duce a white noise in the bandwidth [300 Hz, 2.5 kHz]. For all
the simulations we set SNR = 10 dB.

In the first experiment we varied the distance d between the
cameras and the cluster of sources in the range [1.5 m,4 m] and
we tested the accuracy of the autocalibration algorithm for dif-
ferent number S of sources. The angle « was fixed at = /4. The
error of the autocalibration is expressed as the distance between
the estimated center of the second camera and its actual location
and the absolute value of the difference between the estimated
angle « and the actual value. Results are averaged over 50 repeti-
tions of the experiment and shown in Fig. 15. Notice that the error
increases with d. This is due to the limited baseline of the cam-
eras. In fact, when sources are distant from the camera center, the
localization error increases. This, in turn, has an impact on the
accuracy of the estimation of h. Notice also that S = 10 is suf-
ficient, for most of the distances, to guarantee an accurate auto-
calibration. In the second set of simulations we vary the angle
between the cameras in the range [7/4, 7|, while d = 3 m. The
other conditions are identical to the previous simulations. The es-
timation accuracy for ¢ = 7 /4 canbe seen in Fig. 15 (d = 3 m).
The results for other values of o are not shown for reasons of
space and clarity of visualization as they are pretty constant for
all tested angles. This behavior can be explained by the fact that
the cameras are always pointed towards the cluster of sources and
are at the same distance from it, achieving, as a consequence, the
same localization accuracy independently of the angle between
the two cameras. As in the previous case, S = 10 sources are
sufficient to get an accurate estimation.

C. Experimental Results

In order to validate the results of the proposed algorithm on
real data, we conducted an experiment in which we evaluate, in
an integrated fashion, the accuracy of autocalibration and local-
ization algorithms.

The experimental setup consists of two cameras of eight mi-
crophones each, spaced by 0.055 m. In order to prevent any in-
fluence of reverberation and other external factors on the as-
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Fig. 16. Geometry of the arrays used for localization and autocalibration ex-
periments and location of the sources used for the localization experiment.

TABLE I
ACTUAL LOCATION OF SOURCES USED FOR THE REAL EXPERIMENTS
Source # |  [m] | y [m]
1 -0.21 2.875
2 0.58 2.555
3 0.685 | 1.065
4 0.05 1.605

sessment, the two cameras have been placed in an environment
with absorptive walls, where the reverberation time has been
estimated being Tso = 50 ms. The rotation angle # and dis-
placement vectors t between the arrays (see Eq. (30)) have been
hand-measured using the Multi Dimensional Scaling [44] to ob-
tain & = 1.51 rad, t = [~1.793 m, —1.987 m]”. The geom-
etry of the setup is shown in Fig. 16. In this figure the locations
%1,...,24 of the sources used for the assessment of the local-
ization accuracy are shown as well.

As for the autocalibration, a total number of fifteen source
locations arbitrarily placed has been used. As done for the sim-
ulations, the sources reproduced a white noise sequence in the
bandwidth [300 Hz,2.5 kHz]. The errors A8 and At on the ro-
tation angle and translation vectors of the estimate are given,
respectively, by A8 = —0.051 rad, At = [0.002 m, 0.004 m]7".
Such results confirm the validity of the self-calibration algo-
rithm also in real scenarios. Notice, moreover, that due to mea-
surement errors, also the ground-truth data could be affected by
some error.

The localization experiment adopts the same setup used
for the autocalibration. For the convenience of the reader, the
locations of the sources to be localized, which constitutes a
different set from the sources used for the autocalibration, are
given in Table I. Notice from Fig. 16 that, as seen from camera
1, sources at #3 and x4 are visible under the same angle. We
can expect, therefore, that localization based only on camera
1 for this pair of sources fails. The same holds for 3 and 4
for camera 2. Using the self-calibration obtained from acoustic
measurements, we evaluated the accuracy of the localization
for different configurations, namely: 1) one source active at
any time; 2) one of the 6 combinations of two sources active at
any time; 3) one of the 4 combinations of three sources active
at any time; 4) all sources active at any time.

Notice that the maximum frequency of 2.5 kHz is below the
spatial Nyquist frequency. Beamforming is not affected, there-
fore, by spatial aliasing. Table II shows the localization error



TABLE II
LOCALIZATION RESULTS FOR ALL THE POSSIBLE COMBINATIONS OF SOURCES

Sources Cameras €3 [m] | &4 [m]

1 Cl1
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Joint 0.116 - - -
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g = ||& —=i|,i=1,...,4, where &; is the estimated location
of the ith source, for all the possible combinations. The local-
ization has been performed using the camera 1, the camera 2, or
with the joint localization algorithm presented before.

Results confirm that the joint localization outperforms the lo-
calization based on a single camera. As an example, let us con-
sider the case of the four sources active at the same time (last
three rows of Table II). Notice that sources at £; and x4 are
poorly localized by camera 1; conversely camera 2 is not able
to localize z» and x3. Joint localization, finally, allows us to ac-
curately localize all four sources. We also notice that increasing
the number of active sources does not imply a reduction in the
localization accuracy.

V. CONCLUSIONS

In this paper we have proposed a new projective parameteri-
zation for the ray space, which generalizes the domain of sound-
field images defined in [13]. The new representation is based
on oriented projective geometry and uses homogeneous coordi-
nates, with multiple advantages:

+ asingle reference frame accommodates all rays of interest

with no blind spots;

* no loss of accuracy can be attributed to a bad choice of

reference frame;

* it is now possible to optimize the spatial configuration of

sensors with control over the achieved resolution.

Given the recent progress in integrated microphone arrays
and the wide range of possible applications, the soundfield
imaging becomes an interesting approach for organizing, man-
aging, displaying and processing the data that such devices
will be able to collect. In this paper we choose to address two
possible applications that take advantage of the new parame-
terization. On one hand, the projective ray space representation
allowed us to simultaneously use multiple arrays with signifi-
cant improvement in localization accuracy. At the same time, in
order to take advantage of this new global representation at best,
we developed a self-calibration methodology, operating entirely
in the acoustic domain, which enables the georeferentiation
of the various soundfield cameras. We are currently focusing
on how to derive and work with (complex-valued) soundfield
maps instead of soundfield images, with the goal of fusing
soundfield images in the most general case of overlapping
regions of interest and, most of all, with the goal of developing
a rendering system based on plenacoustic principles.
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