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Wireless propagation is conventionally considered as the enabling tool for transporting infor-

mation in digital communications. However, recent research has shown that the perturbations of 

the same electromagnetic fields that are adopted for data transmission can be used as powerful 

sensing tools for device-free radio vision. Applications range from human body motion detection 

and localization to passive gesture recognition. In line with the current evolution of mobile phone 

sensing [1], radio terminals are not only ubiquitous communication interfaces, but they also incor-

porate novel or augmented sensing potential, capable of acquiring an accurate human-scale under-

standing of space and motion. This article shows how radio-frequency signals can be employed to 

provide a device-free environmental vision, and investigates the detection and tracking capabilities 

for potential benefits in daily life. 

1. INTRODUCTION 

“It’s not difficult. Every time I lift my arm, it distorts a small electromagnetic field that is main-
tained continuously across the room. Slightly different positions of my hand and fingers pro-
duce different distortions and my robots can interpret these distortions as orders. I only use it 
for simple orders: Come here! Bring tea! and so on.” Isaac Asimov, The Robots of Dawn, 1983. 

 
Device-free radio vision is an augmented functionality provided by radio transceivers – typically 

heterogeneous, densely distributed and networked – that monitor the fluctuations of the electro-

magnetic (EM) field across the space. These monitoring devices may be pre-existing, deployed at 

arbitrary (or optimized) locations for communication purposes in the area of interest, and exchange 

digital information by any wireless communication protocol. Radio vision systems leverage dif-

fraction, reflection and scattering phenomena that affect radio-frequency (RF) propagation for ubiq-

uitous sensing. RF signals can be either narrowband or wideband, in licensed or unlicensed fre-

quency bands, with carrier frequencies ranging from MHz to GHz, and above. The presence, posi-

tion and motion of a human body in the network area affect the EM field in a predictable way, 
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making it possible to estimate and track its activity without the need to deploy and calibrate any 

additional wearable sensor (sensor-free detection), nor to ask for specific user actions (non-coop-

erative detection). This passive sensing approach has been experimented with in heterogeneous 

networks but it is also appropriate for most of the emerging low-power wireless standards, and for 

personal and device-to-device (D2D) communications [2], including WiFi, Bluetooth low energy 

(BLE), ZigBee and D2D enabled long term evolution (LTE Advanced) [3].  

Tracking and recognition of human motions and activities are done through real-time processing 

of the wireless channel quality information (CQI). In this paper, leading edge research and devel-

opments are discussed with special focus on assisted living applications [4]. 

2. LEVERAGING RF SIGNALS FOR SENSING: DEVICE-FREE VISION 

Personal sensing is the current scale at which these technologies are being studied by the research 

community: they are designed for sensing a single (or a limited number of) individual(s) based on 

real-time analysis of CQI. As depicted in Fig. 1, radio-based vision systems track RF field pertur-

bations by dense networks of air-interacting wireless devices and process CQI data for the purpose 

of human sensing. In order to support “vision” functions, three key distinctive technological fea-

tures are incorporated: 

Figure 1: Device-free radio vision is based on tracking the perturbations of RF field sensed by dense networks of 
radio-interacting wireless devices. 
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� Sensor-less Interaction and Anonymous Tracking. Gesture-based interactions of the user with the 

environment are detected without instrumenting the human body (device-free) or deploying sensors 

calibrated for each user (sensor-less). Subject(s) are anonymously tracked and localized, in contrast 

to privacy intrusive video-cameras, inferring the EM perturbations from CQI. 

� Ubiquitous Monitoring. Unlike existing infrared (IR) recognition platforms [4], device-free radio 

vision systems support ubiquitous user detection in complex non-line-of-sight (NLOS) indoor 

spaces [5], using both fixed (e.g., WiFi access points, ZigBee/Bluetooth devices) and nomadic (e.g., 

smart-phones, tablets) radio devices (see Fig. 1) that are interacting over mixed line-of-sight (LOS) 

and NLOS), or through-the-wall links [6]. RF signals with wavelengths that are long enough to 

penetrate dense objects, such as doors or walls, can be exploited to recognize human motion and 

gestures even if these gestures are visually in shadow or in a different room adjacent to the one 

where the RF device itself is operating.  

� Scalable CQI (Big-Data) Analytics. The technology typically requires information aggregation, 

processing and computation of massive amounts of CQI data generated from, and delivered to, 

highly distributed and heterogeneous wireless devices. CQI data for real-time processing are often 

produced at high rates, in the order of tens of thousands of observations per second to cover large 

spaces. Learning and running analytics from these large volumes of data requires the use of signal 

processing tools designed to efficiently work on high-dimensional and often incomplete data-sets 

[7] (e.g., due to random power cycling of devices or communication failures).  

ACTIVE AND PASSIVE CONFIGURATIONS.  Device-free radio vision systems can be based 

on active or passive configurations as illustrated in Fig. 2. The distinction between active and pas-

sive systems differentiates systems in which the active part (the transmitter) is under the control of 

the system from those where it is not [8]. Passive systems capitalize on a pre-existing network 

infrastructure where densely air-interacting devices are exposed to some EM fields (e.g., FM radio 

[8], WiFi [5][9]) and capture those ambient RF signals. CQI processing might be carried out dis-

tributedly or centrally. Active systems exploit dense communications with fixed/nomadic transmit-

ters acting as interconnected mobile probes. These systems typically rely on a decentralized archi-

tecture where user data are propagated in direct mode instead of through a remote service provider 
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(e.g., cellular base stations, WiFi access points), even if providers might trigger the first device 

connection, for logging, uplink/downlink (UL/DL) synchronization, etc. This concept is in line with 

the current trend [3] of enabling small/femto-cell deployments with smartphones able to discover 

other phones in proximity, and overhear RF signals from device-to-device links. 

3. MODELING OF RF SIGNALS FOR RADIO VISION 

In radio vision systems, CQI measurements used for recognition can be either in the form of phys-

ical (PHY) layer values, e.g., the baseband radio channel state information (CSI) sampled at symbol 

level, or received signal strength (RSS) data extracted at upper layers. 

Let us consider a wireless transmission organized into periodic frames consisting of groups of 

adjacent symbols, and a human body, located at position � inside the wireless link area, performing 

an activity � defined as an ensemble of non-rigid body motions [10]. The user state Θ �[�,�] de-

fines a generic combination of user location and activity. The effects of the user state Θ on the 

channel response are observed over a set T	 � �1,… , 
� of consecutive received symbols (or 

frames). For a static environment where the human body does not obstruct the link (i.e., human-

free state Θ � ∅), the equivalent base-band channel response ��|∅� � ∑ ���������������� 	can be 

modeled as multipath with a combination of N delayed paths: �� and  �� are the amplitude and the 

phase shift of the k-th ray, respectively, and ����� models the received pulse waveform with delay 

��.  Human in state Θ modifies the channel response at symbol time  ∈ T  as 

Figure 2: Active/passive network configurations for device-free radio vision. Transmitter (TX), receiver (RX). 
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"��|Θ� = # ��� |Θ�������"|$�������"|$�,�
���

 (1) 

where the amplitude ��� |Θ� = �� + Δ��� |Θ�, the phase shift ��� |Θ� = ��+Δ��� |Θ� and the 

augmented delay ��� |Θ� = �� + Δ��� |Θ� of the k-th ray highlight the human-induced perturba-

tions compared to the human-free state Θ = ∅. Amplitude ��� |Θ� and phase shift ��� |Θ� incor-

porate human-induced micro-Doppler effects.  

In what follows, the effect of human body motion on CQI is experimentally evaluated, either 

for single and multicarrier digital communication systems. An introductory case-study is shown in 

Fig. 3, where detection of human motion is based on RSS (Fig. 3.a), and CSI measurements ex-

tracted from an orthogonal frequency division multiplexing (OFDM) implementation (Fig. 3.b). 

RECEIVED SIGNAL STRENGTH. The RSS is a practical metric to assess CQI at frame level, 

and it is commonly adopted for transmitter (TX) – receiver (RX) link adaptation and link-layer 

transmission scheduling tasks. Power estimators, or peak detectors, are commonly used to acquire 

information about signal strength as depicted in Fig. 3.a: the automatic gain control (AGC) loop 

exploits RSS information to adapt the dynamic range before A/D conversion. At frame time  , the 

RSS '" can be modelled in logarithmic (dB) scale as 

'"�Θ� = '�∅� + ∆'"�Θ�, (2) 

where the additive deviation ∆'"�Θ� from Θ = ∅ models the body-induced perturbation and '�∅� =
)['"�Θ = ∅�] is the (average) RSS observed in the human-free state. The sequence 

,�Θ� = ['"�Θ�]"∈T ∈ ℝ.×0  collects the human-induced RSS footprint observed over 
 frames. 

Likewise, the RSS profile is the deviation with respect to Θ = ∅: Δ,�Θ� = ['"�Θ� − '�∅�]"∈T ∈
ℝ.×0. In IEEE 802.15.4 standard-compliant devices, the digital RSS indicator (RSSI) '̂" can be 

used as estimator of the RSS with 8-bit resolution. Other radios also implement the link quality 

indicator (LQI) that correlates with packet reception rate (see [11] and references therein), and 

provides an indirect estimate of RSS values. In WiFi standards, RSS estimation can be obtained 

from the received channel power indicator (RCPI). In LTE, the reference signal received power 

(RSRP) measures the power over the reference signals. 
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Recognition of human activity can be also based on multi-link processing. Fig. 3.a (bottom) 

shows the profiles ∆,ℓ�Θ� ∈ -./0 over two IEEE 802.15.4 links ℓ ∈ �ℓ0, ℓ4�, for 
 � 160 frames, 

based on 20 RSSI independent measurements ,7ℓ�Θ� � *'̂ℓ,"�Θ�+"∈T ∈ -./0 featuring a human 

body standing in the surroundings of both links (located at 0.5 m above the ground), then crouching 

and sitting on the floor. Since the human torso causes more attenuation than waist and ankles, when 

a person is standing, there is a larger RSS attenuation with respect to the same body lying on the 

floor. The profiles ∆,ℓ�Θ�, superimposed in solid lines, average out noise and time-warping effects. 

Detection of the human state can be based on matching (e.g., using simple time-domain features) 

the observed entries ,7ℓ�Θ�, or the estimated deviations ∆,7ℓ�Θ�, with the corresponding RSS pro-

files learned during a training procedure. Human state estimation possibly entails de-noising, time-

Figure 3.a: RSS processing for device-free radio vision: (top) digital/analog RSSI extraction, (bottom) RSSI data 
(dashed curves) – and corresponding average profiles (solid curves) - for human standing, crouching and sitting 
on the floor (T = 160 IEEE 802.15.4 frames). Active configuration is considered with two IEEE 802.15.4 links. 
Figure 3.b: baseband processing example for OFDM modulation: (top) CSI extraction, (bottom) CSI power foot-
prints over K=4 OFDM pilot subcarriers (8 � 99:;;; symbols) corresponding to human body crossing the link 
in 4 sec. OFDM implementation: 2.6 GHz, 64 subcarriers, cyclic prefix 16 samples, baseband sampling 5MHz 
with 16 payload symbols per frame. 
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warping and reconstruction of missing RSSIs observations (i.e., by interpolation methods) [12][13]. 

Missing or incomplete data can be represented as ℘=[,7ℓ�Θ�] over the set of  ∈ Ω ⊆ T  received 

frames, where ℘=�∙� is the sampling operator nulling the entries of A7ℓ�Θ� not in Ω [7]. 

BASEBAND MODELING OF C.S.I. Baseband CSI measures the channel response at symbol-

level: CSI estimation is typically obtained from training/reference signals (RS) multiplexed with 

information symbols and periodically placed in every frame. Therefore, in contrast to RSS, pro-

cessing of CSI information for the purpose of radio vision can leverage on multiple independent 

measurements at frame level and can be used to capture fast human body movements and gestures. 

Assuming frequency-flat channel as for narrowband communication but time-varying for moving 

multipath environments, the received RS B" = ℎ"�Θ�C" + D" at symbol time  ∈ T  (with C" and 

D" the transmitted RS and the noise term, respectively), captures the moving body in state Θ through 

the corresponding complex channel envelope adopted from (1) 

ℎ"�Θ� = # ��� |Θ�������"|$��
���

= ℎ�∅� + Δℎ"�Θ�. (3) 

Human body effects on channel response are now embedded into a characteristic footprint of chan-

nel variations over 
 received symbols F�Θ� ∈ ℂ.×0 = [ℎ"�Θ�]"∈T. The CSI profile set is 

ΔF�Θ� ∈ ℂ.×0 = [Δℎ"�Θ� = ℎ"�Θ� − ℎ�∅�]"∈T , with ℎ�∅� = )[ℎ"�Θ = ∅�] being the average re-

sponse for the human-free state. Noisy profiles ΔFH �Θ� = [ℎI"�Θ� − ℎI�∅�]"∈Ω with estimated chan-

nels ℎI"�Θ� and human-free response ℎI�∅�, are typically observed over a subset of times (or symbol 

indexes) Ω ⊆ T  accounting for the training/data multiplexing, and missing symbols. 

The use of multi-carrier (OFDM) modulation enables multi-dimensional processing of CSI over 

the time-frequency grid and thus allows a fine-grained classification of human-motion [12]. As 

depicted in Fig. 3.b, the CSI estimation is carried out by periodic transmission of RSs over standard 

defined time-frequency patterns [3]. The received RSs J" over the K pilot subcarriers �L0, … , LM� 
inside OFDM symbol   can be written as J" = diag[R"] ⋅ F"�Θ� + T" with vector R" collecting the 

transmitted RSs, and baseband channel vector F"�Θ� = [UV,"�Θ�]V�VW
VX  containing the Fourier Trans-

form F �∙� of channel ℎ"��|Θ� 
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UV,"�Θ� � UV�∅� % F	�Δ"��|Θ��|VYZZZZ[ZZZZ\
]^_,`�$�

. 
(4) 

The CSI footprint is the matrix a�Θ� ∈ GM/. � *F0�Θ�,… , F.�Θ�+"∈T  with human-induced profile 

Δa�Θ� � *a�Θ� 1 a�∅�+. The estimate ab�Θ� is evaluated over the time-frequency set Ω now ac-

counting for framing structure and irregular time-frequency RSs spacing. In Fig. 3.b (bottom) an 

OFDM transmission over 2.6 GHz is implemented in-lab using software defined radio (SDR) de-

vices: a person is crossing the link and standing for 4', causing an average attenuation of 5 dB. The 

CSI power footprint estimates dUbV,"�Θ�d9 are shown for K � 4 pilots and 
 � 223000 symbols. 

Figure 4.a: Link layout (top) and perturbation maps (bottom) of RF attenuation for mean and standard devia-
tion. Figure 4.b: Predicted vs. measured and EM simulated average channel power perturbations (along and 
across the LOS path). Measurements are obtained with a person standing in x with varying posture. Predicted 
values are obtained for a rotating cylinder moving inside a 10x10 cm bin centered in x.  
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A crucial problem for quantitative evaluation of radio vision system performance is the availa-

bility of a simple but realistic model to describe human body-induced shadowing. Ray-tracing [14], 

EM/stochastic [15][16], and geometric-based (see [2] for a review) models have been investigated 

to predict the correlation between the human body position � and the corresponding channel per-

turbations. EM methods, that exploit geometric/uniform theory of diffraction (GTD/UTD) and ray-

tracing algorithms as well, can be employed for their ability to accurately evaluate the EM field at 

the receiver, but they are usually very complex, time consuming and, above all, require perfect 

knowledge of the shape, composition and properties of the obstacle. In the tutorial “Diffraction 

based modeling of human body shadowing”, we consider a simplified but effective framework 

based on the Fresnel-Kirchoff diffraction theory and shown in the scenario of Fig. 4.a. 

TUTORIAL: DIFFRACTION-BASED MODELING OF HUMAN BODY SHADOWING   

We consider here the framework proposed in [16] and summarized according to the link scenario 

of Fig. 4.a (top), where the human body is sketched as a 3D homogeneous cylinder, having height 

2gh and an elliptical base with semi-axes gij and gik. The cylinder rotates along the vertical axis 

lm with azimuth n thus modeling a human body standing in a specific position but possibly chang-

ing its posture. As a trade-off between model simplicity and accuracy, the 3D cylinder is reduced 

to an equivalent 2D rectangular knife-edge absorbing surface [11][16] that is modeled according to 

the Fresnel-Kirchoff diffraction theory. The obstacle has the same height 2gh but variable traversal 

semi-size gi�n� with gik ≤ gi�n� ≤ gij while its barycenter B is placed in position � = [l0 =
l, l4 = p]. If the obstacle location � is near the LOS path, and if multipath body-induced effects 

are neglected, by exploiting the paraxial approximation, the attenuation term in dB scale 

Δqrs4 ��; n� = −10 log0�|q��; n�/q�|4                (5)      

due to the obstacle is derived analytically in [16]. Δqrs4 ��; n� depends on the received electric field 

q��; n� and the free-space case q�. Focusing on body localization, attenuation can be considered 

as random due to the varying orientations n of the obstruction body. Fig. 4.a shows the mean 

Δμ��� = )myΔqrs4 ��; n�z and the standard deviation  Δ{��� = |)m }~Δqrs4 ��; n� − Δμ����4� 
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perturbation maps of the RF attenuation for the link of length d as a function of the obstacle position 

x after averaging with respect to azimuth (� = 5 m, 2.48 GHz, with gh = 90 cm, gij = 27.5 cm, 

gik = 12 cm). With the given geometrical constants, the sensitivity area � due to the obstacle has 

a width of about 0.7 m around the LOS path. The model (5) neglects the true shape, complex com-

position and EM properties of the obstacle (e.g., polarization, permittivity and conductivity), but it 

is accurate enough to model human-induced attenuation effects. Fig. 4.b shows the comparison of 

the average channel power perturbation )m[�|q��; n�/q�|4�rs+  induced by a person against the 

values predicted by the model (5) and the ones obtained by simulating the obstacle as a perfect 

conductor, having the same size of the person, placed over a concrete floor. As expected, the impact 

of the target presence is higher along the LOS path and close to the transmitting/receiving devices. 

4. RESEARCH ON RADIO VISION: A SURVEY 

Recently, there has been an increasing research interest in wireless human tracking via RF devices. 

This broadly defined domain encompasses different research areas such as signal processing, com-

puter vision, communication networks, and human-machine interfaces. The first experimental ac-

tivity dates back to the works [17][18] showing that body motions leave a characteristic footprint 

on RSS patterns [17], while RSS fluctuations can be effectively used for body localization [18].  

Focusing on device-free human body localization, the radio tomography imaging (RTI) proposed 

in [6][19][20] adopts computed tomography methods to reconstruct an image of the object(s) inside 

the network area. The technology has been now transferred to a commercial product (i.e., Xandem 

system) targeting assisted living applications. The methods introduced in [5][9][11] allow to ex-

plicitly track the position of target(s) using a Bayesian approach that jointly process the RSS mean 

and standard deviations [11]. More recently, device-free systems based on Bayesian tracking of 

RSS profiles have been also designed for obstacle/object 2D mapping [21], detection of human 

breathing [22][13], and fall detection [23][24].  Human gesture recognition and body motion de-

tection have been addressed in recent research projects (SenseWaves, E-eyes, WiSee and Wi-Vi) 

targeting both RSS [25] and baseband CSI analytics using radio devices operating at 900 MHz 
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[8][26], 2.4 GHz with 20 MHz band WiFi-compliant RF frontends, [27][12] and 5.8 GHz [28]. 

Signal processing methodologies for these systems, most recent developments and open issues will 

be discussed in the following sections. 

5. DEVICE-FREE LOCALIZATION AND MOTION TRACKING (DF-L) 

In the context of assisted living, knowledge of the user location [5] is important for a number of 

services ranging from monitoring daily activities, forecasting user tendencies to remote control of 

appliances (e.g., lights, doors, windows, air conditioners). RSS-based device-free localization (DF-

L) [11][18][19] has emerged in the last few years for passive localization of people movements in 

areas covered by pre-existing wireless mesh networks. Considering a single target at location � in 

the network area, if 'ℓ is the RSS of the link l at a given time instant, the objective of DF-L is the 

estimation of � from the RSS set , = ['0, … ,  '�]�. As shown in Fig. 5, RSS is here approximated 

as a Gaussian variable in the logarithmic domain (i.e., as log-normal shadowing [11]): 

'ℓ = ���,ℓ + ��,ℓ, � ∉ Xℓ
�0,ℓ���+�0,ℓ, � ∈ Xℓ (6) 

for target outside �� ∉ Xℓ� or inside �� ∈ Xℓ�  the sensitivity area of the link l, respectively. In the 

first case (empty scenario), the RSS has a deterministic mean ��,ℓ, that accounts for path-loss and 

other static effects due to fixed obstructions or scattering objects, while the random term 

��,ℓ~N�0, {�,ℓ4 � accounts for RSS measurement errors due to the hardware (i.e., for noisy RSSI) as 

well as for small power fluctuations due to variations in the surrounding environment. The mean 

RSS for � ∈ Xℓ is �0,ℓ��� = ��,ℓ + ∆�ℓ��� (with ∆�ℓ��� ≤ 0�, while the random shadowing is 

modeled as �0,ℓ~N ~0, {0,ℓ4 ���� with {0,ℓ��� = {�,ℓ + ∆{ℓ��� (and ∆{ℓ��� ≥ 0�. An experimental 

evidence for model (6) is depicted in Fig. 5 (top): a measurement campaign was conducted to eval-

uate experimental RSS distributions to be compared with model (6) for target moving in the sur-

rounding of location x, both outside (blue) and inside (red) the sensitivity area of two selected links. 

Although better fits can be provided using other parametric distributions (Weibull, Nagakami [29]), 

the approximation is reasonable to design estimation methods and infer performance bounds of 
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practical interest (see tutorial “Accuracy bounds for DF-L”).  As shown in several experimental 

studies [6][11][20], both average ∆�ℓ��� and standard deviation ∆{ℓ��� maps of the RSS perturba-

tions (i.e., perturbation maps) are strongly related to the target position relative to the link. This 

can be further appreciated in Fig. 5, where 2D experimental RSS profiles are shown at bottom for 

a subset of links. Based on the RSS measurements collected by a network of 14 nodes deployed in 

indoor and outdoor scenarios, the maps are evaluated for a human body moving over the positions 

� within a 4×3	m area. The sensitivity area Xℓ for each link ℓ is centered on the LOS path (high-

lighted in green) and it is larger in indoor than in outdoor due to multipath effects.  

For position estimation, knowledge of the reference parameters {��,ℓ, {�,ℓ} (for the human-free 

case) is required for all links ℓ � 1,…, �, together with the information about the perturbation maps 

{∆�ℓ���, ∆{ℓ���} for all position values � ∈ Xℓ. While {��,ℓ, {�,ℓ} can be easily pre-calibrated 

when no target is moving in the network area, evaluation of profiles {∆�ℓ���, ∆{ℓ���} is more 

critical as it requires extensive fingerprinting campaigns [9][11][19] or ray-tracing simulations [14]. 

Figure 5: Log-normal RSS modeling for two links (top-left and top-right) and for target inside (red) and outside 
(blue) the sensitivity area X� for link �. Bottom: experimental RSS mean and standard deviation maps vs. the 
target location � for the highlighted network layout (center) and some links in indoor and outdoor scenarios. 
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Analytical modeling, when viable, has to be preferred as it allows to simplify the calibration to few 

model parameters and/or to evaluate pre-deployment performance. In [19] and  [20], a simple sin-

gle-parameter model is considered where ∆�ℓ���, and ∆{ℓ��� are assumed to be constant and in-

versely proportional to the square root of the link distance for � ∈ Xℓ with Xℓ modelled as an el-

lipsoid with foci at the two nodes. Parametric models for shadowing effects can be also found in 

[2], while diffraction-based models are considered in [16]. Once the perturbation maps are availa-

ble, the target position � can be estimated from model (6) using inference methods. The weighted 

least squares (WLS) criterion is �7 = arg min� ‖, − ����‖������, with ‖, − ����‖������ =
[, − ����]�������[, − ����], ���� = [�0��� ⋯ �����]�, and covariance ���� =
diagy{04���, … , {�4���z as weighting factor. Assuming the RSS fluctuations as independent over the 

links, the maximum likelihood (ML) criterion also applies as �7 = arg max� ℒ�,|��, with the log-

likelihood function ℒ�,|�� = -ln�det[����]�-‖, − ����‖������4   and det[⋅] the determinant opera-

tor. The information provided by instantaneous measurements , can also be augmented with prior 

information about the target motion, using sequential Bayesian filtering such as Kalman (KF), grid-

based (GF) or a particle (PF) filtering [11]. 

Another DF-L approach is the radio tomographic imaging (RTI) [19], where the DF-L problem 

is formulated as the estimation of a motion image of the area, capturing any variation with respect 

to the human-free scenario observed during the calibration phase. In RTI, the area is divided into 

¡ voxels, ¢ = 1, … , ¡, the image to be estimated is £ = [¤0 ⋯ ¤¥]� where 0 ≤ ¤¦ ≤ 1 measures 

the target occupancy (i.e., in terms of “probability” metric) of voxel m. For sparse motion, RSS is 

approximated as the sum of the contributions generated by all occupied voxels: 

'ℓ = # ∆�ℓ�¢�
¥

¦�0
¤¦ + ��,ℓ + �ℓ (7) 

where ∆�ℓ�¢� is now the attenuation contribution due to target in voxel ¢ and �ℓ~N �0, {ℓ4� the 

RSS fluctuation. Considering all links, it is , = Δ� ⋅ £ + �� + §, with matrix Δ� ∈ ℝ�×¥  =
[∆�ℓ�¢�] that collects the perturbations for all links and voxels, �� = y��,0 ⋯ ��,�z�

 the human-
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free reference vector, and § = [�0 ⋯��+�~N�;,¨� the shadowing term. LS estimation has been 

proposed for imaging solution, as  £7 � �Δ��Δ� % ©ªW
� ©ªW % ©ª«

� ©ª«��0Δ��, with ©ª¬ accounting 

for regularization along each direction [19]. The target position corresponds to the voxel associated 

with the maximum image value: ¢ � argmax
¦

¤7¦. In [20], RTI has been also applied to RSS vari-

ances modelled as linearly increasing with the number of occupied voxels {ℓ4 � {ℓ4�£� � {�,ℓ4 %

∑ ∆{ℓ4�¢�¥¦�0 ¤¦: the same LS approach is then adopted for image evaluation.  

Examples of DF-L results based on both mean and variance measurements are given in Fig. 6.a, 

for indoor (left) and outdoor (right) scenarios, where a human target moves according to the high-

lighted trajectory. The snapshot likelihood ��,|�� and the posterior pdf ®��|,� are evaluated by GF 

Bayesian filtering and serve as location belief images. It can be seen that filtering is especially 

useful in indoor environments as it allows to solve ambiguities due to multipath.  

TUTORIAL: ACCURACY BOUNDS FOR DF-L  

The Cramer Rao Bound (CRB) provides a useful benchmark for assessing DF-L performances. The 

covariance matrix for any unbiased estimator �7 of the target position � is lower bounded as 

Cov��7� � )*�� 1 �7��� 1 �7��+ � ±�0���, where ±��� is the 2×2 Fisher information matrix (FIM). 

According to the Gaussian model ,~N	�����,¨���� in (6), the FIM term �², ³� with ², ³ ∈ �1,2�, is 

 µ́,� � *´���+µ,� � ∑ 0
¶ℓ«��� }

·¸ℓ���
·ª¬

·¸ℓ���
·ª¹

% 2 ·¶ℓ���
·ª¬

·¶ℓ���
·ª¹

��ℓ�0 																													�8� 

Figure 6.a: DF-L: belief images of the target location for two frames of the user trajectories in 4mx3m indoor and 
outdoor scenarios. Figure 6.b: CRB limit to the DF-L accuracy considering L=1, 8, 16, 24 RF links of 5m length. 
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where the gradient functions 
·¸ℓ���

·ª¬ = ·∆¸ℓ���
·ª¬  and 

·¶ℓ���
·ª¬ = ·∆¶ℓ���

·ª¬ , ² ∈ �1,2�, embody the infor-

mation on the target location provided by the perturbation maps of attenuation ∆�ℓ���, and standard 

deviation ∆{ℓ���, respectively [11]. According to the diffraction model (5), and the related analyt-

ical maps Δ�ℓ��� = )myΔqrs4 ��; ℓ; n�z and Δ{ℓ��� = |)m }~Δqrs4 ��; ℓ; n� − Δ�ℓ����4� from 

the tutorial “Diffraction-based modeling of human body shadowing”, by computing all derivative 

terms of (8), it is possible to obtain the ±��� matrix and, finally, the CRB for the complete �-link 

network. To demonstrate the effects of multiple links on the localization accuracy, the maps of Fig 

6.b show the lower bound to the root mean square error of the location estimate RMSE =
 ¿)[‖�7 − �‖9]  ≥ ¿tr[±�0���] for � = 1, 8, 16, 24 links. As expected, the localization accuracy 

is higher for a target near the terminals and along the LOS paths. For targets located in-between, 

the reduced sensitivity could be counter-balanced by increasing the number of  links [11].  

6. HUMAN ACTIVITY AND GESTURE RECOGNITION (DF-AR) 

Focusing on device-free activity recognition (DF-AR), active and passive systems (Fig. 2) can be 

further differentiated into systems exploiting base-band signal processing (e.g. using SDR devices) 

or RSS-related metrics for the prediction of surrounding activities. With respect to DF-L, DF-AR 

systems typically require a higher sampling frequency. Typical recommendations for optimal sam-

pling frequencies in activity recognition are above 6 Hz but higher sampling potentially fosters 

good recognition accuracy [8][25] (see Fig. 7). Methods such as RTI and fingerprinting are too 

slow and thus not employed. Instead, either systems conditioned on characteristic signal patterns 

or machine learning techniques are frequently applied.  Apart from RSS, movement-indicating fea-

tures/profiles in frequency-domain (for instance Doppler shift) are exploited.  

The main classes considered for DF-AR are the detection of basic whole-body activities, whole/half 

body gestures and human breathing detection. The achievable recognition accuracy for DF-AR is 

limited by the system class (active or passive), the CQI (baseband CSI or RSS), the radio technol-

ogy, the sampling rate (6+ Hz) and time/frequency domain features. For basic activities such as 
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walking (at different speeds), crawling or standing, the recognition accuracies reached from CSI-

based systems match those achievable with body-worn accelerometers [8]. Highly accurate, fine-

grained part- and whole-body motions can be recognized via frequency-domain features like Dop-

pler shifts from OFDM sub-channels (micro-Doppler fluctuation) [28]. However, RSS-based sys-

tems, are further limited in their achievable accuracy and recognized classes as depicted in Fig. 7: 

they thus qualify for applications in ambient assisted living but not e.g. for highly reliable systems.     

BASIC WHOLE-BODY ACTIVITIES. Machine-learning approaches can be applied to extract in-

formation about the environmental situation from RSS fluctuations. Radio devices at frequencies 

between 900 MHz up to 5 GHz with arbitrary node deployments are typically utilized. Simple time-

domain features are employed, such as root mean square (RMS), average magnitude squared 

(AMS), signal-to-noise ratio (SNR), signal amplitude, signal peaks and the number of large delta 

in successive peaks. The E-eyes system [12] combines WiFi 2.4 GHz links from different devices 

(e.g., access points, thermostats, laptops) and collects fine-grained CSI measurements as location-

activity profiles. In [8], recognition accuracy has been improved by exploiting frequency domain 

features. Furthermore, the authors have compared DF-AR performance with accelerometer-based 

Figure 7: Impact of human body movements/activities: CSI power footprints for human standing, walking, lying 
and crawling with time domain features. Left bottom: Impact of different CSI sampling rates (CSI/sec) on the per-
formance of a k-NN classifier [8]. Bottom right: classification accuracy from RSSI for movement in
proximity, distance to receiver, walking speed, gestures (standing, walking, lying and crawling) and crowd size. In 
this example, RSSI from environmental 802.11 access points was captured by a single receiver (a smartphone) [25].

 

 CA IS Brier AUC 

5 CSI/sec .593 .594 .512 .813 

7 CSI/sec .607 .622 .502 .814 

10 CSI/sec .652 .703 .446 .831 

15 CSI/sec .671 .806 .408 .856 

20 CSI/sec .836 1.127 .229 .957 
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recognition, showing comparable accuracy, in the order of 90-95% for indoor scenarios. Signals 

from nearby broadcasting FM radio stations qualify also for the detection of activities [26].  

GESTURES. Simultaneous detection of gestures from multiple individuals can be obtained by uti-

lizing multi-antenna nodes and leveraging micro Doppler fluctuations. Utilizing a MIMO-OFDM 

receiver, the WiSee system [28] can distinguish 9 pre-defined gestures from different people sim-

ultaneously with accuracy of 94%. In a related system (WiVi [27]), a single antenna receiver is 

used, while a preamble transmission stage is designed to isolate the time-varying reflections in-

duced by the human body and null direct and wall-reflected disturbance. The system tracks the 

direction of the moving object using inverse synthetic aperture radar (ISAR): consecutive CSI 

measurements are collected over time to emulate an antenna array at the receiver. Gestures can be 

also detected by monitoring RSS at link-layer. In [25], simple classes of hand gestures can be rec-

ognized using off-the-shelf smart-phone devices (observing 10+ RSS samples per second). Alt-

hough the achievable accuracy is lower than for the active systems previously discussed, a clear 

distinction of up to 11 hand gestures performed in proximity of the phone is possible.  

RECOGNITION OF BREATHING. Contact-free RF respiration monitoring systems can detect 

the breathing rate of a single individual. Detection of breathing can be based on monitoring the RSS 

fluctuations from a pre-existing IEEE 802.15.4 network surrounding the subject [22]. Using ML 

estimation, an error of 0.3 breaths per minute is shown as achievable. The nodes transmitted every 

240 ms at 2.48 GHz. Prediction is taken after a 10 second to 60 second measurement period. The 

UbiBreathe system [13] uses off-the-shelf WiFi devices and provides a reasonable breathing esti-

mation accuracy even using a single point-to-point link. Other systems are based on microwave 

Doppler radars and ultra-wideband (UWB) (see [13] and references therein): they provide high 

accuracy but limited range and require an ad-hoc design and PHY layer optimization. 

TUTORIAL: CQI BASED HUMAN ACTIVITY RECOGNITION 

Base-band CSI based. CSI processing enables accurate activity recognition thanks to fine-grained 

frequency- and high time-resolution. Standard machine learning techniques (e.g., k-nearest neigh-

bor, decision trees, support vector machines) can be applied to time-domain CSI features such as 
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mean )"∈T[,7], variance var"∈T[,7] (Fig. 7), or CSI power footprint ,7 ∈ ℝ.×0 = ÀdℎI"�Θ�d4Á"∈T . El-

ementary activities such as phone calls, opened/closed doors or human body standing, walking at 

different speeds [8], lying and crawling can be distinguished. These activities (or combination of) 

have to be trained separately by machine learning methods beforehand. For recognition of fine-

grained activities or gestures, frequency-domain features, e.g., micro Doppler fluctuations, are re-

quired [28]. However, Doppler shifts caused by human motion are several magnitudes smaller than 

the signal bandwidth. Focusing on MIMO OFDM modulations, analysis of such fluctuations is 

possible after transforming the received symbols into narrowband pulses. Then, patterns from fall-

ing/rising signal-edges of Doppler fluctuations can be exploited for gesture and activity recognition.  

RSS based. RSS-based passive systems measure noisy link-layer RSSI. In such settings, human 

activity can be detected using simple time-domain features (see Fig. 3a), including de-noising [13] 

and dynamic time-warping [12]. Although RSS samples are often bursty, a weak distinction be-

tween simple human activity classes is feasible [25] with about 10 RSS observations/sec while best 

accuracy is achieved with 40-80 RSS/sec where a precision and recall rate in the order of 90% for 

simple activities and 70% for gestures is possible.  Further improvement is achieved by filtering 

noise, and focusing on the falling and rising edges of the composition of the signal features.  

7. MONITORING OF HUMAN FALL: A CASE STUDY 

The adoption of a device-free wireless fall detection technology is highly attractive in the context 

of assisted living as a fallen person might not be able to activate a personal emergency response 

system, if not forgetting how to use it. Today’s commercially available products use already a broad 

range of active devices (e.g., necklaces with emergency buttons, fall sensors in mobile phones, 

etc.). However, these devices are often too difficult for elderly people to operate and are useless in 

emergencies [30]. Body-worn sensing devices also require cooperation from the monitored subjects 

and might hinder daily activities. Systems based on cameras, video or acoustic sources are also 

effective but penalized by privacy concerns. However, the proliferation of in-home wireless con-

nected devices as part of the internet of things paradigm is acting as a boost to the development of 
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new radio-based vision technologies. The possibility of monitoring human well-being by leverag-

ing pre-existing indoor network infrastructures is becoming attractive in several applications.  

Here, we highlight an experimental case study specifically focused on real-time processing of 

CQI for detection of the impact shock during body fall. The in-lab system of Fig. 8.a consists of a 

deployment of wireless devices exchanging data over 2.6 GHz bands using an OFDM radio front-

end. A single antenna OFDM transmitter communicates with a receiver employing two antennas 

(with spacing of 24 cm). The receiver extracts and processes two, possibly incomplete, CSI power 

footprints ℘=*,7ℓ+ from the corresponding links (LOS and NLOS) ℓ ∈ �ℓ0, ℓ4�. Body falling is 

monitored over a pre-defined position (�): localization can be obtained by DF-L methods.  

The observed sequences ,7ℓ are modelled by a hidden Markov model (HMM) [23][24] with state 

space ̈ ℓ�Θ� ∈ -Â/0 � *q�+��0
Â  containing Ä selected values from the CQI profiles Å,ℓ�Θ� learned 

during training for falling-state estimation. HMM parameters, Æℓ�Θ� � *Çℓ, Èℓ, Éℓ+, include prob-

abilities of state transition 	*Çℓ+µ,� � ®yÊ" � qµdÊ"�0 � q�z, observation *Èℓ+µ,� �

Figure 8.a: Hidden Markov model-based fall detection using SDR devices. SIMO-OFDM, (2 RX antennas, single
RS subcarrier). Figure 8.b: impact shock detector based on CQI data (ROC curve). 
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®y'̂ℓ," = sµdÊ" = q�z, and initial state [Éℓ]µ = ®[Ê� = qµ]. The HMM parameters are learned by 

expectation maximization algorithm (e.g., Baum-Welch algorithm) and trained separately for each 

link [23]. Other methods [24] can be adopted to leverage space-time profiles correlation over co-

located links. Decision about human fall is based on the model likelihood  

ℒ[,7ℓ|Æℓ�Θ�] = # ®[,7ℓ, Ì|Æℓ�Θ� ]
∀Ì∈¨��$�

 
(9) 

with state sequence Ì = [Ê0, … , Ê.] and joint probability ®[,7ℓ, Ì|Æℓ�Θ� ] = ∏ ®y'̂ℓ,"dÊ"z ∙."�0

®[Ê"|Ê"�0+. Functions �*,7ℓ|Æℓ] are continuously evaluated for both links (Fig. 8.a on the right).  

Fall detection can be based on hard decision with respect to pre-calibrated threshold τ such that 

ℒ[,7ℓ|Æℓ�Θ�]/ℒ[,7ℓ|Æℓ�∅�] > �. Likelihood ℒ[,7ℓ|Æℓ�∅�] is obtained for HMM Æℓ�∅� that considers 

arbitrary (but safe) body movements in the same position. After the impact shock is detected, a 

simple change detector can be applied to the observed CQI sequences for tracking any post-fall 

event, and in turn detect possibly long lie conditions, corresponding to negligible RF fluctuations. 

IMPACT SHOCK DETECTION.  In the complete case study highlighted in Fig. 8.b, human fall 

detector is now based on an optimized subset of pre-existing links [23] deployed around the subject 

of interest and selected during a calibration procedure (non-informative links are purged). Decision 

about the fall/non-fall event is based on majority voting over the optimized link subset.  

Analysis of detector performance is crucial: undetected falls might have a dramatic impact, on 

the other hand, an excessive number of false activations might cause the detector to be perceived 

as useless. Validation of detector accuracy is thus illustrated in Fig. 8.b where the receiver operating 

characteristic (ROC) curve relates sensitivity versus false positive rate. A sensitivity of 0.97 and 

false positive rate of 0.007 compares well with performances of existing device-based systems [30]. 

8. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

This article focused on device-free radio vision systems acting as a flexible sensing tool and ad-

dressing key challenges in assisted living applications. The goal of this emerging research field is 

to develop models and processing methodologies for exploiting the inherent (but currently unused) 

sensing capabilities of the multitude of available wireless communication links, opening also to 
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investigate new radio technologies and unexplored bands. Future research on radio vision systems 

is expected to combine the use of localized RF signal inspection with large-scale and big-data pro-

cessing. Running real-time analytics from massive volumes of RF data will pose new signal pro-

cessing relevant problems, as well as the re-design of conventional statistical learning tools applied 

to unprecedented high-dimensional data structures.  
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