Device-Free Radio Vision for Assisted Living

[Leveraging wireless channel quality information f& human sensing]
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Wireless propagation is conventionally consideredh& enabling tool for transporting infor-
mation in digital communications. However, recesdgarch has shown that the perturbations of
the same electromagnetic fields that are adopteddta transmission can be used as powerful
sensing tools fodevice-freeradio vision. Applications range from human bodgtion detection
and localization to passive gesture recognitiorini@ with the current evolution of mobile phone
sensing [1], radio terminals are not only ubiquit@ommunication interfaces, but they also incor-
porate novel or augmented sensing potential, cepalacquiring an accurate human-scale under-
standing of space and motion. This article shows taalio-frequency signals can be employed to
provide a device-free environmental vision, andstigates the detection and tracking capabilities

for potential benefits in daily life.

1. INTRODUCTION

“It's not difficult. Every time | lift my arm, itidtorts a small electromagnetic field that is main-
tained continuously across the room. Slightly d#fifie positions of my hand and fingers pro-
duce different distortions and my robots can intetphese distortions as orders. | only use it
for simple orders: Come here! Bring tea! and sd ¢tsaac Asimov, The Robots of Dawn, 1983.
Device-free radio vision is an augmented functiyparovided by radio transceivers — typically
heterogeneous, densely distributed and networkéndt-monitor the fluctuations of the electro-
magnetic (EM) field across the space. These mangatevices may be pre-existjragployed at
arbitrary (or optimized) locations for communicatiourposes in the area of interest, and exchange
digital information by any wireless communicatiorofocol. Radio vision systems leverage dif-
fraction, reflection and scattering phenomenadffatt radio-frequency (RF) propagation for ubig-
uitous sensing. RF signals can be either narrowlanwddeband, in licensed or unlicensed fre-

guency bands, with carrier frequencies ranging fkdHe to GHz, and above. The presence, posi-

tion and motion of a human body in the network afact the EM field in a predictable way,
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Figure 1: Device-free radio vision is based on tr&ing the perturbations of RF field sensed bydense networks o
radio-interacting wireless devices.

making it possible to estimate and track its agtiwithout the need to deploy and calibrate any
additional wearable sensa@enisor-free detectignnor to ask for specific user actiome-coop-
erative detection This passive sensing approach has been expddachenth in heterogeneous
networks but it is also appropriate for most of ¢éimeerging low-power wireless standards, and for
personal and device-to-device (D2D) communicat{@hsincluding WiFi, Bluetooth low energy
(BLE), ZigBee and D2D enabled long term evolutibmE Advanced) [3].

Tracking and recognition of human motions and @@ are done through real-time processing
of the wireless channel quality information (CQf).this paper, leading edge research and devel-

opments are discussed with special focus on addigiieg applications [4]

2. LEVERAGING RF SIGNALS FOR SENSING: DEVICE-FREE VISION

Personal sensing is the current scale at whicletteehinologies are being studied by the research
community: they are designed for sensing a singla (imited number of) individual(s) based on
real-time analysis of CQIl. As depicted in Fig. ddio-based vision systems track RF field pertur-
bations by dense networks of air-interacting wieldevices and process CQI data for the purpose
of human sensing. In order to support “vision” fuoes, three key distinctive technological fea-

tures are incorporated:



» Sensor-less Interaction and Anonymous Trackesture-based interactions of the user with the
environment are detected without instrumentingilman body (device-free) or deploying sensors
calibrated for each user (sensor-less). Subjeatésanonymously tracked and localized, in contrast
to privacy intrusive video-cameras, inferring thd Rerturbations from CQI.

= Ubiquitous Monitoring Unlike existing infrared (IR) recognition platfos [4], device-free radio
vision systems support ubiquitous user detectiomamplex non-line-of-sight (NLOS) indoor
spaces [5], using both fixed (e.qg., WiFi accessafsoZigBee/Bluetooth devices) and nomadic (e.g.,
smart-phones, tablets) radio devices (see Fidnat)dre interacting over mixed line-of-sight (LOS)
and NLOS), or through-the-wall links [6]. RF sigeatith wavelengths that are long enough to
penetrate dense objects, such as doors or watih)yeaxploited to recognize human motion and
gestures even if these gestures are visually ideshar in a different room adjacent to the one
where the RF device itself is operating.

= Scalable CQI (Big-Data) Analytiche technology typically requires information eggation,
processing and computation of massive amounts dfda€ generated from, and delivered to,
highly distributed and heterogeneous wireless @svi€QIl data for real-time processing are often
produced at high rates, in the order of tens ofishads of observations per second to cover large
spaces. Learning and running analytics from thaxggelvolumes of data requires the use of signal
processing tools designed to efficiently work oghhdimensional and often incomplete data-sets
[7] (e.g., due to random power cycling of devices anitmnication failures).

ACTIVE AND PASSIVE CONFIGURATIONS. Device-free radio vision systems can be based
on active or passive configurations as illustratelig. 2. The distinction between active and pas-
sive systems differentiates systems in which thiwepart (the transmitter) is under the control of
the system from those where it is not [Bhssivesystems capitalize on a pre-existing network
infrastructure where densely air-interacting deviaee exposed to some EM fields (e.g., FM radio
[8], WiFi [5][9]) and capture those ambient RF sitg1 CQI processing might be carried out dis-
tributedly or centrallyActivesystems exploit dense communications with fixed/adio transmit-
ters acting as interconnected mobile probes. Tegstems typically rely on a decentralized archi-

tecture where user data are propagated in diredenmstead of through a remote service provider



Device-Free Radio Vision: Network Configurations
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Figure 2: Active/passive network configurations fordevice-free radio vision. Transmitter (TX), receive (RX).

(e.g., cellular base stations, WiFi access poimtggn if providers might trigger the first device
connection, for logging, uplink/downlink (UL/DL) sghronization, etc. This concept s in line with
the current trend [3] of enablirgnall/femto-cell deployments wigmartphones able to discover

other phones in proximity, and overhear RF sigfral® device-to-device links.

3. MODELING OF RF SIGNALS FOR RADIO VISION

In radio vision systems, CQI measurements usecetmrgnition can be either in the form of phys-
ical (PHY) layer values, e.g., the baseband raldémnel state information (CSI) sampled at symbol
level, or received signal strength (RSS) data etechat upper layers.

Let us consider a wireless transmission organiagmlperiodic frames consisting of groups of
adjacent symbols, and a human body, located diqoziinside the wireless link area, performing
an activityd defined as an ensemble of non-rigid body motid®. [The user stat@ =[x,8] de-
fines a generic combination of user location anivig. The effects of the user staBeon the
channel response are observed over a7set{l,...,T} of consecutive received symbols (or
frames). For a static environment where the hunwaty ldoes not obstruct the link (i.e., human-
free stat® = @), the equivalent base-band channel respb(g®) = Y_, akgr_fke‘f"’k can be
modeled as multipath with a combinatiom\bélelayed pathst, and ¢, are the amplitude and the
phase shift of th&-th ray, respectively, angl,_,, models the received pulse waveform with delay

Tx. Human in stat® modifies the channel response at symbol tirae7 as
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where the amplitude,, (t|0) = a; + Aa,(t]0), the phase shitp, (t|0) = ¢, +A¢d,(t|®) and the
augmented delay, (t|®) = 1, + A1, (t]|©) of thek-th ray highlight the human-induced perturba-
tions compared to the human-free state @. Amplitudea, (t|®) and phase shifp, (t|©) incor-
porate human-induced micro-Doppler effects.

In what follows, the effect of human body motion ©®I is experimentally evaluated, either
for single and multicarrier digital communicatioysgems. An introductory case-study is shown in
Fig. 3, where detection of human motion is based86 (Fig. 3.a), and CSI measurements ex-
tracted from an orthogonal frequency division nplétking (OFDM) implementation (Fig. 3.b).
RECEIVED SIGNAL STRENGTH. The RSS is a practical metric to assess CQI atefrimwvel,
and it is commonly adopted for transmitter (TX)eeeiver (RX) link adaptation arihk-layer
transmission scheduling tasks. Power estimatongeak detectors, are commonly used to acquire
information about signal strength as depicted o Bia: the automatic gain control (AGC) loop
exploits RSS information to adapt the dynamic ramgfere A/D conversion. At frame timethe
RSSs; can be modelled in logarithmic (dB) scale as

st(0) = () + As,(0), (2)
where the additive deviatiaks; (0) from @ = @ models the body-induced perturbation af@) =
E[s;(®@ = @)] is the (average) RSS observed in the human-fre¢ge.stThe sequence
s(0) = [5:(0)]es€ RT*1 collects the human-induced RSS footprint obseiwesr T frames.
Likewise, theRSS profiles the deviation with respect @ = @: As(0) = [s;(0) — s(D)];e7 €
R™1, In IEEE 802.15.4 standard-compliant devices,digital RSS indicator (RSSK, can be
used as estimator of the RSS with 8-bit resolut@ther radios also implement the link quality
indicator (LQI) that correlates with packet receptrate (see [11] and references therein), and
provides an indirect estimate of RSS values. IniWi&ndards, RSS estimation can be obtained
from the received channel power indicator (RCRI)LTE, the reference signal received power

(RSRP) measures the power over the reference signal



Channel Quality Information: RSS and Base-Band CSI
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Figure 3.a: RSS processing for device-free radidsion: (top) digital/analog RSSI extraction, (bottan) RSSI date
(dashed curves) — and corresponding average profé€solid curves) - for human standinggrouching and sitting
on the floor (T = 160 IEEE 802.15.4 frames). Active configuration isomsideredwith two IEEE 802.15.4 links
Figure 3.b: baseband processing example for OFDM naluilation: (top) CSI extraction, (bottom) CSI powerfoot-
prints over K=4 OFDM pilot subcarriers (T = 223000 symbols) corresponding to humarbody crossing the lini
in 4 sec. OFDM implementation: 2.6 GHz, 64 subcareirs, cyclic prefix 16 samples, baseband sampling 5Mt
with 16 payload symbols per frame.

Recognition of human activity can be also basednaitti-link processing. Fig. 3.a (bottom)
shows the profileas,(0) € R™* over two IEEE 802.15.4 links € {#,,¢,}, forT = 160 frames,
based on 20 RSSI independent measuren®i®) = [5,,(0)].cz€ RT*! featuring a human
body standing in the surroundings of both linksdlied at 0.5 m above the ground), then crouching
and sitting on the floor. Since the human torsseaumore attenuation than waist and ankles, when
a person is standing, there is a larger RSS atiienuaith respect to the same body lying on the
floor. The profilesAs,(0), superimposed in solid lines, average out noigdiare-warping effects.
Detection of the human state can be based on magtébig., using simple time-domain features)
the observed entrie& (0), or the estimated deviations,(0), with the corresponding RSS pro-

files learned during a training procedure. Humateseéstimation possibly entails de-noising, time-



warping and reconstruction of missing RSSIs obgema (i.e., by interpolation methods) [12][13].
Missing or incomplete data can be representegd$,(0)] over the set of € QO € 7 received
frames, whergoq, (+) is the sampling operator nulling the entrie§ 4i©) not inQ [7].

BASEBAND MODELING OF C.S.I. Baseband CSI measures the channel response atlsymbo
level: CSI estimation is typically obtained fronaitring/reference signals (RS) multiplexed with
information symbols and periodically placed in gvrlame. Therefore, in contrast to RSS, pro-
cessing of CSI information for the purpose of rad&ion can leverage on multiple independent
measurements at frame level and can be used toredpst human body movements and gestures.
Assuming frequency-flat channel as for narrowbamirmunication but time-varying for moving
multipath environments, the received RS= h;(0)w; + n, at symbol timet € 7 (with w, and

n; the transmitted RS and the noise term, respegjivaptures the moving body in st&i¢hrough

the corresponding complex channel envelope addpied(1)

N
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Human body effects on channel response are nowddedédnto a characteristic footprint of chan-
nel variations overT received symbolsh(®) € C"™*! = [h.(0)];c5» The CSI profile set is
Ah(©) € €1 = [Ah.(O) = h(0) — h(®)];ey, With h(@) = E[h,(© = @)] being the average re-
sponse for the human-free state. Noisy proflR€0) = [A,(0) — h(®)].cq With estimated chan-
nelsh,(®) and human-free responké), are typically observed over a subset of timesyatbol
indexesX) € J accounting for the training/data multiplexingdamissing symbols.

The use of multi-carrier (OFDM) modulation enabiadti-dimensional processing of CSl over
the time-frequency grid and thus allows a fine4ggdi classification of human-motion [12]. As
depicted in Fig. 3.b, the CSI estimation is carpetlby periodic transmission of RSs over standard
defined time-frequency patterns [3]. The receive8sR over theK pilot subcarrierdf, ..., fx}

inside OFDM symbot can be written ag = diag[w;] - h;(0) + n, with vectorw, collecting the
transmitted RSs, and baseband channel vhag(@r) = [Hf,,f(G))];’;f1 containing the Fourier Trans-

form # () of channeh,(7|0)



@ @(5(“)/ 3D obstacle
EDlknilrerige 2| . —Fresnels ellipsoid X3

ds

o

Irx R Frx

Ap(x) [dB]

Ao (x)[dB]

L 1 1 1 1
03 05 1 15 2 25 3 35 4 45 48
x [m]

(b) Predicted vs. measured/simulated average channel power perturbation

Target across the LOS for x=2.5 m

Target along the LOS for y=0 m
T T 2 T ;3

x=2.5m
AN <1>
-10f 5

0 05 1 15 2 25 3 35 4 45 5 1 -08-06-04-020 02 04 06 08 1
x [m] 025Y [mlgos5

m —Predicted [17]
< + Measured
1m * EM simulation

E,(|E(X; 9)/Eo|*) 18]
E,(IE(X; 9)/Eo|?) @Bl

Figure 4.a: Link layout (top) and perturbation maps (bottom) of RF attenuation for mean and standard deia-
tion. Figure 4.b: Predicted vs. measured and EM simated average channel power perturbationsgong anc
across the LOS path). Measurements are obtained with person standing in x with varying posture. Predited
values are obtained for a rotating cylinder movingnside a 10x10 cm bin centered in x.

Hp ((©) = Hp (@) + F(Bh(7]0))]f.
AHf(©)

(4)

The CSl footprint is the matrbi(0) € C¥*T = [h,(0), ..., h7(0)]es With human-induced profile
AH(0) = [H(®) — H(®)]. The estimat#l(0) is evaluated over the time-frequency @etow ac-
counting for framing structure and irregular timeeuency RSs spacing. In Fig. 3.b (bottom) an

OFDM transmission over 2.6 GHz is implemented imdsing software defined radio (SDR) de-

vices: a person is crossing the link and standindd, causing an average attenuation of 5 dB. The

CSI power footprint estimate}gflt(@)ﬂ2 are shown foK = 4 pilots andl' = 223000 symbols.



A crucial problem for quantitative evaluation ofli@ vision system performance is the availa-
bility of a simple but realistic model to descringman body-induced shadowing. Ray-tracing [14],
EM/stochasti¢15][16], and geometric-based (see [2] for a reyiawdels have been investigated
to predict the correlation between the human bambtipnx and the corresponding channel per-
turbations. EM methods, that exploit geometric/omif theory of diffraction (GTD/UTD) and ray-
tracing algorithms as well, can be employed foirthbility to accurately evaluate the EM field at
the receiver, but they are usually very complexeticonsuming and, above all, require perfect
knowledge of the shape, composition and propedigte obstacle. In the tutorial “Diffraction
based modeling of human body shadowing”, we consdsimplified but effective framework

based on the Fresnel-Kirchoff diffraction theorglamown in the scenario of Fig. 4.a.

TUTORIAL: DIFFRACTION-BASED MODELING OF HUMAN BODY SHADOWING

We consider here the framework proposed in [16]samdmarized according to the link scendrio
of Fig. 4.a (top), where the human body is sketased 3D homogeneous cylinder, having he|ght

2a, and an elliptical base with semi-axgs, anda,,,. The cylinder rotates along the vertical axis

x4, With azimuthg thus modeling a human body standing in a spegtfition but possibly chang

ing its posture. As a trade-off between model sioitgland accuracy, the 3D cylinder is reduged

to an equivalent 2D rectangular knife-edge absgrbiunface [11][16] that is modeled according to

the Fresnel-Kirchoff diffraction theory. The obdtabas the same heigbt, but variable traverss
semi-sizea, () with a,,, < a, (¢) < a,, while its barycenteB is placed in positiox = [x; =
x,x, = y]. If the obstacle locatior is near the LOS path, and if multipath body-indue&ects

are neglected, by exploiting the paraxial approxioma the attenuation term in dB scale

AE(%B(X; @) = —10logy,|E(X; ¢)/Eo|2 %)

-
o

due to the obstacle is derived analytically in [13; (x; ¢) depends on the received electric fi
E(x; ) and the free-space caBg Focusing on body localization, attenuation cartdresidered

as random due to the varying orientatign®f the obstruction body. Fig. 4.a shows the mean

Ap(x) = E,[AE§p(x; ¢)] and the standard deviations(x) = \/]E<p [(AE&B(X; @) — Au(x))z]
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perturbation mapsf the RF attenuation for the link of lengtls a function of the obstacle positipn
x after averaging with respect to azimuth= 5 m, 2.48 GHz, witha, = 90 cm, a,,,, = 27.5 cm,
a,, = 12 cm). With the given geometrical constants,shaesitivity areaX’ due to the obstacle has
a width of abou0.7 m around the LOS path. The model (5) neglectsrtieeshape, complex com-
position and EM properties of the obstacle (e glafgization, permittivity and conductivity), but it
Is accurate enough to model human-induced attemuatffects. Fig. 4.b shows the comparison of
the average channel power perturbatiy(|E (x; ©)/Eo|?»)4s] induced by a person against the
values predicted by the model (5) and the onesraataby simulating the obstacle as a perfect
conductor, having the same size of the personeglaeer a concrete floor. As expected, the impact

of the target presence is higher along the LOS gathclose to the transmitting/receiving deviges.

4. RESEARCH ON RADIO VISION: A SURVEY

Recently, there has been an increasing reseasafeshin wireless human tracking via RF devices.
This broadly defined domain encompasses diffeesgarch areas such as signal processing, com-
puter vision, communication networks, and humanhirecinterfaces. The first experimental ac-
tivity dates back to the works [17][18] showingttl@dy motions leave a characteristic footprint
on RSS patterns [17], while RSS fluctuations caeflectively used for body localization [18]
Focusing on device-free human body localizatioae,rédio tomography imaging (RTI) proposed
in [6][19][20] adopts computed tomography methagseconstruct an image of the object(s) inside
the network area. The technology has been nowfenard to a commercial product (i.e., Xandem
system) targeting assisted living applications. eghods introduced in [5][9][11] allow to ex-
plicitly track the position of target(s) using ay@aian approach that jointly process the RSS mean
and standard deviations [11]. More recently, defiiee systems based on Bayesian tracking of
RSS profiles have been also designed for obstépésio2D mapping [21], detection of human
breathing [22][13], and fall detection [23][24]. urhan gesture recognition and body motion de-
tection have been addressed in recent researatctg@SenseWaves, E-eyes, WiSee and Wi-Vi)

targeting both RSS [25] and baseband CSI analyggosg radio devices operating at 900 MHz
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[8][26], 2.4 GHz with 20 MHz band WiFi-compliant RfFontends, [27][12] and 5.8 GHz [28].
Signal processing methodologies for these systemost recent developments and open issues will

be discussed in the following sections.

5. DEVICE-FREE LOCALIZATION AND MOTION TRACKING (DF-L)

In the context of assisted living, knowledge of tiser location [5] is important for a number of
services ranging from monitoring daily activitiésrecasting user tendencies to remote control of
appliances (e.qg., lights, doors, windows, air ctoders). RSS-based device-free localization (DF-
L) [11][18][19] has emerged in the last few yeaos fassive localization of people movements in
areas covered by pre-existing wireless mesh nesv@nsidering a single target at locatkoim

the network area, , is the RSS of the link at a given time instant, the objective of DF-lthe

estimation of from the RSS s&t = [sy, ..., s;]T. As shown in Fig. 5, RSS is here approximated
as a Gaussian variable in the logarithmic doma, @s log-normal shadowing [11]):

_ {Ilo,e + Wo ¢, X & Xy (6)

e (X)twy, X€EL,

for target outsidéx ¢ ;) or inside(x € 1;) the sensitivity area of the lik respectively. In the
first case (empty scenario), the RSS has a detetmimeary, ,, that accounts for path-loss and
other static effects due to fixed obstructions oatt®ring objects, while the random term
wo,.~MO0,0¢,) accounts for RSS measurement errors due to thevhee (i.e., for noisy RSSI) as
well as for small power fluctuations due to vagas in the surrounding environment. The mean

RSS forx € 1, is py ¢(X) = po s + App(x) (With App(x) < 0), while the random shadowing is
modeled awuw]\/(o, of {)(x)) with oy ,(X) = 0y, + Ad,(x) (andAo,(x) = 0). An experimental

evidence for model (6) is depicted in Fig. 5 (tagp)neasurement campaign was conducted to eval-
uate experimental RSS distributions to be compuaiittd model (6) for target moving in the sur-
rounding of locatiorx, both outside (blue) and inside (red) the sensitarea of two selected links.
Although better fits can be provided using otheapzetric distributions (Weibull, Nagakami [29]),

the approximation is reasonable to design estimanethods and infer performance bounds of
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Figure 5: Log-normal RSS modeling for two links (topleft and top-right) and for target inside (red) and outside
(blue) the sensitivity areaZ, for link #. Bottom: experimental RSS mean and standard devietn mapsvs. the
target location x for the highlighted network layout (center)and some links in indoor and outdoor scenarios.

practical interest (see tutorial “Accuracy bounds DF-L"). As shown in several experimental
studies [6][11][20], both averadgi,(x) and standard deviatidiv,(x) maps of the RSS perturba-
tions (i.e.,perturbation mappare strongly related to the target position reéato the link. This
can be further appreciated in Fig. 5, where 2D erpmtal RSS profiles are shown at bottom for
a subset of links. Based on the RSS measuremdtdsted by a network of 14 nodes deployed in
indoor and outdoor scenarios, the maps are evadl@iate human body moving over the positions
x within a4x3 m area. The sensitivity arely, for each link? is centered on the LOS path (high-
lighted in green) and it is larger in indoor tharoutdoor due to multipath effects.

For position estimation, knowledge of the referepammetersy ,, oy »} (for the human-free
case) is required for all links= 1, ..., L, together with the information about the pertuidratmaps
{Au,(x), Ao, (x)} for all position valuesx € T,. While {u, 4, 00 ,} can be easily pre-calibrated
when no target is moving in the network area, eatéda of profiles fu,(x), Ag,(x)} is more

critical as it requires extensive fingerprintingrgaaigns [9][11][19] or ray-tracing simulations [14]



13

Analytical modeling, when viable, has to be preddras it allows to simplify the calibration to few
model parameters and/or to evaluate pre-deploypembrmance. In [19] and [20], a simple sin-
gle-parameter model is considered whng(x), andAoc,(x) are assumed to be constant and in-
versely proportional to the square root of the liidtance fox € -, with 2, modelled as an el-
lipsoid with foci at the two nodes. Parametric meder shadowing effects can be also found in
[2], while diffraction-based models are consideireflL6]. Once the perturbation maps are availa-
ble, the target positiog can be estimated from model (6) using inferencthaus. The weighted

least squares (WLS) criterion i& = argmin||s — I.l(X)”C—l(X), with ||s — I.l(X)”c—l(x) =
X

[s —u®@I"C'®Is - p®)],  p® =[xk -p®]",  and  covariance C(x) =
diag[o?(x), ..., of (x)] as weighting factor. Assuming the RSS fluctuatiamidependent over the
links, the maximum likelihood (ML) criterion also appliesX = arg m)?xL(s|x), with the log-
likelihood functionL(s|x) = -In(det[C(X)])-||s — u(x)llé_l(x) anddet[-] the determinant opera-
tor. The information provided by instantaneous mea®ents can also be augmented with prior
information about the target motion, using seqaéBayesian filtering such as Kalman (KF), grid-
based (GF) or a particle (PF) filtering [11].

Another DF-L approach is the radio tomographic imggRTI) [19], where the DF-L problem
is formulated as the estimation ofreotion imageof the area, capturing any variation with respect
to the human-free scenario observed during théregion phase. In RTI, the area is divided into
M voxels,m = 1, ..., M, the image to be estimatedvis= [v; --- v,]T where0 < v,,, < 1 measures
the target occupancy (i.e., in terms of “probayilinetric) of voxelm. For sparse motion, RSS is
approximated as the sum of the contributions géeeay all occupied voxels:

M
Sp = Z App(m) v + po e + W (7)
m=1
whereAu,(m) is now the attenuation contribution due to taigetoxelm andw,~N(0, 07 ) the

RSS fluctuation. Considering all links, it $s= Ap- v + gy + w, with matrix Ap € Rb*M =

[Aup(m)] that collects the perturbations for all links arakels,p, = [Ho,1 -~-,u0_L]T the human-
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Figure 6.a: DF-L: belief images of the target locatin for two frames of the user trajectories in 4mx3nindoor and
outdoor scenarios. Figure 6.b: CRB limit to the DF: accuracy considering L=1, 8, 16, 24 RF links of 5nength.

free reference vector, awd = [w; ---w;]T~MO0, Q) the shadowing term. LS estimation has been
proposed for imaging solution, a& = (Au"Ap + Iy T, + I, T, ) ~*Au"s with T, accounting
for regularization along each direction [19]. Theget position corresponds to the voxel associated

with the maximum image valuél = argmax ¥,,. In [20], RTI has been also applied to RSS vari-
m

ances modelled as linearly increasing with the rematf occupied voxelsy = a7 (v) = a4, +

M_,Ac?(m) vy, the same LS approach is then adopted for imaglkiation.

Examples of DF-L results based on both mean andn@ measurements are given in Fig. 6.a,
for indoor (left) and outdoor (right) scenarios,esh a human target moves according to the high-
lighted trajectory. The snapshot likeliha6@s|x) and the posterior pgf(x|s) are evaluated by GF
Bayesian filtering and serve as location beliefgem It can be seen that filtering is especially

useful in indoor environments as it allows to sawabiguities due to multipath.

TUTORIAL: ACCURACY BOUNDS FOR DF-L
The Cramer Rao Bound (CRB) provides a useful beackfior assessing DF-L performances. The
covariance matrix for any unbiased estimagoof the target positiorx is lower bounded as
Cov(®) = E[(x — %) (x — ®)T] = F~1(x), whereF(x) is the 2x2 Fisher information matrix (FIM).

According to the Gaussian modet.V(pu(x), Q(x)) in (6), the FIM tern(i, j) with i,j € {1,2}, is

e (™) Ope®) | o 89¢(X) 39¢(x)
6xi an axi an

Fiy = Ol = Zhor 5 | ®)
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AApp(x) and da,(x) _ aAU{’(X)’
6xi 6xi axi

where the gradient functioriaég‘%x) = i € {1,2}, embody the infor-

mation on the target location provided by the pbdtion maps of attenuatidm,(x), and standard

—
1

deviationAg,(x), respectively [11]. According to the diffractiorodel (5), and the related analy

ical mapsAu,(x) = E,[AE§s(x; €; ¢)| and Agy(x) = \/IE(,, [(AE&B(x; 2 0) — AW(X))Z] from

the tutorial “Diffraction-based modeling of humaody shadowing”, by computing all derivatiye
terms of (8), it is possible to obtain tRéx) matrix and, finally, the CRB for the compldtdink
network. To demonstrate the effects of multipl&dion the localization accuracy, the maps of |Fig

6.b show the lower bound to the root mean squarer @f the location estimat@MSE =

VE[II% — x]|2] = /tr[F-1(x)] for L = 1,8,16,24 links. As expected, the localization accuracy
is higher for a target near the terminals and akhegLOS paths. For targets located in-between,

the reduced sensitivity could be counter-balangeth¢reasing the number of links [11].

6. HUMAN ACTIVITY AND GESTURE RECOGNITION (DF-AR)

Focusing on device-free activity recognition (DF-)ARctive and passive systems (Fig. 2) can be
further differentiated into systems exploiting based signal processing (e.g. using SDR devices)
or RSS-related metrics for the prediction of sunding activities. With respect to DF-L, DF-AR
systems typically require a higher sampling freqyeitypical recommendations for optimal sam-
pling frequencies in activity recognition are ab@/&iz but higher sampling potentially fosters
good recognition accuracy [8][25] (see Fig. 7). Mets such as RTI and fingerprinting are too
slow and thus not employed. Instead, either systmditioned on characteristic signal patterns
or machine learning techniques are frequently adpliApart from RSS, movement-indicating fea-
tures/profiles in frequency-domain (for instanceppler shift) are exploited.

The main classes considered for DF-AR are the tieteaf basic whole-body activities, whole/half
body gestures and human breathing detection. Thieable recognition accuracy for DF-AR is
limited by the system class (active or passived,GlQ! (baseband CSI or RSS), the radio technol-

ogy, the sampling rate (6+ Hz) and time/frequenagndin features. For basic activities such as
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Human activity recognition (example CSI power profiles for standing, walking, lying and crawling)
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Figure 7: Impact of human body movements/activities: CSI paer footprints for human standing, walking, lying
and crawling with time domain features. Left bottom: Impact of different CSI sampling rates (CSl/sec) on the pe
formance of a k-NN classifier [8]. Bottom right: classification accuracy from RSSI for movement ir
proximity, distance to receiver, walking speed, gésres (standing, walking, lying and crawling)and crowd size. Ir
this example, RSSI from environmental 802.11 accepsints was captured by a single receiver (a smartne) [25]

walking (at different speeds), crawling or standithge recognition accuracies reached from CSI-
based systems match those achievable with body-acrelerometers [8]. Highly accurate, fine-
grained part- and whole-body motions can be rea@aghvia frequency-domain features like Dop-
pler shifts from OFDM sub-channels (micro-Dopplerctuation) [28]. However, RSS-based sys-
tems, are further limited in their achievable aacyrand recognized classes as depicted in Fig. 7:
they thus qualify for applications in ambient aidiving but not e.g. for highly reliable systems
BASIC WHOLE-BODY ACTIVITIES. Machine-learning approaches can be applied taebin-
formation about the environmental situation fromS¥uctuations. Radio devices at frequencies
between 900 MHz up to 5 GHz with arbitrary nodeldgments are typically utilized. Simple time-
domain features are employed, such as root meaawresd®MS), average magnitude squared
(AMS), signal-to-noise ratio (SNR), signal amplieysgignal peaks and the number of large delta
in successive peaks. The E-eyes system [12] comMfiEi 2.4 GHz links from different devices
(e.g., access points, thermostats, laptops) amectofine-grained CSI measurements as location-
activity profiles. In [8], recognition accuracy hlbasen improved by exploiting frequency domain

features. Furthermore, the authors have comparedA®PBerformance with accelerometer-based
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recognition, showing comparable accuracy, in thaeoof 90-95% for indoor scenarios. Signals
from nearby broadcasting FM radio stations quall§o for the detection of activities [26].
GESTURES. Simultaneous detection of gestures from muliipdividuals can be obtained by uti-
lizing multi-antenna nodes and leveraging micro plepfluctuations. Utilizing a MIMO-OFDM
receiver, the WiSee system [28] can distinguisiheSdefined gestures from different people sim-
ultaneously with accuracy of 94%. In a related ays{WiVi [27]), a single antenna receiver is
used, while a preamble transmission stage is degigm isolate the time-varying reflections in-
duced by the human body and null direct and wdliéceed disturbance. The system tracks the
direction of the moving object using inverse syfithaperture radar (ISAR): consecutive CSI
measurements are collected over time to emulassamna array at the receiver. Gestures can be
also detected by monitoring RSS at link-layer.28][ simple classes of hand gestures can be rec-
ognized using off-the-shelf smart-phone devices¢oling 10+ RSS samples per second). Alt-
hough the achievable accuracy is lower than forattiere systems previously discussed, a clear
distinction of up to 11 hand gestures performegroximity of the phone is possible.
RECOGNITION OF BREATHING. Contact-free RF respiration monitoring systems detect

the breathing rate of a single individual. Detettid breathing can be based on monitoring the RSS
fluctuations from a pre-existing IEEE 802.15.4 natkvsurrounding the subject [22]. Using ML
estimation, an error of 0.3 breaths per minutdis as achievable. The nodes transmitted every
240 ms at 2.48 GHz. Prediction is taken after addbnd to 60 second measurement period. The
UbiBreathe system [13] uses off-the-shelf WiFi deg and provides a reasonable breathing esti-
mation accuracy even using a single point-to-plinkt Other systems are based on microwave
Doppler radars and ultra-wideband (UWB) (see [18] seferences therein): they provide high

accuracy but limited range and require an ad-hemdeand PHY layer optimization.

TUTORIAL: CQlI BASED HUMAN ACTIVITY RECOGNITION

[®X

Base-band CSI based. CSI processing enables accurate activity recagnthanks to fine-graine

frequency- and high time-resolution. Standard maehearning techniques (e.g., k-nearest nejgh-

bor, decision trees, support vector machines) eaapplied to time-domain CSI features such as
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meankE,.4[8], variancevar,c4{8] (Fig. 7), or CSI power footprirt € RT*! = [|fzt(®)|2] " El-
te

ementary activities such as phone calls, openes#didoors or human body standing, walking at
different speeds [8], lying and crawling can beidguished. These activities (or combination of)
have to be trained separately by machine learniathods beforehand. For recognition of fine-
grained activities or gestures, frequency-domaatuiees, e.g., micro Doppler fluctuations, are|re-
quired [28]. However, Doppler shifts caused by hammtion are several magnitudes smaller than
the signal bandwidth. Focusing on MIMO OFDM modiaias, analysis of such fluctuations|is
possible after transforming the received symbdis marrowband pulses. Then, patterns from fall-
ing/rising signal-edges of Doppler fluctuations barexploited for gesture and activity recognitipn.
RSS based. RSS-based passive systems measure noisy linkfR§8t. In such settings, human
activity can be detected using simple time-domaatudres (see Fig. 3a), including de-noising [[L3]
and dynamic time-warping [12]. Although RSS samgales often bursty, a weak distinction be-
tween simple human activity classes is feasibl¢\#th about 10 RSS observations/sec while best
accuracy is achieved with 40-80 RSS/sec wheredspwa and recall rate in the order of 90% for
simple activities and 70% for gestures is possitftarther improvement is achieved by filtering

noise, and focusing on the falling and rising edgfedie composition of the signal features.

7. MONITORING OF HUMAN FALL: A CASE STUDY

The adoption of a device-free wireless fall detactiechnology is highly attractive in the context
of assisted living as a fallen person might noabke to activate a personal emergency response
system, if not forgetting how to use it. Today’srenercially available products use already a broad
range of active devices (e.g., necklaces with eererg buttons, fall sensors in mobile phones,
etc.). However, these devices are often too diffitw elderly people to operate and are useless in
emergencies [30]. Body-worn sensing devices algoire cooperation from the monitored subjects
and might hinder daily activities. Systems basedcameras, video or acoustic sources are also
effective but penalized by privacy concerns. Howetlee proliferation of in-home wireless con-

nected devices as part of the internet of thingagygm is acting as a boost to the development of
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Figure 8.a: Hidden Markov model-based fall detectia using SDR devices. SIMO-OFDM, (2 RX antennas, sjte
RS subcarrier). Figure 8.b: impact shock detector Ased on CQI data (ROC curve).

new radio-based vision technologies. The possihilitmonitoring human well-being by leverag-
ing pre-existing indoor network infrastructuredecoming attractive in several applications.
Here, we highlight an experimental case study $ipalliy focused on real-time processing of
CQlI for detection of the impact shock during bod¥.fThe in-lab system of Fig. 8.a consists of a
deployment of wireless devices exchanging data 2¥eGHz bands using an OFDM radio front-
end. A single antenna OFDM transmitter communicaitiéls a receiver employing two antennas
(with spacing of 24 cm). The receiver extracts pratesses two, possibly incomplete, CSI power
footprints o[S,] from the corresponding links (LOS and NLO&E {#,,¢,}. Body falling is
monitored over a pre-defined positiot):(localization can be obtained by DF-L methods.

The observed sequend@sare modelled by a hidden Markov model (HMM) [23[[&vith state
space,(0) € RO*! = [qj];?=1 containing? selected values from the CQI profilkes,(©) learned
during training for falling-state estimation. HMMwametersi,(0) = [A,, B,, m,], include prob-

abilities of state transition [A,];; =p[qg: = qi|q:—1 = q;], observation [B,];; =
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p[3s¢ = silg: = q;], and initial statd,]; = p[qo = q;]. The HMM parameters are learned by
expectation maximization algorithm (e.g., Baum-Wieddgorithm) and trained separately for each
link [23]. Other methods [24] can be adopted teetege space-time profiles correlation over co-

located links. Decision about human fall is basedhe model likelihood

L[8,12,(0)] = p[8:,ql2,(0) ]
quzQe;(G) ()

with state sequencq = [q;,...,qr] and joint probabilityp[S,, q|2,(0) ] = [Tr=1p[3e|¢] -
plq:1q:-1]. FunctionsC[S,|A,] are continuously evaluated for both links (Fig 8n the right).

Fall detection can be based on hard decision wgpect to pre-calibrated threshelsuch that
L[S,|2,(0)]/L[Sp|A,(@)] > 7. Likelihood L[S,|A,(®)] is obtained for HMM1,(®@) that considers
arbitrary (but safe) body movements in the samétipos After the impact shock is detected, a
simple change detector can be applied to the obdedQI sequences for tracking any post-fall
event, and in turn detect possibly long lie condisi, corresponding to negligible RF fluctuations.
IMPACT SHOCK DETECTION. In the complete case study highlighted in Fig, 8uman fall
detector is now based on an optimized subset eéxigging links [23] deployed around the subject
of interest and selected during a calibration pdace (non-informative links are purged). Decision
about the fall/non-fall event is based on majoviying over the optimized link subset.

Analysis of detector performance is crucial: undegte falls might have a dramatic impact, on
the other hand, an excessive number of false dcismight cause the detector to be perceived
as useless. Validation of detector accuracy isithustrated in Fig. 8.b where the receiver op&gti
characteristic (ROC) curve relates sensitivity usrialse positive rate. A sensitivity of 0.97 and

false positive rate of 0.007 compares well witH@enances of existing device-based systems [30].

8. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This article focused on device-free radio visiosteyns acting as a flexible sensing tool and ad-
dressing key challenges in assisted living appboat The goal of this emerging research field is
to develop models and processing methodologiesxXjoioiting the inherent (but currently unused)

sensing capabilities of the multitude of availablieeless communication links, opening also to
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investigate new radio technologies and unexploeedtlb. Future research on radio vision systems
is expected to combine the use of localized RFa$igispection with large-scale and big-data pro-
cessing. Running real-time analytics from massifeimes of RF data will pose new signal pro-
cessing relevant problems, as well as the re-dediganventional statistical learning tools applied

to unprecedented high-dimensional data structures.
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