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1. Introduction

World's urban population is expected to raise from current 
54%e66% in 2050 and to further increase as a consequence of the 
unlikely stabilization of human population by the end of the cen-
tury (Gerland et al., 2014). By 2030 the number of mega-cities, 
namely cities with more than 10 million inhabitants, will grow 
over 40 (UNDESA, 2010). This will boost residential water demand 
(Cosgrove and Cosgrove, 2012), which nowadays covers a large 
portion of the public drinking water supply worldwide (e.g., 
60e80% in Europe (Collins et al., 2009), 58% in the United States 
(Kenny et al., 2009)).

The concentration of the water demands of thousands or mil-
lions of people into small areas will considerably raise the stress on 
finite supplies of available freshwater (McDonald et al., 2011a). 
Besides, climate and land use change will further increase the
s, Information, and Bioengi-
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number of people facing water shortage (McDonald et al., 2011b). 
In such context, water supply expansion through the construction 
of new infrastructures might be an option to escape water stress in 
some situations. Yet, geographical or financial limitations largely 
restrict such options in most countries (McDonald et al., 2014). 
Here, acting on the water demand management side through the 
promotion of cost-effective water-saving technologies, revised 
economic policies, appropriate national and local regulations, and 
education represents an alternative strategy for securing reliable 
water supply and reduce water utilities' costs (Gleick et al., 2003). 
In recent years, a variety of water demand management stra-tegies 
(WDMS) has been applied (for a review, see Inman and Jeffrey, 
2006, and references therein). However, the effectiveness of these 
WDMS is often context-specific and strongly depends on our 
understanding of the drivers inducing people to consume or save 
water (Jorgensen et al., 2009). Models that quantitatively describe 
how water demand is influenced and varies in relation to 
exogenous uncontrolled drivers (e.g., seasonality, climatic condi-
tions) and demand management actions (e.g., water restrictions, 
pricing schemes, education campaigns) are essential to explore 
water users' response to alternative WDMS, ultimately supporting



 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1. Flowchart of the general procedure for studying residential water demand 
management.
strategic planning and policy design.
Traditionally, water demand models focus on different temporal

and spatial scales. At the lowest resolution, studies have been car-
ried out, mostly in the 1990s, to model water demand at the urban
or block group scale, using low time resolution (i.e., above daily)
consumption data retrieved through billing databases or experi-
mental measurement campaigns on a quarterly or monthly basis.
The main goal of these works is to inform regional water systems
planning and management on the basis of estimated relationships
between water consumption patterns and socio-economic or cli-
matic drivers (e.g., House-Peters and Chang, 2011).

The advent of smart meters (Mayer and DeOreo, 1999) in the
late 1990s made available new water consumption data at very
high spatial (household) and temporal (from several minutes up to
few seconds) resolution, enabling the application of data analytics
tools to develop accurate characterizations of end-use water
consump-tion profiles. Similarly to the recent developments in
integrated smart solutions (Hilty et al., 2014; Laniak et al., 2013),
the use of smart meters provides essential information to construct
models of the individual consumers behaviors, which can be
employed for designing and evaluating consumer-tailored WDMS
that can more effectively modify the users' attitude favoring water
saving be-haviors. In particular, smart meters themselves constitute
tech-nologies that promote behavioral changes and water saving
attitudes via tailored feedbacks (Fielding et al., 2013).

A general procedure to study residential water demand man-
agement relying on the high-resolution data nowadays available
can be structured in the following four phases (see Fig. 1): (i) data
gathering, (ii) water end-uses characterization, (iii) user modeling,
(iv) design and implementation of personalized WDMS. In the
literature, a number of tools and techniques have been proposed for
each of these steps, with many works focused either on the data
gathering process (e.g., Cordell et al., 2003; Boyle et al., 2013) or on
the analysis of WDMS (e.g., Inman and Jeffrey, 2006). Yet, to the
authors' knowledge, a systematic and comprehensive review of
residential water demand modeling and management is still
missing. This review contributes the first effort of classification and
critical analysis of 134 studies that in the last 25 years (Fig. 2)
contributed new methodologies and tools in one or more of the
steps of the above procedure (see Table 1).

The review is structured according to the procedure shown in
Fig. 1: the current status, research challenges, and future directions
associated to each phase are discussed in Sections 2e5, while the
last section reports final remarks and directions for follow up
research.

2. Data gathering

Residential water consumption data gathering (box 1 in Fig. 1) 
represents the first step needed to built the baseline upon which 
the water demand is estimated and management strategies are 
designed. Depending on the sampling frequency, we distinguish 
two main classes, namely low-resolution and high-resolution data, 
which delimit the type of the analysis that can be performed.

2.1. Low resolution data

Periodically billed data are characterized by a low level of res-
olution and recording frequency. Although water consumption is 
detected with the precision of kilolitres, readings are generally 
recorded with the frequency of the quarter of year at most (Britton 
et al., 2008). This low resolution restricts the use of these data to 
regional planning, where statistical analysis estimating the amount 
of domestic water consumption can be used to forecast the 
aggregated water demand at the municipal or district level. In
particular, such data have been widely used to study the effect of 
economic variables and seasonality on the water use at the regional 
scale since the seminal works by Howe and Linaweaver (1967); 
Young (1973); Berk et al. (1980); Howe (1982); Maidment 
and Parzen (1984); Thomas and Syme (1988) (for a review see 
House-Peters and Chang, 2011, and references therein). 
Those ap-proaches relied on simple econometric models and 
time series models based on multivariate regression, and 
required limited datasets and low computational resources. Their 
main drawback is related to their limited capability of 
representing the spatial and temporal heterogeneity of residential 
water demand, which can be understood and modeled using 

higher resolution data. While data



Fig. 2. Five-years count of the 134 publications reviewed in this study.
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resolution depends on the installed meter, the logging time can be
shortened without installation of smart meters but simply
increasing the traditional reading frequency by the users. However
so far only ad-hoc studies systematically collected and analyzed
data at daily resolution (e.g., Olmstead et al., 2007; Wong et al.
2010) and few water companies (e.g., Water Corporation in West-
ern Australia and Thames Water in London) started increasing their
reading frequency by direct involvement of their customers, who
are invited to self-read their consumption and communicate i
online to the water company (e.g., Anda et al., 2013).
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2.2. High resolution data

The advent of high resolution sensors, with their ability o
sampling water consumption on sub-daily basis, opened up a new
potential to better characterize domestic water consumption. Two
distinctive metering approaches can be distinguished: intrusive
metering, which ensures direct estimates of the residential wate
end-uses by installing high resolution sensors on-device, namely
one sensor for each water consuming appliance (e.g., washing
machine, toilet flush, shower-head); non-intrusive metering, which
registers the total water flow at the household level over one single
detection point for the whole house.

Intrusive metering (see Rowlands et al., 2014, and references
therein) is generally considered inapplicable in real-world, large-
scale analysis as the number of sensors to be installed makes this
approach resource intensive, costly, and hardly accepted by
household occupants (Cordell et al., 2003; Kim et al., 2008). On the
contrary, non-intrusive metering represents a more acceptable
though less accurate, alternative (Mayer and DeOreo, 1999). How-
ever, this approach requires disaggregation algorithms to break-
down the total consumption data at the household level into the
different end-use categories (see Section 3).

Several types of sensors have been developed (Table 2) by
exploiting different technologies and physical properties of the
water flow (for a review see Arregui et al., 2006, and references
therein):

� Accelerometers (e.g., Evans et al., 2004), which analyze vibra-
tions in a pipe induced by the turbulence of the water flow. A
sampling frequency of 100 Hz of the pipe vibrations allows
reconstructing the average flow within the pipe with a resolu-
tion of 0.015 L (Kim et al., 2008).
� Ultrasonic sensors (Mori et al., 2004), which estimate the flow
velocity, and then determine the flow rate knowing the pipe 
section, by measuring the difference in time between ultrasonic 
beams generated by piezoelectric devices and transmitted 
within the water flow. The transducers are generally operated 
in the range 0.5e2 MHz and allow attaining an average 
resolution around 0.0018 L (e.g., Sanderson and Yeung, 2002).

� Pressure sensors (Froehlich et al., 2009, 2011), which consist in
steel devices, equipped with an analog-digital converter and a
micro-controller, continuously sampling pressure with a theo-
retical maximum resolution of 2 kHZ. Flow rate is related to the
pressure change generated by the opening/close of the water
devices valves via Poiseuille's Law.

� Flow meters (Mayer and DeOreo, 1999), which exploit the water
flow to spin either pistons (mechanic flow meters) or magnets 
(magnetic meters) and correlate the number of revolutions or 
pulse to the water volume passing through the pipe. Sensing 
resolution spans between 34.2 and 72 pulses per liter (i.e., 1 
pulse every 0.029 and 0.014 L, respectively) associated to a 
logging frequency in the range of 1e10 s (Kowalski and 
Marshallsay, 2005; Heinrich, 2007; Willis et al., 2013).

So far, only flow meters and pressure sensors have been 
employed in smart meters applications because ultrasonic sensors 
are too costly and the use of accelerometers requires an intrusive 
calibration phase with the placement of multiple meters distrib-
uted on the pipe network for each single device of interest (Kim et 
al., 2008). It is worth noting that the “smartness” of these sen-sors 
is related both to their high sampling resolution and to their 
integration in efficient systems combining data collection, transfer, 
storage, and analysis. Although sensors can be equipped with data 
loggers requiring human intervention to retrieve the data directly 
from the sensors (Mayer et al., 2004), bluetooth and wireless con-
nections have been recently exploited for improving data man-
agement. For example, Froehlich et al. (2009) installed a network of 
pressure sensors communicating via bluetooth with a laptop 
deployed at each household, which runs a custom data logger to 
receive, compress, and archive data. These latter are then uploaded 
to a web server at 30-min intervals.

2.3. Research challenges and future directions

While smart meters are becoming easily available, we identified 
a list of open research and technical challenges that need to be 
addressed to promote the coherent use of this wide range of 
technologies:

1. The first open research question relates to the management of 
the metered high resolution flow data. In particular, the devel-
opment of robust, automated processes to transfer the gener-
ated big data requires further elaborations, both in terms of 
hardware and software performance due to existing issues with 
respect to wireless network reliability, black spots, power 
source and battery life (Stewart et al., 2010; Little and Flynn, 
2012). All these aspects appear key also because the possibility 
of inte-grating water and energy meters and using the same 
data log-gers and transmission systems is expected to enhance 
the diffusion of high resolution water sensors (Benzi et al., 2011; 
Froes Lima and Portillo Navas, 2012).

2. The second open challenge concerns the design of centralized or 
distributed information systems to store the data collected by 
the smart meters (Oracle, 2009). A centralized system would 
allow checking the accuracy of the collected data, which can



Table 1
Details of the papers reviewed.

Reference Location Data gathering Water end-uses User modeling Personalized WDMS

Australia x
N/A x

Anda et al. (2013) 
Boyle et al. (2013) 
Willis et al. (2013) Australia x x

N/A x x
Hong Kong x
N/A x
N/A x
New Zealand x x
USA x x
UK x x
N/A x
USA x x x
N/A x
Australia x
N/A x
USA x x

Froehlich et al. (2011)
Wong et al. (2010)
Froehlich et al. (2009)
Kim et al. (2008)
Heinrich (2007)
Olmstead et al. (2007) Kowalski 
and Marshallsay (2005) Evans et 
al. (2004)
Mayer et al. (2004)
Mori et al. (2004)
Cordell et al. (2003)
Sanderson and Yeung (2002) 
Mayer and DeOreo (1999) 
Nguyen et al. (2014) Australia x

Australia x
Australia x
Australia x

Nguyen et al. (2013a) 
Nguyen et al. (2013b) 
Cardell-Oliver (2013a) 
Cardell-Oliver (2013b) Australia x

USA x
Australia x
USA x
Australia x
Australia x
Australia x
Australia x x
UK x
Australia x x
USA x
USA x
USA x
USA x
Australia x
Australia x
N/A x
Australia x
Portugal x
Australia x
Italy x
Australia x
Australia x
Australia x
USA x
Australia x
Australia x
Australia x
Australia x
10 OECD countries x
N/A x
USA x
Iran x
USA x
USA x
USA x
Australia x
Nederland x
USA x
USA x
USA x
Jordan x
N/A x
China x
N/A x
UK x
Spain x
N/A x
N/A x
Korea x
USA x
USA x
Italy x

Aquacraft Inc. (2011)
Beal et al. (2011a)
DeOreo et al. (2011)
Mead and Aravinthan (2009) 
Willis et al. (2009a)
Willis et al. (2009b)
Roberts (2005)
Kowalski and Marshallsay (2003) 
Loh et al. (2003)
DeOreo and Mayer (2000) 
DeOreo et al. (1996)
Mayer and DeOreo (1995) 
DeOreo and Mayer (1994) Makki 
et al. (2015)
Beal et al. (2014)
Kanta and Zechman (2014) Beal 
and Stewart (2014)
Matos et al. (2014)
Talebpour et al. (2014)
Romano et al. (2014)
Cardell-Oliver and Peach (2013) 
Beal et al. (2013)
Bennett et al. (2013)
Cahill et al. (2013)
Cole and Stewart (2013)
Makki et al. (2013)
Beal et al. (2011b)
Gato-Trinidad et al. (2011) 
Grafton et al. (2011)
House-Peters and Chang (2011) 
Lee et al. (2011)
Nasseri et al. (2011)
Qi and Chang (2011)
SDU (2011)
SJESD (2011)
Willis et al. (2011)
Blokker et al. (2010)
Chang et al. (2010)
Lee and Wentz (2010) Polebitski 
and Palmer (2010) Rosenberg 
(2010)
Russell and Fielding (2010)
Chu et al. (2009)
Corbella and Pujol (2009)
Fox et al. (2009)
Gal�an et al. (2009)
Jorgensen et al. (2009) Olmstead 
and Stavins (2009) Praskievicz 
and Chang (2009) Balling et al. 
(2008)
Lee and Wentz (2008)
Alvisi et al. (2007)
Balling and Gober (2007) USA x

(continued on next page)



Table 1 (continued )

Reference Location Data gathering Water end-uses User modeling Personalized WDMS

Australia x
Jordan x
USA x
Australia x
Turkey x
USA x
USA x
Australia x
N/A x
Australia x
Australia x
N/A x
Italy x
USA x
USA x
USA x
Australia x
USA x
USA x
USA x
N/A x
Spain x
Australia x
Australia x
Australia x
Australia x
Australia x
USA x
Brazil x
USA x
Australia x
Australia x
N/A x
Australia x
Australia x
N/A x
Australia x
N/A x
Australia x
N/A x
UK x
N/A x
USA x
N/A x
France x
Greece x
USA x
USA x
Australia x
Australia x x
Australia x
USA x x
USA x x
USA x x
USA x x
USA x x
USA x
N/A x x
USA x x x

Gato et al. (2007)
Rosenberg et al. (2007)
Wentz and Gober (2007)
Gato (2006)
Altunkaynak et al. (2005)
Fullerton and Elias (2004)
Aly and Wanakule (2004)
Syme et al. (2004)
Brookshire et al. (2002)
Zhou et al. (2000)
Zhou et al. (2002)
Espey et al. (1997)
Molino et al. (1996)
Homwongs et al. (1994)
Lyman (1992)
Griffin and Chang (1991)
Rixon et al. (2007)
Schneider and Whitlatch (1991) 
Miaou (1990)
Maggioni (2015)
Sonderlund et al. (2014)
Molinos-Senante (2014)
Britton et al. (2013)
Fielding et al. (2013)
Stewart et al. (2013)
Carragher et al. (2012)
Cole et al. (2012)
Froehlich et al. (2012)
Froes Lima and Portillo Navas (2012) 
DeOreo (2011)
Willis et al. (2010)
Mead and Aravinthan (2009)
Steg and Vlek (2009)
Britton et al. (2008)
Grafton and Ward (2008) 
Worthington and Hoffman (2008) 
Brennan et al. (2007)
Brooks (2006)
Hensher et al. (2006)
Inman and Jeffrey (2006)
Howarth and Butler (2004)
Arbu�es et al. (2003)
Duke et al. (2002)
Geller (2002)
Garcia and Thomas (2001) 
Kanakoudis (2002)
Renwick and Green (2000) Renwick 
and Archibald (1998) Dandy et al. 
(1997)
Gurung et al. (2015)
Gurung et al. (2014)
Suero et al. (2012)
Giacomoni and Berglund (2015) 
Escriva-Bou et al. (2015a)
Escriva-Bou et al. (2015b)
Kenney et al. (2008)
Kenney et al. (2004)
Dalhuisen et al. (2003)
Mayer et al. (2003)
Mayer et al. (2000) USA x x x
then be made easily available for data processing and analysis.
On the contrary, a distributed solution would reduce trans-
mission costs and facilitate providing immediate feedbacks to
customers, who can use this information to make decisions
about their water use.

3. A third open question is how householder privacy is impacted 
by collection and communication of detailed water-use infor-
mation. Although such issues are currently underestimated as in 
many communities (e.g., in Australia) severe water shortages 
have led to a permissive attitude to conserve water (Giurco et al., 
2010), it is likely that the collection of information on both water
use and behavior change over time implies increased privacy 
risks (McIntyre, 2008; Chen et al., 2014).

4. Finally, a challenge is posed by the actual deployment of large-
scale high-resolution metering network in the real world. While 
literature presents a number of trials (e.g., Mayer et al.(2004); 
Heinrich (2007); Froehlich et al. (2009)) that exploit smart sensors 
with extremely fine resolutions (sub-minute), cost, privacy, and 
regulations may limit their scalability to large-scale continuous 
operative smart meter installations. For example, data protection 
and data security issues are being seriously considered by the 
European Union, which is imposing



Table 2
Studies contributing in the data gathering step. Studies gathering data with a sub-daily resolution are considered as high-resolution, low-resolution otherwise.

Reference Location Resolution Sensor type Resolution [liters]

USA Low e e

Hong Kong Low e e

Australia Low e e

N/A High e e

Australia High e e

N/A High Accelerometer 0.0150
USA High Flow meter 0.014e0.029
N/A High Accelerometer 0.0150
N/A High Ultrasonic 0.0018
N/A High Ultrasonic 0.0018
N/A High Pressure 0.0600
N/A High Pressure 0.0600
UK High Flow meter 0.014e0.029

Olmstead et al. (2007)
Wong et al. (2010)
Anda et al. (2013)
Boyle et al. (2013)
Cordell et al. (2003)
Kim et al. (2008)
Mayer and DeOreo (1999) Evans 
et al. (2004)
Mori et al. (2004)
Sanderson and Yeung (2002) 
Froehlich et al. (2009) Froehlich 
et al. (2011)
Kowalski and Marshallsay (2005) 
Heinrich (2007) New Zealand High Flow meter 0.014e0.029

Australia High Flow meter 0.014e0.029
USA High Flow meter 0.014e0.029
USA High Flow meter 0.014e0.029

Willis et al. (2013) 
Mayer et al. (2004) 
Mayer et al. (2000) 
Mayer et al. (2003) USA High Flow meter 0.014e0.029
some strict guidelines to utilities willing to deploy smart meter
solutions for their customers and many water utilities collect
data at lower resolution than the minute (e.g., Thames Water in
London reads data at 15-min resolution, EMIVASA in Valencia
and SES in Switzerland at 1-h resolution). This implies that the
theoretical capabilities of smart metering technologies may not
be fully exploited, potentially limiting the accuracy in charac-
terizing the residential water consumption as studies relying on
medium/low resolution data. Large-scale smart-meters appli-
cation would therefore benefit from a better understanding of
the consequences of different time resolutions on the models
accuracy and on the effectiveness of WDMS.
3.2. Identiflow
3. Water end-uses characterization

Non-intrusive metering requires disaggregation algorithms to 
breakdown the total consumption data registered at the household 
level into the different end-use categories (second block of Fig. 1). 
In the water research literature, several studies have been 
conducted in the last two decades using a variety of single or mixed 
disag-gregation methods, such as household auditing, diaries, high 
res-olution flow meters and pressure sensors (see Table 3). 
According to the methodology adopted, we can identify two main 
approaches for disaggregating smart metered water data at very 
high temporal resolution: decision tree algorithms, namely Trace 
Wizard® (DeOreo et al., 1996) and Identiflow® (Kowalski and 
Marshallsay, 2003), and machine learning algorithms, namely 
HydroSense (Froehlich et al., 2011) and SEQREUS (Beal et al., 
2011a). Recently, the disaggrega-tion of medium resolution water 
data (i.e., hourly data) has been explored by means of water use 
signature patterns method (Cardell-Oliver, 2013a, b), namely a 
combination of feature selec-tion, unsupervised learning, and 

cluster evaluation.
3.1. Trace Wizard

Trace Wizard (DeOreo et al., 1996) is a commercial software 
(recently replaced by an on-demand service developed and 
managed by Aquacraft Inc) which applies a decision tree algorithm 
to interpret magnetic metered flow data based on some basic flow 
boundary conditions (e.g., minimum/maximum volume, peak flow 
rate, duration range, etc.). The disaggregation process is structured 

in the following steps:
1. Conduct a detailed water device stock inventory audit for each
household to determine the efficiency rating of each household
appliance/fixture;

2. Household occupants should complete a diary of water use
events over a one-week period to gain information on their
water use habits;

3. Analysts usewater audits, diaries, and sample flow trace data for
each household to create specific templates that serve to match
water end-use patterns depending on some basic flow boundary
conditions.

4. Based on the developed templates, stock survey audit, diary
information and analysts' experience, the individual water end-
uses are disaggregated.

It is worth noting that the human resource effort required by
Trace Wizard makes the overall process extremely time and 
resource intensive, with the quality of the results that is strongly 
dependent on the experience of the analyst in understanding flow 
signatures. It has been estimated that the classification of two 
weeks of data approximatively requires two hours of works by the 
analyst and attains an average classification accuracy of 70%
(Nguyen et al., 2013a). In addition, the prediction accuracy of Trace 
Wizard is significantly reduced when more than two events occur 
concurrently (Mayer and DeOreo, 1999). However, Trace Wizard 
still has an edge on disaggregation techniques and has been used in 
several research works and projects (DeOreo and Mayer, 1994; 
Mayer and DeOreo, 1995; DeOreo et al., 1996; Mayer and DeOreo, 
1999; DeOreo and Mayer, 2000; Loh et al., 2003; Mayer et al., 2004; 
Roberts, 2005; Heinrich, 2007; Mead and Aravinthan, 2009; Willis 
et al., 2009a, b; Aquacraft Inc, 2011; DeOreo et al., 2011).
Similar to Trace Wizard, Identiflow (Kowalski and Marshallsay, 
2003) relies on a decision tree algorithm to perform a semi-
automatic disaggregation of the total water consumption at the 
household level. Identiflow uses fixed physical features of various 
water-use devices (e.g., volume, flow rate, duration, etc.) to classify 
the different end-use events. Although Identiflow has shown better 
performance than Trace Wizard (i.e., 74.8% accuracy in terms of the 
correctly classified volume over 3870 events (Nguyen et al., 
2013a)), its classification accuracy strongly depends on the phys-
ical features used to describe each fixture/appliance. Two different



Table 3
Studies contributing in the water end-uses characterization step.

Reference Location Disaggregation algorithm Number of households

N/A HydoSense 5
New Zealand Trace Wizard 12
USA Trace Wizard 33
USA Trace Wizard N/A
UK Identiflow 250
UK Identiflow N/A
Australia SEQREUS 1500
USA Trace Wizard 16
USA Trace Wizard 16
USA Trace Wizard 10
Australia Trace Wizard 720
Australia Trace Wizard 100
Australia Trace Wizard 10
Australia Trace Wizard 200
Australia Trace Wizard 151
USA Trace Wizard 209
Australia SEQREUS 3
Australia SEQREUS 252
Australia SEQREUS 3 (out of 252)
USA Trace Wizard 37 (out of 1188)
USA Trace Wizard 33
USA Trace Wizard 1000
Australia Water Use Signature Patterns 11,000

Froehlich et al. (2011)
Heinrich (2007)
Mayer et al. (2004)
DeOreo et al. (1996)
Kowalski and Marshallsay (2003) 
Kowalski and Marshallsay (2005) 
Beal et al. (2011a)
DeOreo and Mayer (1994) Mayer 
and DeOreo (1995) DeOreo and 
Mayer (2000)
Loh et al. (2003)
Roberts (2005)
Mead and Aravinthan (2009) 
Willis et al. (2009a)
Willis et al. (2009b)
Aquacraft Inc. (2011)
Nguyen et al. (2014)
Nguyen et al. (2013a)
Nguyen et al. (2013b)
Mayer et al. (2000)
Mayer et al. (2003)
DeOreo (2011)
Cardell-Oliver (2013a)
Cardell-Oliver (2013b) Australia Water Use Signature Patterns 187
water events are likely classified into the same category if they 
exhibit similar physical characteristics. Moreover, it fails to classify 
events when old devices are replaced by modern ones, since the 
physical characteristics of these latter might be completely 
different compared to the old ones.
3.3. HydroSense

HydroSense (Froehlich et al., 2011) is a probabilistic-based 
classification approach which relies on data collected through 
pressure sensors. Water end-use events are classified with respect 
to the unique pressure waves that propagate to the sensors when 
valves are opened or closed. Specifically, when a valve is opened or 
closed, a pressure change occurs and a pressure wave is generated 
in the plumbing system. Based on the pressure wave (which de-
pends on the valve type and its location), water end-use events are 
classified by using advanced pattern matching algorithms and 
Bayesian probabilistic models. HydroSense has been demonstrated 
to attain very high levels of classification accuracy, namely 90% and 
94% with one or two pressure sensors, respectively (Froehlich et al., 
2011). However, the calibration of the algorithm requires an 
intrusive monitoring period with the installation of a much larger 
number of pressure sensors connected to each water device (i.e., 
Froehlich et al. (2011) used 33 sensors in a single household). This 
requirement significantly constrains the portability of this 
approach to a wide urban context as it would entail large costs and 
privacy issues.
3.4. SEQREUS

The SEQREUS approach (Beal et al., 2011a) proposes a combi-
nation of Hidden Markov Models (HMMs), Dynamic Time Warping 
(DTW), and time-of-day probability to automatically categorize the 
collected data at the household level into particular water end-use 
categories. To minimize the intrusiveness of the approach, the 
ground truth for the calibration (i.e., a set of disaggregated end-use 
events) is obtained using Trace Wizard. Then, the SEQREUS 
approach works as follows:
1. The disaggregated data are used for training multiple HMMs,
one for each end-use category (excluding the inconclusive
event);

2. The physical characteristics of each end-use category are used to
refine the estimate given by the HHMs (e.g., any shower event
with a volume less than 7 L or any bathtub event with duration
less than 4 min is placed in the inconclusive event for future
analysis);

3. A DTW algorithm determines if any event in the inconclusive
dataset is similar to an event in categories having clearly defined
consumption patterns, namely the washing machine and dish-
washer cycles;

4. Time of day probability is used to assign inconclusive events to
an end-use category.

Testing on three independent households located in Melbourne
(Australia) demonstrated a high prediction accuracy, namely be-
tween 80% and 90% for the major end-use categories (Nguyen et al., 
2014). However, the method still requires human input to achieve 
such levels of recognition accuracy (e.g., for the classification of 
inconclusive events supported by DTW and for manually 
classifying combine events) (Nguyen et al., 2013a, b).
3.5. Research challenges and future directions

Given the small number of algorithms for disaggregating water 
flow data, there is still a large room for developing new methods 
addressing the major limitations of the existing approaches:

1. First, most of the approaches used in the water sector requires
time consuming expert manual processing and intensive human 
interactions via surveys, audits and water event diaries, while 
the development of automatic procedures is fundamental to 
further extend the application of these methods beyond 
experimental trials and research projects (Stewart et al., 2010). 
Moreover, the existing methods have limited accuracy in iden-
tifying overlapping events.

The disaggregation problem has been addressed in other
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research fields as a general problem of blind identification, o
output-only system identification (Reynders, 2012). The real state o
the system (i.e., the set of the working states and water con
sumption of each single fixture in the household) is unknown and
only observations of the system output (i.e., the total water con
sumption) are available. Starting from the 1990s, several technique
have been proposed to address blind identification problems in
different research field, such as signal processing, data communi
cation, speech recognition, image restoration, seismic signal pro
cessing (see Abed-Meraim et al., 1997, and references therein).

With the development of smart electricity grids (Kramers et al
2014; Niesse et al., 2014), this problem has been largely studied in
the energy sector to develop automatic disaggregation methods, also
known as Non Intrusive Load Monitoring (NILM) algorithms, which
aim at decomposing the aggregate household energy con-sumption
data collected from a single measurement point into device-leve
consumption data (for a review, see Zeifman and Roth, 2011; Zoha e
al., 2012; Carrie Armel et al., 2013, and references therein). Thes
methods show promising results and seem effective also up to 6e10
appliances (Figueiredo et al., 2014; Makonin et al., 2013). Yet, th
portability of such techniques in the water field has not been
assessed. Some additional challenges in characterizing water end
use events might be introduced by the larger human dependency
than the one of electric appliances, which are more automatic. Thes
concerns primarily involve manually controlled fixtures (e.g
bathtubs, showers, faucets), which might be used not at th
maximum capacity (Froehlich et al., 2009).

2. The second main open question relates to the acquisition of the 
ground truth for initial calibration. All the algorithms used for 
disaggregating water data, but also the majority of the ones used 
for energy data, need an intrusive period to collect a dataset of 
disaggregated end-use events, which incurs extra cost and hu-
man effort, ultimately challenging their large-scale application. 
Researchers are actively looking to devise completely unsuper-
vised or semi-supervised methods that avoid the effort of 
acquiring the calibration ground truth data (e.g., Gonçalves 
et al., 2011; Parson et al., 2014).

3. Finally, most of the approaches developed in the energy sector 
are currently focused on correctly characterizing the on/off 
status of the devices and, possibly, the fraction of total energy 
assigned correctly, while their performance in reproducing the 
timings and frequencies of each device are lower (Batra et al., 
2014). Yet, timings and frequencies represent key information 
to understand consumers behaviors and design personalized 
demand management strategies (e.g., deferring the use of some 
appliances to peak-off hours). Accordingly, knowledge about use 
frequencies, timing and peak-hours in the water sector would 
constitute crucial information for identifying both typical con-
sumption behaviors and patterns, as well as consumption 
anomalies (e.g., leakages (Loureiro et al., 2014; Ponce et al., 
2014; P�erez et al., 2014; Perez et al., 2014)). This 
knowledge would aid the activities of water utilities at 
different levels: demand management, network 
maintenance, and strategic planning.

4. User modeling

The user modeling phase (third block in Fig. 1) aims at repre-
senting the water demand at the household level, thus preserving
the heterogeneity of the individual users in the modeled commu-
nity, possibly as determined by natural and socio-psychographic
factors as well as by the users' response to different WDMS. In
the literature, two distinctive approaches exist (see Table 4):
descriptive models, which limit their extent to the analysis of water
consumption patterns, and predictive models, which provide esti-
mate of the water consumption at the individual (household) level 
as determined by natural and socio-psychographic factors, and in 
response to different WDMS.
4.1. Descriptive models

The first class of models, namely descriptive models, aims at 
analyzing the observed water consumption behaviors of water 
users. Depending on the resolution of the data available, the anal-
ysis can focus on identifying aggregated consumption patterns or 
on defining users' profiles on the basis of the disaggregated end-
uses (e.g., Loh et al., 2003; SDU, 2011; SJESD, 2011; Gato-Trinidad et 
al., 2011; Willis et al., 2011; Beal et al., 2011b, 2013; Cardell-Oliver 
and Peach, 2013; Cole and Stewart, 2013; Beal and Stewart, 2014; 
Beal et al., 2014; Gurung et al., 2014, 2015).

The construction of descriptive models allows studying histor-
ical trends (Agudelo-Vera et al., 2014; Kofinas et al., 2014) to build 
a user consumption profile that constitutes the baseline for identi-
fying the most promising areas where conservation efforts may be 
polarized (e.g., restriction on irrigation practices in case gardening 
represents the dominant end-use). However, the majority of these 
models cannot be used to predict the water savings potential of 
alternative WDMS, unless combined with control group experi-
ments to observe user responses (Cahill et al., 2013).
4.2. Predictive models

The second class of models, namely predictive models, aims at 
estimating the water demand at the individual (household) level. 
Some works developed predictive models that mostly provide 
short-term forecast of the water demand on the basis of time series 
analyses (e.g., Homwongs et al., 1994; Molino et al., 1996; 
Altunkaynak et al., 2005; Alvisi et al., 2007; Nasseri et al., 2011). 
Yet, these approaches are ineffective in supporting the design and 
implementation of WDMS as the predicted water consumption of a 
user is not related to his socio-psychographic factors or his 
response to different WDMS. An alternative approach can be 
structured in the following two sub-steps: (i) multivariate analysis, 
which consists in the identification and selection of the most 
relevant inputs to explain the preselected output, and (ii) 
behavioral modeling, which means model structure identification, 
parameter calibration and validation.

The multivariate analysis phase (i.e., variable selection as called 
in data-driven modeling (George, 2000)) is a fundamental step to 
build predictive models of urban water demand variability in space 
and time. In most of the works, the identification of the most 
relevant drivers relies on the results of data mining techniques 
(e.g., correlation analysis) between a pre-defined set of variables 
(candidate drivers) and the water consumption data. This approach 
is also referred to as inductive modeling (Cahill et al., 2013). An 
alternative to this data-driven approach is the deductive construc-
tion of models according to empirical or theoretical causality 
(Cahill et al., 2013). Depending on the specific domains from which 
the candidate drivers are extracted, which is often delimited by 
data availability (Arbu�es et al., 2003), we can distinguish the 
following three main approaches:

� economic-driven studies, which focus on studying the correlation
between water consumption and purely economic drivers, such 
as water tariff structures or water price elasticity (e.g., Schneider 
and Whitlatch, 1991; Espey et al., 1997; Brookshire et al., 2002; 
Dalhuisen et al., 2003; Olmstead et al., 2007; Olmstead and 
Stavins, 2009; Rosenberg, 2010; Qi and Chang, 2011);



Table 4
Studies contributing in the user modeling step. Legend for multi-variate analysis approaches: E ¼ economic-driven; GS ¼ geo-spatial; P ¼ psychographic driven;
AR ¼ autoregressive. Legend for behavioral models approach: single ¼ single user model; multi ¼ multi-user model.

Reference Location Modeling approach Multivariate analysis Behavioral model Spatial scale

Australia Descriptive e e Household
Australia Descriptive e e Household
USA Descriptive e e Household
USA Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
Australia Descriptive e e Household
USA Predictive E þ GS þ P Single Household
Australia Predictive E þ P Single Household
N/A Predictive E þ GS þ P Single þ multi N/A
USA Predictive E e District
USA Predictive E þ GS þ P single Household
N/A Predictive E e N/A
N/A Predictive E e N/A
USA Predictive GS e Urban
USA Predictive GS e Census tracts
USA Predictive GS e Household
USA Predictive E e Household
Australia Predictive P e Household
USA Predictive AR e Urban
Italy Predictive AR e Urban
Turkey Predictive AR e Urban
Italy Predictive AR e Household
Iran Predictive AR e Urban
N/A Predictive E e N/A
N/A Predictive E e N/A
Jordan Predictive E e Household
USA Predictive E e Urban
USA Predictive GS e District
Australia Predictive GS e Urban
Australia Predictive GS e District
USA Predictive GS e Urban
USA Predictive GS e Urban
Australia Predictive GS e Urban
USA Predictive GS e Urban
USA Predictive GS e Census tracts
USA Predictive GS e Census tracts
Korea Predictive GS e urban
N/A Predictive GS e N/A
USA Predictive GS e Household
USA Predictive GS e Urban
Australia Predictive P e Household
USA Predictive P e Household
UK Predictive P e Household
N/A Predictive P e N/A
10 OECD countries Predictive P e Household
USA Predictive P e Household
Portugal Predictive P e Household
Australia Predictive P e Household
Italy Predictive P e Water utility
Australia Predictive GS Single Urban
Jordan Predictive GS þ P Single Household
Nederland Predictive P Single Household
USA Predictive P Single Household
Australia Predictive GS þ E þ P Single Household
Australia Predictive E þ P Multi Household
Spain Predictive P Multi Household
China Predictive E þ P Multi Household
N/A Predictive GS þ P Multi Household
N/A Predictive P e Household
USA Predictive E þ GS þ P Single Household
Australia Predictive E þ P Single Household
USA Predictive GS Multi Urban
USA Predictive P Single Household

Loh et al. (2003)
Gato-Trinidad et al. (2011) SDU 
(2011)
SJESD (2011)
Cardell-Oliver and Peach 
(2013) Beal et al. (2013)
Beal and Stewart (2014) 
Gurung et al. (2015)
Gurung et al. (2014)
Beal et al. (2014)
Cole and Stewart (2013) Willis 
et al. (2011)
Beal et al. (2011b)
Maggioni (2015)
Makki et al. (2015)
House-Peters and Chang 
(2011) Schneider and 
Whitlatch (1991) Lyman (1992)
Espey et al. (1997)
Dalhuisen et al. (2003)
Miaou (1990)
Polebitski and Palmer (2010) 
Lee et al. (2011)
Olmstead et al. (2007)
Willis et al. (2013)
Homwongs et al. (1994) Molino 
et al. (1996) Altunkaynak et al. 
(2005) Alvisi et al. (2007)
Nasseri et al. (2011) Brookshire 
et al. (2002) Olmstead and 
Stavins (2009) Rosenberg 
(2010)
Qi and Chang (2011)
Griffin and Chang (1991)
Zhou et al. (2000)
Zhou et al. (2002)
Fullerton and Elias (2004)
Aly and Wanakule (2004) Gato 
et al. (2007)
Balling and Gober (2007) 
Balling et al. (2008)
Lee and Wentz (2008) 
Praskievicz and Chang (2009) 
Corbella and Pujol (2009) 
Chang et al. (2010)
Lee and Wentz (2010)
Syme et al. (2004)
Wentz and Gober (2007)
Fox et al. (2009)
Russell and Fielding (2010) 
Grafton et al. (2011)
Suero et al. (2012)
Matos et al. (2014)
Talebpour et al. (2014) Romano 
et al. (2014)
Gato (2006)
Rosenberg et al. (2007) Blokker 
et al. (2010)
Cahill et al. (2013)
Bennett et al. (2013)
Rixon et al. (2007)
Gal�an et al. (2009)
Chu et al. (2009)
Kanta and Zechman (2014) 
Jorgensen et al. (2009) Kenney 
et al. (2008)
Makki et al. (2013)
Giacomoni and Berglund 
(2015) Escriva-Bou et al. 
(2015a)
? USA Predictive P Single Household



� geo-spatial studies, which assess the correlation between hydro-
climatic variables and seasonality with water consumption (e.g., 
Miaou, 1990; Griffin and Chang, 1991; Zhou et al., 2000, 2002; 
Fullerton and Elias, 2004; Aly and Wanakule, 2004; Gato et al., 
2007; Balling and Gober, 2007; Balling et al., 2008; Lee and 
Wentz, 2008; Praskievicz and Chang, 2009; Corbella and Pujol, 
2009; Chang et al., 2010; Polebitski and Palmer, 2010; Lee and 
Wentz, 2010; Lee et al., 2011);

� psycographic-driven studies, which infer the influence of users'
personal attributes on their water consumption, including in-
come, family composition, lifestyle, and households physical 
characteristics (e.g., number of rooms, type, presence of garden)
(e.g., Syme et al., 2004; Wentz and Gober, 2007; Fox et al., 2009; 
Jorgensen et al., 2009; Russell and Fielding, 2010; Grafton et al., 
2011; Willis et al., 2013; Suero et al., 2012; Matos et al., 
2014; Talebpour et al., 2014; Romano et al., 2014).

Note that this classification is not stringent, in the sense that 
hybrid approaches dealing with more than one of the mentioned 
domains have already been developed (e.g., Makki et al., 2015). 
Similarly to the descriptive models discussed in the previous sec-
tion, the development of predictive models could significantly 
benefit from smart metering technologies and high-resolution 
water consumption data. Indeed, the availability of high-resolution 
and end-use characterization of the water consump-tion allows 
predicting the effects of customized WDMS focused on specific 
end-uses (e.g., Makki et al. (2013)). In most of the literature, the 
user modeling is limited to the multivariate analysis, which 
however provides only qualitative information to water managers, 
water utilities, and decision makers. Only few works completed the 
second phase (i.e., behavioral modeling) and provide a quantitative 
prediction of the water demand at the household level, thus rep-
resenting better decision-aiding tools as they can use these models 
to develop what-if analysis as well as scenario simulation and 
analysis.

The construction of behavioral models aims at the identification, 
calibration, and validation of mathematical models, which describe 
the water demand (i.e., output variable) as a function of the drivers 
identified in the multivariate analysis. In the behavioral modeling 
literature, we can identify a first class of models, named single-user 
models, which describe the consumption behavior of individual 
users considered as isolated entities. These works (e.g., Lyman, 
1992; Gato, 2006; Kenney et al., 2008; Maggioni, 2015) generally 
rely on dynamic models based on sampling of statistical distribu-
tions describing average users and end-uses (e.g., number of people 
per household and their ages, the frequency of use, flow duration 
and event occurrence likelihood). Water demand patterns can be 
then estimated via model simulation and comparison of the results 
with the observed data. Yet, this approach often reduces the het-
erogeneity of the water users, which can be preserved by running 
Monte Carlo simulations that sample also the extreme values of the 
associated statistical distributions (Rosenberg et al., 2007; Blokker 
et al., 2010; Cahill et al., 2013). Recently, different approaches 
(Bennett et al., 2013; Makki et al., 2013, 2015) combining non-
parametric statistical tests and advanced regression models to 
identify key water consumption drivers and forecast urban water 
consumption have been demonstrated to successfully identify the 
main drivers of water consumption and to attain good forecast 
accuracy levels.

A second class of behavioral models, named multi-user models, 
instead focus on studying the social interactions and influence/
mimicking mechanisms among the users. The majority of these 
works relies on multiagent systems (Shoham and Leyton-Brown, 
2009), where each water user (agent) is defined as a computer 
system situated in some environment and capable of autonomous
actions to meet its design objectives, but also able to exchange 
information with the neighbor agents and change its behavior 
accordingly (Wooldridge, 2009). The adoption of agent-based 
modeling offers several advantages with respect to other ap-
proaches (Bonabeau, 2002; Bousquet and Le Page, 2004): (1) it 
provides a more natural description of a system, especially when it 
is composed of multiple, distributed, and autonomous agents, (2) it 
relaxes the hypothesis of homogeneity in a population of actually 
heterogeneous individuals, (3) it allows an explicit representation 
of spatial variability, and (4) it captures emergent global behaviors 
resulting from local interactions. As a consequence, multiagent 
systems can be employed to study the role of social network 
structures and mechanisms of mutual interaction and mimicking 
on the behaviors of water users (e.g., Rixon et al., 2007; Gal�an et al., 
2009), to estimate market penetration of water-saving technologies 
(e.g., Chu et al., 2009), and to simulate the feedbacks between water 
consumers and policy makers (e.g., Kanta and Zechman, 2014).

4.3. Research challenges and future directions

Given the current status of user modeling studies and the room 
for improvement given by the use of high resolution, smart 
metered data, several research challenges and future directions 
emerge:

1. The first open question in terms of descriptive models concerns 
matching the analysis of the water consumption patterns with 
the potential drivers generating the observed users' behaviors. 
This would allow validating the results of the classification of 
the users on the basis of their consumption and understanding 
if this latter is a good proxy representing different 
characteristics of the users.

2. The use of spatially explicit models to take advantage of the 
high temporal and spatial resolution of smart metered data is 
often hindered by the aggregation of individual household data 
to a larger spatial scale to protect customers' privacy as well as 
by the difficulties in collecting and sharing data coming across 
multiple water authorities and administrative institutions 
(House-Peters and Chang, 2011).

3. The third major challenge relates to the validation of the agent-
based behavioral models. As in the construction of complex 
process-based models, accurately describing the single user 
(agent) behavior and connecting multiple users within an 
agent-based model does not ensure the validity of the results, 
although these latter are contrasted with observed data. In 
addition, given the large number of assumption and parameters, 
the problem of equifinality (i.e., the potential existence of 
multiple, alternative parameterization leading to same simula-
tion outcomes) has to be addressed (Ligtenberg et al., 2010).

4. It is worth noting that the type of candidate drivers considered 
in the user modeling phase impacts the statistical representa-
tiveness of the results. The construction of sufficiently large 
datasets to estimate the relationships between water con-
sumption data and the uncontrolled drivers (i.e., hydro-climatic 
and psychographic variables) is generally easy, provided that 
the time period is long enough and the number of involved 
users is sufficiently high. On the contrary, in most of the cases 
there is a single historical realization of the controllable drivers, 
namely the ones subject to human decisions (e.g., the existing 
pricing scheme). In such cases, the response of the users to 
different options is generally estimated via economics principles 
or sur-veys. Yet, economic principles introduce a priori general 
rules that might be inaccurate in characterizing the specific 
users under study, and the surveys provide only a static 
snapshot of the system conditions. The potential for using 
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trials (e.g., Gilg and Barr, 2006; Borisova and Useche, 2013; 
Fielding et al., 2013) and gamification platforms (e.g., Mühlh
€auser et al., 2008) to validate behavioral models results by 
retrieving information to the real users in large-scale applica-
tions has not been tested yet.

5. Finally, a major opportunity is represented by the development
of integrated models that cross-analyze water and water-related 
energy consumption data to improve residential water demand 
models (Abdallah and Rosenberg, 2014; Escriva-Bou et al., 
2015b, a).

5. Personalized water demand management strategies

Literature reports of a variety of management policies acting on 
the demand side of residential water consumption, designed with 
the purpose of improving water conservation and safeguarding 
water security in urban contexts. According to Inman and Jeffrey 
(2006), they can be classified in the following five categories (Table 
5): technological, financial, legislative, maintenance, and educational. 
These strategies differ in the time scales they act on: price and 
prescriptive (i.e., command-and-control) approaches have been 
shown to achieve significant reductions of water de-mand in the 
short-period, but also have some drawbacks (such as
Table 5
Studies contributing in the personalized WDMS step. Different WDMS are cons
T ¼ technological.

Reference Location

USA
N/A
Australia
N/A
USA
USA
Australia
USA
USA
USA
USA
Australia
N/A
Spain
N/A
Greece
USA
Australia
Australia
Australia
USA
N/A
Australia
France
N/A
Australia
USA
UK
N/A
Australia
USA
N/A
USA
USA
Australia
Brazil
Australia
Australia
Australia
Australia
USA
USA

Maggioni (2015)
Inman and Jeffrey (2006)
Britton et al. (2008)
Dalhuisen et al. (2003)
Mayer and DeOreo (1999)
Mayer et al. (2004)
Roberts (2005)
Suero et al. (2012)
Mayer et al. (2000)
Mayer et al. (2003)
DeOreo (2011)
Dandy et al. (1997)
Arbu�es et al. (2003)
Molinos-Senante (2014) 
Worthington and Hoffman (2008) 
Kanakoudis (2002)
Duke et al. (2002)
Hensher et al. (2006)
Brennan et al. (2007)
Grafton and Ward (2008)
Renwick and Archibald (1998)
Steg and Vlek (2009)
Britton et al. (2013)
Garcia and Thomas (2001)
Brooks (2006)
Fielding et al. (2013)
Renwick and Green (2000) Howarth 
and Butler (2004)
Geller (2002)
Willis et al. (2010)
Froehlich et al. (2012)
Sonderlund et al. (2014)
Kenney et al. (2004)
Kenney et al. (2008)
Mead and Aravinthan (2009)
Froes Lima and Portillo Navas (2012) 
Carragher et al. (2012)
Cole et al. (2012)
Stewart et al. (2013)
Gurung et al. (2015)
Giacomoni and Berglund (2015) 
Escriva-Bou et al. (2015a)
Escriva-Bou et al. (2015b) USA
equity issues and limits in consumers' price elasticity) that may 
limit the effectiveness of such strategies in the long term, if not 
integrated with other water conservation interventions (Fielding 
et al., 2013; Renwick and Green, 2000). In contrast, users' aware-
ness and educational approaches allow for smaller reductions in 
the short period, but appear to be crucial to pursue reductions on 
the long run, as they require a change in users' behaviors (Geller, 
2002).

Technological strategies involve the installation of water effi-
cient household appliances (e.g., Mead and Aravinthan, 2009; 
Suero et al., 2012; Carragher et al., 2012; Froes Lima and Portillo 
Navas, 2012; Gurung et al., 2015). This option offers great poten-
tial for reducing indoor and outdoor water consumption (Mayer et 
al., 2000, 2003, 2004; DeOreo, 2011). Yet, the benefits associ-ated to 
these advanced systems are inconstant (Maggioni, 2015). For 
example, an incorrect use of automatic sprinkler may consume 
more water than manually operated irrigation systems (Syme et al., 
2004), thus requiring educational programs to ensure an appro-
priate use.

Financial strategies, (also called market-based or price ap-
proaches (Olmstead and Stavins, 2009)), consist in water tariffs 
control associated to analysis of water demand elasticity (e.g., 
Dandy et al., 1997; Dalhuisen et al., 2003; Arbu�es et al., 2003;
idered: E ¼ educational; F ¼ financial; L ¼ legislative; M ¼ maintenance;

Type of WDMS Personalized

L þ T þ F x
T þ F þ L þ M þ E
M x
E
M x
T þ M x
M x
T x
T x
T x
T x
F
F
F
F
F
F
L x
L
L
L x
L-E x
M x
M
M
E x
E
E x
E x
E x
E x
E x
L
L þ F þ E x
T x
T þ E x
T x
F x
E x
T x
L þ T
T þ E
T þ E



Kenney et al., 2008; Cole et al., 2012; Molinos-Senante, 2014; 
Maggioni, 2015). Even though some authors claim that price-based 
strategies are more cost effective than other conservation programs 
(Olmstead and Stavins, 2009), the effectiveness of this strategies 
seems uncertain as water demand has been shown to be relatively 
price inelastic (Worthington and Hoffman, 2008) and to rebound to 
the same or even higher levels after an initial decrease 
(Kanakoudis, 2002). Yet, a careful assessment of the effectiveness of 
these stra-tegies would benefit from longer dataset gathered in 
multiple ju-risdictions and contexts (Worthington and Hoffman, 
2008). In addition, the are also concerns about the equity of raising 
prices (Duke et al., 2002).

Legislative strategies correspond to mandatory regulations and 
restrictions on water use, particularly in case of drought (e.g., 
Kenney et al., 2004; Hensher et al., 2006; Brennan et al., 2007; 
Kenney et al., 2008; Grafton and Ward, 2008). Restrictions applied 
to specific water uses, such as car washing or irrigation, have been 
demonstrated to reduce water consumption up to 30%(Renwick 
and Archibald, 1998; Kanakoudis, 2002). However, they require 
policy intervention to be implemented (Maggioni, 2015) and may 
be resisted by the community (Steg and Vlek, 2009).

Maintenance strategies consist in operations aiming at reducing 
or eliminating leakages in the water supply networks (e.g., Britton 
et al., 2008, 2013), which generally account for a significant fraction 
of the water consumption (e.g., EEA (2001) estimated losses due to 
leakage equal to 30% in Italy and 50% in Bulgaria). The identification 
and repair of leakages, which are often associated to a small 
number of households (Roberts, 2005; Mayer and DeOreo, 1999; 
Mayer et al., 2004), allows substantial increase in the efficiency of 
the water supply systems at lower costs with respect to augment-
ing the water supplied without repairing the network (Garcia and 
Thomas, 2001; Brooks, 2006).

Educational strategies aim at engaging the water users by means 
of public awareness and education campaigns (e.g., Geller, 2002; 
Steg and Vlek, 2009; Froes Lima and Portillo Navas, 2012; Anda 
et al., 2013; Fielding et al., 2013; Stewart et al., 2013). The 
effec-tiveness of these approaches is case-dependent: for 
example, it is estimated that information campaigns successfully 
led to a reduc-tion of water demand equal to 8% in the period 
1989e1996 in California (Renwick and Green, 2000), while 
no impact was observed in UK, where, although a large 
campaign involving direct mailing as well as newspaper and radio 
advertisements, only 5% of the 8000 residences involved noticed 
the campaign (Howarth and Butler, 2004). Recent studies however 
suggest that a relevant water saving potential can be obtained by 
providing feedbacks to the users about their water consumption 
or suggestions on customized water savings practices (e.g., Kenney 
et al., 2008; Willis et al., 2010; Froehlich et al., 2012; Sonderlund 
et al., 2014).

Regardless the type of demand-side management strategy 
implemented, the availability of high-resolution data appears 
crucial both for the design and for an accurate evaluation of the 
effects of such interventions. Studies like Mayer et al. (2000) and 
Mayer et al. (2003), for instance, demonstrate that smart metered 
data and end-use characterization are crucial tools for evaluating 
the effects of retrofitting interventions both in terms of consump-
tion reduction for particular end-uses and changes in consumption 
patterns (i.e., use frequencies and volumes). The same stands for 
price-based approaches, as smart metered data can be exploited to 
differentiate the price elasticity in relation to different uses (e.g., 
outdoor and indoor water consumption), allowing for the design of 
new price schemes, such as Time of Use Tariffs (Cole et al., 2012). In 
turn, if we consider educational campaigns, there is evidence of the 
potential of high-resolution metering in supporting the design of 
effective feedbacks and assess behavioral changes (Froehlich et al., 

2012; Stewart et al., 2013; Sonderlund et al., 2014).
5.1. Research challenges and future directions

Given the recent improvements in characterizing water users'
behaviors, a list of open research challenges exists to improve the
designed of personalized WDMS:

1. The first challenge is the identification of more effective stra-
tegies for influencing the users behaviors. Technological stra-
tegies mostly impact on a limited number of end-uses (e.g., 
clothes or dish washers), whereas are less effective in inducing 
water savings in more human-controlled end-uses, such as 
showering or tap water. Moreover, investment inefficiencies 
can limit the effectiveness of these strategies causing the 
Efficiency Gap that is well-known in the energy field (Allcott and 
Greenstone, 2012). Educational intervention and programs can 
be more effective in controlling these latter, for example by 
providing feedbacks to the users as already applied in the en-
ergy sector (e.g., Abrahamse et al., 2007; Costanza et al., 2012). 
Yet, there are still open questions on the use of feedbacks to 
reduce water (or energy) consumption, particularly with respect 
to the most effective feedback format, whether the effect per-
sists over time, as well as assessments of costs and benefits of 
feedback (Strengers, 2011; Desley et al., 2013).

2. The second main open question relates to the long-term effect of 
WDMS, especially for educational programs and awareness 
campaigns (e.g., Peschiera et al., 2010; Pereira et al., 2013). 
Although they showed promising results during the program 
and some months afterwards, their effect eventually dissipated 
and water consumption returned to pre-intervention levels af-
ter approximately 12 months (Fielding et al., 2013).

3. Finally, further effort should be devoted to examine the role of 
social norms and social influence in promoting water conser-
vation (Rixon et al., 2007; Van Der Linden, 2013; Schultz et al., 
2014). In particular, the potential for using gamification plat-
forms and social applications to allow users monitoring their 
consumption coupled with normative information about similar 
households in their neighborhood should be assessed (Bogost, 
2007; Rizzoli et al., 2014; Harou et al., 2014; Clifford et al., 2014; 
Curry et al., 2014; Savi�c et al., 2014; Vieira et al., 2014; Kossieris 
et al., 2014; Magiera and Froelich, 2014; Laspidou, 2014). Water 
utilities can indeed take advantage of people's tendency to 
mimic the behavior of their neighbors in order to target their 
efforts to “early adopters” and encourage technology diffusion 
(Janmaat, 2013). 

6. Discussion and conclusions

Designing and implementing effective water demand manage-
ment strategies is becoming more and more important to secure 
reliable water supply and reduce water utilities' costs over the next 
years. The advent of smart meters made available new water con-
sumption data at very high spatial and temporal resolution, 
enabling a more detailed description of the drivers inducing people 
to consume or save water. A better understanding of water users' 
behaviors is indeed fundamental to promote water savings actions 
as it allows (i) selecting the specific behaviors to be changed, (ii) 
examining the factors causing those behaviors, (iii) applying well-
tuned interventions, and (iv) systematically evaluating the effects 
of these interventions on the resulting behaviors (Geller, 2002).

In this paper, we reviewed 134 papers (Table 1) that contributed 
new methodologies and tools in one or more of the blocks under-
lying the general 4-step procedure represented in Fig. 1. A 
“road-map” of the main research challenges that need to be 
addressed in order to move the application of smart meters 
forward over the next decade is shown in Table 6 and 

summarized below:



Table 6
Main research challenges for the use of smart meters in residential water demand modeling and management.

1) Data gathering 2) Water end-uses characterization 3) User modeling 4) Personalized WDMS

1.1) Management of big data 2.1) Automatic disaggregation
procedures (i.e., no manual processing)

3.1) Matching observed water
consumption profiles with
potential drivers of users' behaviors

4.1) More effective
behavioral
influence via customized
feedbacks

1.2) Centralized or distributed
information system

2.2) Unsupervised disaggregation algorithms (i.e.,
no ground truth)

3.2) Identification of spatial patterns
across geographical areas

4.2) Long-term effect of
WDMS

1.3) Impacts on
household privacy

2.3) Higher accuracy in reproducing
timings and frequencies

3.3) Validation of the agent- based
behavioral models

4.3) Social norms and social
influence

1.4) Real world scalability
of high-resolution networks

3.4) Testing experimental trials and
gamification platforms
3.5) Developing integrated
models for water and water-related energy
1. Data gathering: (i) how to efficiently and reliablymanage the big
data generated by the acquisition of high resolution smart
metered flow data; (ii) understanding the best information
system architecture (i.e., centralized or distributed) to store the
data collected by the smart meters; (iii) how householder pri-
vacy is impacted by collection and communication of detailed
water-use information;

2. Water End-uses characterization: (i) development of automatic
procedures for disaggregating water consumption data at the
household level to reduce the manual processing and intensive
human interactions required by current methods; (ii) develop-
ment of unsupervised methods that avoid the effort of acquiring
the ground truth for training the algorithms; (iii) enhancing the
accuracy of the methods in reproducing the timings and fre-
quencies of each device usage.

3. User modeling: (i) matching the analysis of the observed water
consumption profiles identified in the descriptive models with
the potential drivers generating the observed users' behaviors;
(ii) better exploit the high spatial resolution of smart metered
data to identify water use patterns across geographic areas; (iii)
validation of the agent-based behavioral models' simulation
against observed data; (iv) testing of experimental trials and
gamification platforms to support the validation of the behav-
ioral models as well as to retrieve information from the water
users; (v) developing integrated models for water and water-
related energy.

4. Personalized water demand management strategies: (i) identi-
fication of more effective strategies for influencing the users
behaviors, particularly by means of customized feedbacks to the
water users providing information about their water con-
sumption or suggestions on water savings practices; (ii) how to
ensure a long-term effect of the implemented water demand
management strategies, especially for educational programs
and awareness campaigns; (iii) a better understanding of the
role of social norms and social influence in promoting water
conservation;

Despite the large number of papers published over the last
years, the analysis of the studies discussed in this review highlights
a clear need to shift research efforts from the development of
specialized methodologies within each step of the procedure to-
ward a more integrated approach that covers all the four phases.
Indeed, the majority of the studies reviewed (i.e., 89% over 134
papers) provides contribution to a single step, whereas only few
works go across multiple steps.

Moreover, we can observe that the case study locations are not
homogeneously distributed: 79% of the papers reviewed are
applied in the United States (36%) or Australia (43%), while the
remaining studies were developed in Europe (13%) or Asia (6%) and
a single application found in South America and no one in Africa. 
However, we expect that the challenges posed by climate change 
impacts, growing population demands, and constrained sources of 
water supply will call for the application of integrated residential 
water demand modeling and management in several countries 
across the world. Finally, we foresee that the investments for smart 
technologies in fields other than urban water management (e.g., 
Fernndez et al., 2014; Niesse et al., 2014; Kramers et al., 2014; 
Rezgui et al., 2014; Zarli et al., 2014) will create opportunities for 
collaborations and common actions among different spheres. Res-
idential water demand modeling and management can benefit 
from these collaborations because smart technologies and net-
works have already been deployed in other fields, like domestic 
energy, thus representing a benchmark for learning and integra-
tion. Moreover, the existing nexus between energy and water is 
expected to foster synergies and cross-influences for addressing 
future demands (WWAP, 2014; Escriva-Bou et al., 2015b). Inte-
grated, interdisciplinary science will thus support policy makers 
and planners addressing the major sustainability challenges placed 
by modern urban contexts and their evolution towards smart cities 
(Hilty et al., 2006; Laniak et al., 2013; Kelly et al., 2013).
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