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1 INTRODUCTION

In recent years, the rapid growth of traffic demand
required by content-rich Internet services accessed by
mobile users through their smartphones has increased
the pressure on mobile operators for upgrading their
cellular networks. Consequently, mobile operators have
increased the capacity of their radio access and backhaul
networks through the development of new technologies
and a pervasive deployment of new types of base sta-
tions. Nevertheless, mobile customers are experiencing
a “bandwidth  crunch”  due to the steady  growth
of the
demand required by real-time services and the limited
capacity of the wireless access technology.
Apromising solution tosmoothly handle sudden peaks of

bandwidth demand is represented by the opportunistic
utilization of low-cost and low-power small access devices
(either Small Base Stations, SBSs, or Access Points, APs)
massively deployed over the macro-cell
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areas by the operator or third party entities. Third party
access devices can use the legacy transmission technol-
ogy of the large cell, such as LTE or beyond, but also
rely on existing technology such as WiFi, thus forming
Heterogeneous Mobile Networks. Consequently, mobile
operators could provide a better wireless access service
without limiting the maximum traffic of their customers
through a wise management of their resources and the
opportunistic utilization of other access network tech-
nologies.
In this paper, we investigate innovative policies and

mechanisms to foster the deployment of Heterogeneous
Mobile Networks as a means for mobile operators to
increase their network capacity without deploying ad-
ditional base stations, thus reducing their capital expen-
diture (CAPEX). As any marketplace, the misbehavior
of even few SBS/AP owners (either residential users
or hotspot administrators) playing strategically might
seriously affect the efficiency of the allocation mecha-
nism used by the mobile operator, thus discouraging
honest agents from participating to the market. This,
in turn, reduces the maximum amount of traffic that
can be offloaded and the potential CAPEX savings. To
address this issue, we present a reverse truthful auction
that forces each SBS/AP owner interested in leasing
the unexploited bandwidth of its Internet connection to
bid truthfully. More generally, we consider the case of
partial/constrained data offloading that stems from the
limited resources provided by third parties, showing that
such a problem asks for a deep revision of the classical
payment rules.
Our work makes the following contributions:
• We propose and analyze a combinatorial reverse

auction to implement an innovative marketplace
both for selecting the cheapest third party access
devices and offloading the maximum amount of
data traffic from the RAN.

• We show that a payment rule that considers only
the variation of the objective function solving the
ILP problem with and without the winner does
not always ensure the individual rationality of the



participants for the analyzed mobile data offloading
problem.

• We present an innovative payment rule based on the
Vickrey-Clarke-Groves (VCG) scheme and demon-
strate that it guarantees both individual rationality
and incentive compatibility (i.e., truthfulness). To the
best of our knowledge, this is the first payment rule
that considers explicitly the trade-off between the
total cost and the gain of offloading data connec-
tions.

• Since the optimal reverse auction problem is NP-
hard, we further propose three greedy algorithms
that solve very efficiently (i.e., in polynomial time)
the allocation problem, even for large network in-
stances, while preserving the truthfulness property.

• We perform a thorough numerical analysis and
comparative evaluation of the proposed optimal and
greedy allocation algorithms, considering realistic
network scenarios.

The paper is structured as follows: Section 2 discusses
related work. Section 3 presents the system model con-
sidered in our work. Section 4 formulates the combina-
torial reverse auction as an optimization problem, and
presents our new payment rule that makes the auction
individually rational and truthful. Section 5 describes the
greedy algorithm to solve efficiently the problem, while
Section 6 illustrates and analyzes numerical results. Fi-
nally, concluding remarks are discussed in Section 7.

2 RELATED WORK

In recent years, several research groups have investi-
gated the benefit of opportunistically offloading 3G data
traffic on WiFi access networks to improve the QoS
experienced by mobile devices [1], [2], [3]. Wiffler [2] pro-
vides a middleware layer for delay tolerant applications
to overcome the poor availability and performance of
WiFi access technology in vehicular networks, showing
the performance increase through different experimental
scenarios. The Application Programming Interface pro-
posed in [3] further develops this approach to improve
the performance of the applications using opportunistic
wireless networking.
These works shed lights on the benefits of oppor-

tunistically using multiple wireless connections to in-
crease the throughput and reduce the latency experi-
enced by data connections. However, they miss op-
portunities for optimizing communications, since they
design user-centric approaches without exploiting the
global vision of Heterogeneous Mobile Networks. More
recently, works like [4], [5], [6], [7], [8], [9] leverage
both on the global knowledge of the mobile network
operator and the multiple access radio interfaces of
4G smart devices to design auction mechanisms that
minimize the overall offloading cost. Nevertheless, these
mechanisms fail to find a feasible solution in typical
network scenarios, where only a subset of mobile cus-
tomers connections can be offloaded to the surrounding

WiFi access networks without exceeding their overall
capacity. Indeed, the payment rules designed in these
works require the assignment of all mobile data connec-
tions (i.e., their complete covering) in order to guarantee
individual rationality and truthfulness. In contrast, our
work presents a new reverse auction tailored for the
more general problem where the operator can offload
only a portion of the overall traffic load generated by its
customers.

With the upcoming generation of cognitive radio
networks, market-based auctions have been exten-
sively studied as an efficient mechanism to dynami-
cally sublease the unexploited licensed spectrum to sec-
ondary users and increase the revenue of the spectrum
owner [10], [11], [12], [13], [14], [15].

VERITAS [10] pinpoints the limits of conventional
auctions and proposes a truthful and flexible mechanism
requiring only polynomial complexity for solving the
spectrum allocation problem. TRUST [11] further de-
velops this approach to support multi-party spectrum
trading through a truthful double spectrum auction
based on the well-known McAfee mechanism. The work
presented in [12] adopts a similar approach to model and
solve a broad class of problems concerning the allocation
of spectrum resources to primary and secondary users
in cognitive radio networks, while [13] analyzes also the
interplay among the spectrum broker, service providers
which are interested in leasing spectrum bands, and end-
users. In [14] the authors investigate a spectrum market-
place where the spectrum owner’s uncertainty about the
private valuations of spectrum bidders is modeled using
a Bayesian approach.

Auction theory has also been exploited to design
innovative traffic engineering techniques and routing
protocols, both to enhance the utilization of unused net-
work paths and force the collaboration of intermediate
relaying nodes [16], [17], [18], [19].

Finally, recent research has analyzed virtual net-
work scenarios where several service providers compete
among each other for using the resources owned and
managed by a network operator [20], [21]. In partic-
ular, Jain et al. in [20] present a mechanism for per-
link bandwidth allocation of end-to-end paths in wired
network, whereas Fu et al. in [21] design an auction-
based stochastic game for resource allocation of virtual
operators in wireless cellular networks.

Unlike recent literature, our work envisions a new
marketplace based on reverse auctions, where WiFi Ac-
cess Points are exploited by mobile network operators to
offload the traffic of their customers. This marketplace
would reduce the installation and management costs for
mobile network operators, as well as foster the develop-
ment of Heterogeneous Mobile Networks. Furthermore,
we explicitly consider the more general partial covering
problem of data connections, proposing a new payment
rule to address the limits of the previous schemes.



3 SYSTEM MODEL

This section presents the economic definitions and as-
sumptions, as well as the network model we adopt in
the design of our auction mechanisms. Let us refer to the
Heterogeneous Mobile Network (HMN) sample scenario
illustrated in Figure 1, which is composed of a mobile
cellular network formed by four base stations and a set
of WiFi Access Points connected to the Internet. To sim-
plify the discussion, in the rest of the paper we consider
only WiFi APs as third party devices rented by the mo-
bile operator; however, we underline that the proposed
mechanisms can be easily extended to consider other
SBS access technologies like LTE or beyond. The mobile
network is managed by a single operator that provides
ubiquitous access to its mobile customers (MCs), while
each participant to the trading marketplace (either a
residential user or a hotspot operator) is the owner of
a wireless Access Point. AP owners lease the unused
capacity of their Internet connections made available
through wireless access points, so that the mobile opera-
tor can rent the available APs’ bandwidth to offload the
data traffic of its customers when, for example, this latter
exceeds the maximum capacity provided by the mobile
network, or to save energy by switching some BSs off.
Table 1 summarizes the notation used in the paper.

3.1 Economic Model

Each AP owner i has an unexploited capacity Ci of
its Internet connection that he is willing to lease for a
given price vi, unknown to the operator. To this end, he
submits to the operator the bid [bi, Ci], representing the
price that i asks for leasing the capacity Ci of its AP to
the operator.
Through the mechanisms proposed in this work, the

operator selects both the access points (APs) and the
subset of its mobile customers (MCs) whose data traffic
is offloaded from the mobile network to the selected
APs. We remark that, unlike classical optimization ap-
proaches, where the operator knows exactly the price
of each device that it can install, in our scenario such

Fig. 1: Network scenario considered in this work. The MN
is managed by a single operator that provides access to its
customers (e.g., MCj), while the unused capacity of wireless
access devices (e.g., APi) is leased to the operator for data
traffic offloading.

TABLE 1: Basic notation used in the paper.

Sets
M Set of Mobile Customers, |M| = m
Mi Subset of MCs that are covered by AP i
A Set of Access Points (i.e., bidders), |A| = n

Parameters
Ci Capacity of the Internet connection offered by AP owner i
bi Bid offered by AP owner i for its Internet connection
vi Real valuation of AP owner i for its Internet connection
pi Price paid by the operator to AP owner i
ui Utility of AP owner i
dj Bandwidth demand of MC j
rji Maximum transmission rate of the wireless link

established between nodes j ∈ M and i ∈ A
oji Channel utilization of AP i to satisfy the bandwidth

demand of MC j

Variables
xi Binary variable that indicates if AP i wins the auction
yji Binary variable that indicates if MC j is assigned to AP i

information is hidden, thus we may have bi ̸= vi. To
prevent market distortion, the mechanisms proposed in
this paper incentivize AP owners to provide the true
information about the private valuation of their APs
(bi = vi) by ensuring that there are no benefits to lying.
Let us denote by pi ≥ 0 the price paid by the operator

to AP owner i to exploit its available capacity Ci. Then,
assuming a quasi-linear utility function for AP owner i,
we can define the utility of i, ui, as the difference
between the price paid by the operator, pi, and the
private valuation vi, according to Equation (1):

ui =

{

pi − vi if AP i is selected
0 otherwise

(1)

The utility represents therefore the residual gain of
owner i obtained from the leased capacity of its AP.
Obviously, when AP i is not used, the utility of its
owner is null, since both the paid price and the private
valuation are null.

3.2 Network Model

We observe that the transmission rate and the channel
utilization required to satisfy the bandwidth demand of
the data traffic generated by mobile customers depend
on the channel condition between the smartphone of
the mobile customer and the access point to which it
can be connected; hence, the allocation scheme influ-
ences the number of APs used for the mobile data
offloading. Given the amount of traffic dj of its mobile
customer MCj , the operator computes the vector of
channel utilizations, −→oj =

[

oj1 oj2 ... oji ... ojn
]

,
where each pair (j, i) refers to a possible allocation of
MC j to AP i, whereas n represents the number of APs
in the network. Channel utilizations are computed as
follows:

oji =
dj
rji

, (2)

where the element oji represents the channel utilization
of AP i when it is used to offload the data traffic of



MC j, and it is computed as the ratio between the traffic
demand dj and the maximum achievable transmission
rate of the wireless link that might connect MC j and
AP i, rji. Note that this latter value can be easily
obtained from the MAC layer through a scanning of
the wireless channels, which is performed periodically
by all network devices. To take into consideration the
uncertainty related to traffic description in wireless sys-
tems and prevent throughput collapse caused by the
contention level, we increase the MC bandwidth dj by a
fixed margin, which is computed according to the recent
model presented in [22]. Finally, we observe that our
model can be extended to consider other types of SBS
by slightly modifying expression (2) according to the
specific wireless access technology.

4 OPTIMAL AUCTION FOR MOBILE DATA OF-
FLOADING

This section presents the combinatorial reverse auction
we propose to jointly select the wireless APs and the
MCs data connections that can be offloaded from the
cellular network when WiFi resources cannot satisfy the
aggregated traffic demand (Section 4.1). We show that
a payment rule, which considers only the variation of
the objective function solving the ILP problem with and
without the winner, provides no incentive to participate
to the reverse auction under such general assumptions.
Therefore, we define a new payment rule to guarantee
individual rationality and truthfulness, as demonstrated
in Section 4.2. The algorithm implementing the optimal
auction is then presented in Section 4.3.

4.1 Optimal Allocation

Hereafter, we formalize the Integer Linear Programming
(ILP) model which provides the optimal allocation for
the auction, namely the APs to be purchased and the
mobile data traffic that can be offloaded. We first de-
scribe the sets and variables used in our model, then we
provide the ILP description of the problem.
Let M denote the set of mobile customer devices

(MCs), and A the set of wireless access points (APs)
whose owners participate to the reverse auction of the
mobile operator. Let us define Mi ⊆ M, i ∈ A as the set
of MCs that are covered by AP i (i.e., the MCs that are
in the radio range of AP i).
We can now introduce the decision variables used in

our ILP model. Binary variables xi, i ∈ A, indicate which
residential users win the auction, i.e., the APs whose
available capacity is exploited by the mobile operator to
serve the extra-traffic of its MCs (xi = 1 if the available
capacity of AP i is used, 0 otherwise). Binary variables
yji, i ∈ A, j ∈ M, provide the assignment of MCs to APs
(yji = 1 if MC j is assigned to AP i, 0 otherwise).
Given the above definitions and notation, the reverse

combinatorial auction problem with partial covering of

mobile customers can be stated as follows:

min f(x, y) =
∑

i∈A

bi · xi − c ·
∑

i∈A

∑

j∈Mi

yji (3)

s.t.

yji ≤ xi ∀i ∈ A, ∀j ∈ Mi (4)
∑

i∈A

yji ≤ 1 ∀j ∈ M (5)

∑

j∈Mi

yjioji ≤ 1 ∀i ∈ A (6)

∑

j∈Mi

yjidj ≤ xiCi ∀i ∈ A (7)

yji = 0 ∀i ∈ A, ∀j /∈ Mi (8)

xi, yji ∈ {0, 1} ∀i ∈ A, ∀j ∈ M. (9)

The first term of the objective function (3),
∑

i∈A bi · xi,
represents the total cost paid by the operator to lease the
APs used for the data offloading of its mobile network.
The second term,

∑

i∈A

∑

j∈Mi
c·yji, aims at maximizing

the offloading of data connections from the cellular to
the rented WiFi networks. The parameter c > 0 is a
trade-off value between these two opposing objectives,
and it can be seen as the gain of the operator obtained
by offloading the traffic of MC j to AP i. Constraints (4)
are coherence constraints ensuring that only the access
points that win the auction can be used to serve mobile
customer connections. The set of constraints (5) ensures
that mobile data connections are served using at most
one leased access point.
Constraints (6) and (7) prevent the allocation of an

overall traffic demand that cannot be satisfied by an ac-
cess point, due to the maximum achievable transmission
rate of the wireless channel and the limited capacity of
the Internet connection made available by the residential
user, while constraints (8) prevent the assignment of
MCs to APs that are not in the reciprocal radio range.
Note that the channel assignment of access points can be
optimized in order to reduce interference effects among
nearby devices by using classical coloring algorithms
coupled with the IEEE 802.11k standard. Finally, con-
straints (9) ensure the integrality of the binary decision
variables.
Since the operator aims at offloading its mobile net-

work as much as possible, the parameter c should be set
as pointed out by the following proposition.

Proposition 4.1. In order to offload the maximum amount
of traffic of Mobile Clients, the value of the parameter c must
be greater than the maximum bid, namely c > max{bi}.

In fact, it is easy to prove that when parameter
c > max{bi}, we always get an improvement in terms
of minimization of the objective function by selecting an
additional AP h, since bh ≤ max{bi} < c ·

∑

j∈Mh
yjh.

We underline that our model can be easily extended to
consider other scenarios where, for example, the amount
of allocated radio resources represents a more important
metric to select the MCs that should be offloaded. In-
deed, the objective function can be modified to consider
as connection cost a parameter proportional to the radio



resources utilization of the Base Station, ôj , as follows:

f(x, y) =
∑

i∈A

bi · xi −
∑

i∈A

∑

j∈Mi

c · ôjyji =

∑

i∈A

bi · xi −
∑

i∈A

∑

j∈Mi

ĉjyji

ôj =
dj
r̂j

where r̂j is the physical rate of the mobile terminal
connection j, which depends on the radio resources
allocated by the BS scheduling algorithm. Therefore, the
value of r̂j can be easily obtained by the operator. Note
that to offload the maximum number of connections, the
condition stated in Proposition 4.1 must be modified as
follows:

Proposition 4.2. In order to offload the maximum amount
of traffic of Mobile Clients, the minimum value among the
parameters ĉj must be greater than the maximum bid, namely
min{ĉj} > max{bi}.

We observe that the condition stated in Proposition 4.1
permits to achieve the highest energy savings, since the
higher the number of offloaded connections, the larger
is the set of BSs that can be switched off. Nonethe-
less, when the operator wants to limit the maximum
offloading cost or have some guarantee on the price
paid to third party APs, the cost c acts as a reserve price,
excluding all those players that have submitted higher
bids than the value that the operator puts on the MC
connection. Therefore, the operator can choose the reserve
price c to limit the maximum offloading cost, without
affecting either the problem feasibility or the solution
properties (i.e., individual rationality and truthfulness).

4.2 Payment Rule

Having defined the ILP model representing the optimal
auction, we now illustrate the payment rule and the
conditions that force AP owners to ask their real val-
uation for the utilization of the capacity that they make
available through their access points. First, we demon-
strate that a classical payment rule, which considers only
the difference of the objective function minimized with
and without the winner’s presence, cannot be directly
applied to the problem analyzed in this paper. Then,
we propose a new payment rule that guarantees both
individual rationality and truthfulness (incentive com-
patibility).
In reverse auctions, payment rules usually define the

price paid to winner i as the damage that it causes
to other participants, which can be computed as the
difference between the optimal value of the objective
function obtained with and without i participation.

Mathematically, let (x, y) be the solution to the ILP
problem (3)-(9), and f−i(x, y) the value of the objec-
tive function without considering the bid for AP i, i.e.,
f−i(x, y) =

∑

k∈A\{i} bk · xk −
∑

k∈A\{i}

∑

j∈Mk
c · yjk.

Furthermore, let (x−i, y−i) denote the solution to the
same problem without considering AP i (i.e., forcing

xi = 0 as additional constraint to the original problem),
and f(x−i, y−i) =

∑

k∈A\{i} bk ·x
−i
k −

∑

k∈A\{i}

∑

j∈Mk
c ·

y−i
jk the value of the corresponding objective function.
The price paid to winner i using the aforementioned

rule is therefore equal to pi = f(x−i, y−i)− f−i(x, y)1.

Theorem 4.3. The payment scheme that considers only the
difference in the objective function of the problem (3)-(9)
caused by the winner’s presence does not guarantee individual
rationality when the connections covered by the winner i
can be assigned to a more expensive AP e ∈ A, i.e.,
pi = f(x−i, y−i)− f−i(x, y) < vi.

PROOF: To prove this theorem, we have to show
that the winner of the auction i ∈ A is paid less than the
value it asked for using its AP, i.e., ui < 0 ⇔ pi < vi. To
this end, we write the payment rule as follows:

pi = f(x−i, y−i)− f−i(x, y) =

=
∑

k∈A\{i}

bk · x−i
k −

∑

k∈A\{i}

bk · xk+

+ c ·
∑

k∈A\{i}

∑

j∈M

(yjk − y−i
jk )

(10)

The absolute value of the term qi !
∑

k∈A\{i}

∑

j∈M(yjk − y−i
jk ) represents the number of

connections that can be offloaded even without i. Fur-
thermore,

∑

k∈A\{i}

∑

j∈M y−i
jk ≥

∑

k∈A\{i}

∑

j∈M yjk,
therefore qi ≤ 0. Indeed, according to Proposition 4.1,
which forces the maximal covering of MCs connections,
the number of connections assigned to i in the optimal
solution y is at least equal to the one that can be
offloaded without i in solution y−i. Therefore, the
enlargement of the solution space by the addition
of a variable (i.e., xi) can only increase the number
of covered connections (recall, however, that the
connections assigned to i are not considered in the
payment rule (10)).
When the connections served by i can be as-

signed to a more expensive AP e ∈ A, the relation
qi =

∑

k∈A\{i}

∑

j∈M(yjk − y−i
jk ) < 0 holds, thus

pi = be + c · qi < 0 < vi, since c > max{bh}.
To better clarify the problem stated in Theorem 4.3,

hereafter we present an example in which the individual
rationality is not guaranteed. Let us refer to the network
scenario illustrated in Figure 2, with three APs and two
MCs. We assume that b1 > b2 > b3, C1 = C2 = C3 = C,
and that d1 + d2 > C. The APs selected as winners are
AP2 and AP3. In order to determine the price paid to
AP3 according to the rule (10), we need to compute the
optimal allocation and the corresponding value of the
objective function with and without AP3. With AP3, the
best solution (x, y) results in the assignments y12 = y23 =
1 (MC1 is assigned to AP2, MC2 to AP3). The value of
the objective function is equal to f(x, y) = b2 + b3 − 2c,
hence f−3(x, y) = b2 − c.

On the contrary, without AP3, the best solution

1. Note that this rule is equivalent to the VCG scheme when all MCs
can be offloaded even without i, as in [8].



(x−3, y−3) results in the assignments y−3
11 = y−3

22 = 1
(MC1 is assigned to AP1, MC2 to AP2). The value of the
objective function is equal in this case to f(x−3, y−3) =
b1 + b2 − 2c.

The price paid to AP3 according to the rule (10)
is p3 = f(x−3, y−3) − f−3(x, y) = b1 − c < v3, hence
u3 = p3 − v3 < 0, as c = max{bi} = b1 = v1 > v3.
Therefore, the owner of AP3 has no incentive to
participate to the offloading market, since its utility is
negative.

Fig. 2: Example scenario showing that the payment rule (10)
does not guarantee individual rationality.

Theorem 4.3 and the example scenario point out that
the payment rule (10) cannot be directly applied to the
mobile data offloading problem with partial covering of
mobile clients.

In order to guarantee individual rationality and make
the payment acting as an incentive for the participation,
we propose to modify the rule (10) adding a new term to
the price paid to the winner that depends on the num-
ber of connections that its presence permits to offload,
according to the following expression:

pi = f(x−i, y−i)− f−i(x, y) + c ·
∑

j∈Mi

yji. (11)

Theorem 4.4 (Individual Rationality of (11)). The payment
rule defined in Equation (11) satisfies the individual rational-
ity property, i.e., ∀i ∈ A : xi = 1, pi = f(x−i, y−i) −
f−i(x, y) + c ·

∑

j∈Mi
yji ≥ vi.

PROOF: To prove Theorem 4.4 we can observe that

pi = f(x−i, y−i)− f−i(x, y) + c ·
∑

j∈Mi

yji =

=
∑

k∈A\{i}

bk · x−i
k −

∑

k∈A\{i}

bk · xk+

+ c ·

⎡

⎣

∑

j∈Mi

yji +
∑

k∈A\{i}

∑

j∈M

(

yjk − y−i
jk

)

⎤

⎦ =

=

⎡

⎣

∑

k∈A\{i}

bk · x−i
k −

∑

k∈A\{i}

bk · xk

⎤

⎦+ c ·

⎡

⎣

∑

j∈Mi

yji + qi

⎤

⎦ .

The first term
[

∑

k∈A\{i} bk · x−i
k −

∑

k∈A\{i} bk · xk

]

is

always positive, since the optimal solution without i,
(x−i, y−i), always contains APs that are more expensive
than the solution with i, (x, y).

The second term
∑

j∈Mi
yji + qi =

∑

j∈Mi
yji −

∑

k∈A\{i}

∑

j∈M

(

y−i
jk − yjk

)

represents the number of

connections that cannot be covered without i (recall that
qi ≤ 0).
For the same reasons explained in Theorem 4.3, we

have
∑

j∈Mi
yji ≥ −qi, hence

∑

j∈Mi
yji + qi ≥ 0.

The utility of the AP owner i increases proportionally
of the same quantity:

ui = pi − vi =

=
∑

k∈A\{i}

bk · x−i
k −

∑

k∈A\{i}

bk · xk + c ·

⎡

⎣

∑

j∈Mi

yji + qi

⎤

⎦− vi.

With our payment rule, the operator pays to the win-
ners of the auction their contribution to the social welfare
(i.e., the money that their presence permits to save) plus
an additional incentive that depends on the connections
that without their presence cannot be offloaded from the
RAN, thus forcing to keep the Base Stations turned on.

Theorem 4.5 (Truthfulness of (11)). The payment rule
defined in Equation (11) satisfies the truthfulness property
(incentive compatibility).

PROOF: To prove this theorem, we have to show
that u(vi) ≥ u(v′i), ∀v

′
i ̸= vi, that is, an AP owner i cannot

increase its utility by bidding untruthfully, namely bi =
v′i ̸= vi.

Let (x, y) and (x′, y′) be the solutions to the prob-
lem (3)-(9), when the AP owner i declares vi and v′i,
respectively. Furthermore, let (x−i, y−i) denote the solu-
tion to the same problem without considering the AP i
(i.e., forcing xi = 0 as additional constraint to the original
problem). Note that x−i

i = x′−i
i .

The utility of i when it declares vi, u(vi), is equal to:

u(vi) = pi(vi, x, y)− vi =

=
∑

k∈A\{i}

vk · x−i
k −

∑

k∈A\{i}

∑

j∈M

c · y−i
jk +

−
∑

k∈A\{i}

vk · xk +
∑

k∈A\{i}

∑

j∈M

c · yjk+

+
∑

j∈Mi

c · yji − vi =

=
∑

k∈A\{i}

vk · x−i
k −

∑

k∈A\{i}

∑

j∈M

c · y−i
jk +

−

(

∑

k∈A

vk · xk −
∑

k∈A

∑

j∈M

c · yjk

)

,

whereas, when it declares v′i, the utility is equal to:

u(v′i) = pi(v
′
i, x

′, y′)− vi =

=
∑

k∈A\{i}

vk · x−i
k −

∑

k∈A\{i}

∑

j∈M

c · y−i
jk +

−

⎛

⎝

∑

k∈A\{i}

vk · x′
k + vi −

∑

k∈A\{i}

∑

j∈M

c · y′jk −
∑

j∈Mi

c · y′ji

⎞

⎠ .

Since (x, y) is the solution that minimizes the objective
function (3), (x, y) = argmin

x∈X,y∈Y

∑

i∈A
bi · xi −

∑

i∈A

∑

j∈Mi

c · yji,



Algorithm 1: Optimal Reverse Auction
Input : M,A, bi, Ci, c, dji
Output: xi, pi, yji
Compute channel utilizations oji;1
xi ⇐ Solve the ILP model (3)-(9);2
foreach i ∈ A : xi = 1 do3

pi = f(x−i, y−i)− f−i(x, y) + c ·
∑

j∈Mi
yji;

end

we have:
∑

k∈A

vk · xk −
∑

k∈A

∑

j∈M

c · yjk ≤

∑

k∈A\{i}

vk · x′
k + vi −

∑

k∈A\{i}

∑

j∈M

c · y′jk −
∑

j∈Mi

c · y′ji,

therefore u(vi) ≥ u(v′i), and the AP owner i cannot
increase its utility by bidding unilaterally untruthfully.

We underline that when the APs provide enough
capacity to offload the data traffic and any MC can be
handled by multiple APs (i.e., the third party network
provides enough capacity and redundancy to offload the
MC traffic), the payment rule (10) is equivalent to (11),
since there are no externalities due to traffic covering.

4.3 Optimal Algorithm

Hereafter, we illustrate the algorithm implementing the
optimal mobile data offloading auction run by an oper-
ator to select the cheapest APs that are used to offload
the data connections of the mobile customers from its
RAN.
Algorithm 1 receives as input the parameters which

describe the network topology and all offers from the
APs’ owners; these latter are composed of the capacity
Ci made available through the APs and the cost bi.
It produces as output the subset of APs that will be
used to offload the data traffic of the mobile terminals,
(i ∈ A : xi = 1) and the price paid to their owners,
pi, as well as the assignment of the data connections to
the selected APs ((j, i) ∈ M × A : yji = 1).
The algorithm proceeds in 3 steps. In step 1, the de-

mands of mobile customers connections are transformed
into equivalent channel utilizations, using the achievable
transmission rate of the links that can be established with
all nearby APs, according to Equation (2). Step 2 consists
in solving the ILP model to find the allocation that
minimizes the objective function (3). Finally, in step 3,
the operator computes the prices paid to the owners of
the APs selected by the previous step according to our
rule (11), which guarantees a truthful auction.
The optimal reverse auction problem detailed in Al-

gorithm 1 is NP-hard. Indeed, it can be shown that
the knapsack problem can be polynomially reduced to
the problem (3)-(9). Therefore, an operator can hardly
find a solution to reconfigure its mobile network on-the-
fly, since the computation time necessary to solve large
and real-life network instances increases very sharply
with the network size and density. However, we observe

that in small-size network scenarios, where the set of
covered mobile clients Mi have minimal overlap, we
can optimally solve the mobile offloading problem.

5 GREEDY AUCTION FOR MOBILE DATA OF-
FLOADING

In the following, we present three alternative versions of
a very efficient algorithm to solve the allocation problem
in polynomial time. Furthermore, we demonstrate that
such algorithm preserves the truthfulness property, so
that the proposed trading marketplace is robust against
any cheating behavior attempted to rule out honest AP
owners.

5.1 Greedy Algorithm

The greedy auction is summarized in Algorithm 2, and
it is composed of two main phases: (1) the allocation
phase, which selects the APs that are used to offload the
maximum amount of data traffic generated by mobile
customers, and (2) the payment phase, which establishes
the price paid to each winner as a function of the first
unused AP in the sorted list (the first loser). This latter
is also referred to as critical access point for i (denoted
by s), and the price asked by its owner as critical value
for i, which will be denoted as ps.

Algorithm 2: Greedy Reverse Auction
Input : M,A, bi, Ci, dji, oji
Output: xi, pi, yji

L ⇐ Sort
(

i ∈ A, bi
|Mi|

, “non-decr”
)

;1
L ⇐ L \ last(L) ;2
U ⇐ M;
while L ̸= ∅ ∧ U ̸= ∅ do3

i ⇐ Next(L); xi ⇐ 1;
Vi ⇐ Sort (j ∈ Mi, oji, “non-decr”);
while

∑

j∈Mi
yjioji ≤ 1 ∧

∑

j∈Mi
yjidj ≤ xiCi do4

j = Next(Vi);
if

∑

h∈A yjh = 0 then
yji ⇐ 1;
U = U \ {j};

end
end
Refine Assignment({j ∈ Mi : yji = 0},A \ L);5

end
s ⇐ Next(L);6
foreach i ∈ A : xi = 1 do7

pi ⇐
bs

|Ms|
|Mi| = ps|Mi|;

end

The greedy allocation phase (steps 1–6) sorts the set of
APs that participate to the auction in ascending order, ac-
cording to three alternative rules, as illustrated in Table 2.
For the sake of clarity, we explain both phases of the
greedy auction considering the first alternative (greedy
MC, which we will also denote as G.1 for simplicity),
namely the rule that sorts all APs in non-decreasing or-
der of their submitted bids per number of covered MCs
(i.e., the MCs that they may serve), bi/|Mi|. Each element
of the sorted list is selected as winner until all available
APs are selected or there exist MCs whose traffic has not



yet been offloaded to any AP. The assignment procedure
in step 4 assigns to each AP i ∈ A selected as winner the
maximum number of unsatisfied MCs in its radio range
(j ∈ Mi :

∑

h∈A yjh = 0) such that either the wireless
channel is not saturated (i.e., its utilization is lower
than 1) or the overall traffic demand does not exceed
the capacity of the wired connection. Before performing
a new iteration to select a new AP from the list L, the
function Refine Assignment in step 5 attempts to assign
the remaining unsatisfied MCs to those APs that have
been selected as winners in previous iterations. Indeed,
previous winners may have enough spare capacity to
serve also these unsatisfied MCs.

After selecting the winning APs opportunistically
used by the operator and having performed the assign-
ment of MCs to such APs, step 6 returns the critical
access point s ∈ A. AP s is the first unselected AP,
or the last available AP of the sorted list L, which
is removed in step 2 from the list to guarantee the
incentive compatibility property. Eventually, AP s is used
in step 7 to compute the prices paid by the operator to
the winners for offloading its mobile network.

As we will demonstrate in the next section, Algo-
rithm 2 implements a truthful auction. In fact, the allo-
cation phase satisfies the monotonicity property (recall
that the APs are sorted in non-decreasing order of their
bid per number of covered mobile customers), and there
exists a critical value which determines if the AP owners’
bid are satisfied or not.

The proposed greedy auction implemented by Algo-
rithm 2 has time complexity O(n2m) (with m = |M|
and n = |A|). Indeed, assuming that every summation
has time complexity O(1), each iteration k of the loop
in the greedy allocation phase requires m operations for
step 4 and m·|A\L| = m·wk assignment attempts within
the function Refine Assignment, where wk represents the
cumulative number of winners selected up to iteration k.
Note that wk has a unitary increase at each step k, and
it takes value from 0 to n − 1. Therefore, the maximum
number of iterations due to steps 4 and 5 executed
throughout loop 3 cannot be larger than n(n+1)

2 , thus

resulting in n(n+1)
2 ·m total assignment operations.

We observe that the utilization of any sorting rule that
does not affect the monotonicity property of the alloca-
tion phase still results in a truthful auction. Therefore,
we design two alternative versions of the greedy auction
that select the APs according to their price per channel
utilization, as indicated in Table 2. Indeed, considering
the resource utilization, which depends both on the
traffic and the achievable rate of the MC connection, re-
sults in better performance. More specifically, the greedy
use scheme (denoted by G.2) ranks APs according to
their price per overall channel utilization, considering
all MCs that can potentially be assigned to an AP. On
the contrary, the greedy max use approach (G.3) computes
the unitary price considering the subset of MCs whose
aggregated demand can be satisfied by the AP access

capacity (or equivalently, whose aggregated channel uti-
lization is lower than 1). In other words, the sorting and
payment rules use the larger subset Oi = E ∈ P(Mi) :
∑

j∈E oji ≤ 1 (P(Mi) is the partition set of Mi). The
greedy use rule aims at selecting as winners the APs that
can potentially offload the highest portion of data traffic,
whereas the greedy max use scheme leases the APs that
can effectively satisfy the aggregated demand.

5.2 Truthfulness Analysis

Having described the main phases of the greedy reverse
auction, hereafter we prove that our mechanism sat-
isfies the incentive compatibility property (truthfulness).
We recall that an auction mechanism is truthful if the
dominant strategy for each rational bidder i is to declare
always its real private valuation bi = vi. This prop-
erty guarantees that selfish bidders cannot benefit from
cheating, thus preventing the strategic manipulation of
the marketplace.
The following lemmas (5.1 - 5.2) prove that the al-

location phase of Algorithm 2 (steps 1–6) satisfies the
monotonicity property and guarantees the existence of a
critical value [23], which provide the basis to demonstrate
Theorems 5.3 and 5.4.

Lemma 5.1. If AP owner i is selected by the allocation
algorithm when it bids bi, then AP owner i is still selected if
i decreases its bid b′i, b

′
i < bi.

PROOF: Let L and L′ be two sorted lists cor-
responding to bi and b′i, respectively. Let us define
rank(i, L) as a monotonic decreasing function of AP

owner i position in the list L. Since b′i
|Mi|

< bi
|Mi|

, the
sorting algorithm in the greedy allocation phase (Algo-
rithm 2) moves i in a better position, i.e., rank(i, L′) >
rank(i, L). Therefore, the rank of i can only increase if
AP owner i submits a lower bid (i.e., i offers a lower
price), resulting in a different order of the set of access
points that are selected as winners by the operator to
offload the traffic of its mobile customers, which implies
that if AP owner i wins by bidding bi, it is selected even
with a lower bid b′i < bi.

Lemma 5.2. For each AP owner i, the greedy Algorithm 2
provides the critical value ps = bs

|Ms|
, which determines

whether AP owner i is selected as winner of the reverse
auction.

PROOF: The proof is straightforward, since Algo-
rithm 2 scans the list L of APs in non-decreasing order
of their bids per number of covered mobile customers
(

bi
|Mi|

)

until the maximum amount of data traffic gener-

ated by the mobile customers is satisfied or all but the
last AP are selected as winners. The critical value is then
equal to the ratio ps = bs

|Ms|
submitted by the owner of

the first unselected or the last AP owner s.
Note that if we do not exclude the last and most

expensive AP from the auction, an AP owner may ask a
high value for the utilization of its unexploited Internet



TABLE 2: Sorting and payment rules for the greedy auction

Greedy MC (G.1) Greedy Use (G.2) Greedy Max Use (G.3)

L ⇐ Sort
(

i ∈ A, bi
|Mi|

, “non-decr”
)

L ⇐ Sort
(

i ∈ A, bi∑
j∈Mi

oji
, “non-decr”

)

L ⇐ Sort
(

i ∈ A, bi∑
j∈Oi

oji
, “non-decr”

)

pi ⇐
bs

|Ms|
|Mi| pi ⇐

bs
|
∑

j∈Ms
ojs|

|
∑

j∈Mi
oji| pi ⇐

bs
|
∑

j∈Os
ojs|

|
∑

j∈Oi
oji|

connection, bi >> vi, being assured that its bid will be
always satisfied. Therefore, the removal of the last AP
ensures that all participants declare their real value vi.

Theorem 5.3 (Individual Rationality of Algorithm 2).
Each AP owner i selected as winner by the Greedy Algorithm
is paid at least the price it asked for the utilization of the
unexploited capacity of its Internet connection, pi ≥ bi.

PROOF: To show that pi ≥ bi, we need to demon-
strate that the critical value times the number of covered
mobile customers paid to winner i is at least equal to
its bid bi. Each winner i is paid the critical value bs

|Ms|
times the number of mobile customers that it can cover
(i.e., |Mi|). Recall that the list L of APs is sorted in non-
decreasing order of the ratio bi

|Mi|
, therefore the relation

pi = bs
|Ms|

|Mi| ≥ bi holds, since either s asked a higher
price for using its AP (i.e., bs ≥ bi) or the access network
of its AP can be used to offload a lower traffic demand
(i.e., |Ms| ≤ |Mi|).

Theorem 5.4 (Truthfulness of Algorithm 2). Algorithm 2
implements a truthful auction.

PROOF: We prove the theorem by showing that no
participant to the marketplace can increase its utility by
asking a price bi different from its private valuation vi
for the utilization of its AP. We underline that the utility
of AP owner i does not change by bidding either vi or bi,
since it is defined as ui(x) = pi − vi. We must consider
two cases, namely (A) bi < vi (lower price), and (B)
bi > vi (higher price). For each case, we must consider
all possible four outcomes, detailed in the following. Let
us start with case (A) by considering the following cases.
A.1: AP owner i wins either by bidding bi or vi.
If AP owner i wins by bidding either bi or vi, then i is

ranked in a better place in the list L when it submits bi,
since the list is sorted in non-decreasing order of the bids
per number of covered mobile customers. However, this
changes only the order of the set of winners, which does
not affect the critical value ps that is still given by the
following expressions: ps = bs

|Ms|
. Hence, the price paid

by the winner does not vary, pi = ps · |Mi|. Therefore,
the utility does not change: ui(bi) = ui(vi).
A.2: AP owner i wins by bidding bi but looses with vi.

If AP owner i wins by submitting bi but looses with vi,
then there exists a critical value ps = bs

|Ms|
such that

bi
|Mi|

< bs
|Ms|

< vi

|Mi|
.

Due to the monotonic property of the allocation algo-
rithm, the private valuation of i is higher than the price
paid when it submits bi, i.e., bi < pi < vi. Therefore, the
utility perceived by i is negative, ui(bi) = pi − vi < 0,

hence it is better off loosing the auction, since in this
latter case its utility is null, ui(vi) = 0.
A.3: AP owner i looses by bidding bi but wins with vi.

Due to the monotonic property, this case is impossible,
since by submitting a lower price, AP owner i will be
placed in a better position of the sorted list L.
A.4: AP owner i looses either by bidding bi or vi.
If AP owner i looses by offering both bi and vi, due

to the presence of cheaper access points, then its utility
is always null: ui(bi) = ui(vi) = 0.
Similarly, for the case (B) bi > vi, we can demonstrate

that AP owner i cannot increase its utility by asking a
higher price than its private valuation for leasing its AP
to the mobile operator.

Since Algorithm 2 implements a truthful auction
(which means that selfish AP owners cannot benefit
from manipulating their bids), a mobile operator can
efficiently compute a solution for the reverse auction
problem, being assured that all AP owners reveal their
true price for leasing the available capacity of their APs.
Similar observations as those employed above can be

easily formulated to prove the truthfulness of the other
two sorting and payment rules.
We observe that the truthfulness of the greedy auc-

tion can be more easily demonstrated as in [24] under
the assumption of sufficient capacity for offloading the
whole traffic, thus ignoring capacity and covering con-
straints (6) and (7). Indeed, in this case by simply sorting
the APs in increasing order of their bids per number
of covered MCs, bi

|Mi|
, we get the optimal solution that

minimizes the overall offloading cost (i.e., the sum of the
bids of the APs selected to offload the data traffic). Fur-
thermore, to prove that the greedy allocation is truthful,
we must also show that the bid per number of covered
MCs of the first loser c, which is used as unitary price
for the winners, satisfies the VCG rules with respect to
the objective function f(x, y) =

∑

i∈A
bi

|Mi|
xi.

Let us assume without loss of generality that AP
owners bids can be sorted according to their indexes
as follows: b1

|M1|
< ... < bk

|Mk|
< bk+1

|Mk+1|
< ... < bn

|Mn|
,

and the first k out of n APs suffice to offload the whole
MC traffic. The greedy allocation rule selects the first
k APs and fixes the unitary price of each winner as
pi = bk+1

|Mk+1|
, 1 ≤ i ≤ k. On the other hand, we can

easily see that whenever a winner i is removed from
the AP set, we need to select also the (k + 1)th AP to
offload the MCs’ connections that were covered by i (the
solution without i contains also AP k+1, i.e., x−i

k+1 = 1).
Therefore, the unitary price computed according to the
VCG payment scheme results pi =

∑

k∈A\{i}
bk

|Mk|
x−i
k −



∑

k∈A\{i}
bk

|Mk|
xk = bk+1

|Mk+1|
xk, which is exactly the value

computed by the greedy algorithm.

5.3 Economic Efficiency Analysis

In the following, we quantify theoretically the economic
efficiency gap between the greedy and optimal solutions.
To this end, we consider a simple network scenario
composed of one Mobile Client, A, and two Access
Points ({1, 2}). The capacities made available by the two
AP owners is large enough to accommodate the traffic
transmitted over the wireless access interface by the
MC. However, due to the different channel qualities, the
utilization of the two access links, which can be exploited
to offload the MC traffic, are oA1 = dA1/rA1 = 1/D (D is
a positive parameter) and oA2 = dA2/rA2 = 1, while their
bids are b1 = (1+ϵ) (ϵ is a small value larger than 0) and
b2 = D, respectively.
In this scenario, the allocation that minimizes the

objective function f(x, y) is the one that selects AP 1
and the corresponding social welfare is SW o = b1 =
1+ ϵ. However, the greedy algorithm selects AP 2, since
b2/o2 < b1/o1, and the social welfare is in this case equal
to SW g = b2 = D. The ratio SW g

SW o is therefore equal to
D
1+ϵ

, and the Price of Anarchy tends to infinity with D:

PoA =
SW g

SW o
= lim

D→∞

D
1 + ϵ

= ∞.

At the same time, we underline that the economic gap
computed considering the offloading cost, which is the
most important performance metric for the operator, is
almost null, since the cost obtained using the greedy
auction is only ϵ times larger than the cost computed
using the optimal algorithm. Indeed, the Offloading Cost
Ratio (OCR), which we define as the ratio between
the greedy and optimal offloading costs, is independent
of D, and even in this limiting case it results:

OCR =
pg(x, y)
po(x, y)

=

∑

i∈A pgi x
g
i

∑

i∈A poix
o
i

= lim
D→∞

(1 + ϵ)D
D

= 1 + ϵ.

where pgi and poi are the prices computed with the greedy
and optimal payment rules, respectively.
Note, however, that the conditions that lead to the

example discussed above are hardly met in real net-
work scenarios, since mobile operators do not handle
such a small bandwidth granularity with their network
equipment. Indeed, an infinitesimal channel utilization
corresponds to offer an infinitesimal access bandwidth
(Ci = 1/∞ ≥

∑

j∈Mi
djyji), which may not be realistically

satisfied by any mobile operator. As a consequence, we
can bound the PoA by simply fixing a minimum amount
of access bandwidth that any bidder needs to provide in
order to participate to the auction.

6 NUMERICAL RESULTS

This section presents the numerical results that illustrate
the validity of the proposed approaches to implement
the bandwidth trading marketplace for fostering mobile
data offloading. More specifically, we aim at evaluating
the impact of the device density and traffic load on the

performance of the mechanisms we designed for the
mobile data offloading marketplace. We first describe the
experimental methodology followed in our numerical
analysis, then we analyze and discuss the performance
achieved by the algorithms detailed in previous sections.

6.1 Experimental Methodology

For our numerical analysis, we refer to the scenarios
designed within the FP7 European Project EARTH and
described in [25]. More specifically, we extend the base-
line reference deployment scenario composed of 7 cell
sites, whose Inter-Site Distance (which specifies the dis-
tance between two sites) is fixed to 500 meters. Each
macro Base Station (BS) installed on a central site serves
3 sectors, resulting in 21 sectors in total.
We vary the number of MCs and APs per sector in

the ranges [2, 10] and [10, 15], respectively. Both MCs
and the APs are placed randomly in the corresponding
sector. Specifically, the MCs are deployed around each BS
according to a bi-dimensional Gaussian distribution with
standard deviation equal to approximately 160 meters,
to take into account the proximity of MCs to the BSs.
Indeed, cellular networks are usually designed consid-
ering the distribution of MCs; APs are instead scattered
according to a uniform distribution inside each sector.
To evaluate the number of APs that are used for

offloading the amount of traffic served by a BS, we
consider the two following use cases. In the first scenario,
we evenly divide the maximum bandwidth of a BS sector
(42 Mbps using 64 QAM dual-cell MIMO as suggested
in [25]) among all MCs inside that sector. Such value
provides an indication on the AP density necessary to
switch off BSs (or put them in deep sleep/idle mode).
In contrast, in the second scenario, we fix the network
topology and vary the traffic load of MCs to inves-
tigate the impact of heterogeneous demands on our
mechanisms. In contrast, the bids submitted by any AP
owner i, bi, are drawn from a uniform distribution with
mean value equal to 5 monetary units (e.g., US dollars)
and interval size twice the average, both to compare
the overall offloading cost to the installation cost of
additional BSs and evaluate the fairness of the payments
in the worst case scenario. However, we underline that
these assumptions does not affect the main findings on
the performance of our algorithms.
The maximum achievable transmission rate of the

access links that can be established between MC j and
any of its surrounding APs i, rji, is defined according
to the reception sensitivity of the Wistron CM9 commer-
cial wireless cards based on Atheros chipset2. The path
loss, which is necessary to evaluate the sensitivity of
the receiving node, is computed according to the Friis
propagation model. To model the uncertainty related
to traffic description in wireless systems caused by the
contention level at the frame layer, we consider a fixed
margin to compute the effective bandwidth necessary

2. http://www.lri.fr/˜fmartignon/CM9.pdf



to satisfy MC demands and avoid throughput collapse.
Indeed, according to recent mathematical models [22]
for 802.11 networks, in real traffic conditions (i.e., in
a non-saturated regime, where stations’ demands are
characterized by bursty data rates), both collision prob-
ability and overall aggregate throughput tend to reach
a stable, constant value, for increasing traffic loads. In
this work, we discounted the access bandwidth of all
APs by 55%, increasing the traffic demand of all MCs
by a factor equal to 2.22, which corresponds to 10
saturated stations according to [22]. We underline that
all the above assumptions do not affect the proposed
algorithms, which are general and can be used to solve
any network scenario.
In order to evaluate the performance of the solutions

proposed to implement the mobile data offloading mar-
ketplace, we consider the following metrics:

• Cost: defined as the sum of the prices paid by the
operator to all winners.

• Served MCs: fraction of MCs whose connections can
be completely offloaded on winning APs.

• Winners: fraction of AP owners selected as winners
among the participants to the auction.

• Fairness: we consider the Jain’s Fairness Index
(JFI) [26], defined according to Equation (12):

Jain’s Fairness Index =
(
∑w

i=1
ρi)

2

w ·
∑w

i=1
ρi2

(12)

where ρi represents the ratio between the paid
price and the traffic demand served by AP i, ρi =
pi/∑j∈Mi

yji·dj , whereas w =
∑

i∈A xi represents the
number of winners. The Jain’s Fairness Index mea-
sures the spread of the price per unit of traffic paid
by the operator to its winners, and varies from 1/w
(no fairness) to 1 (perfect fairness).

For each network scenario we perform 100 independent
measurements, computing very narrow 95% confidence
intervals.

6.2 Analysis of Device Density

We first evaluate the effect of the number of MCs within
each sector on the performance of our mechanisms, in
order to evaluate rural, suburban, and urban scenarios.
Specifically, we consider three different density levels,
namely low, medium and high, corresponding respectively
to 2, 4, and 6 MCs within each BS sector. In all scenarios,
we vary the number of APs within each sector in the
[10, 15] range.
We have further considered scenarios with 8 and 10

MCs within each BS sector. However, for the sake of
brevity, we omit these results since they are very close
to those observed with 6 MCs per sector.
Figures 3, 4, and 5 show the performance metrics of

our four mechanisms as a function of the number of
APs inside a BS sector for the low-density, mid-density,
and high-density scenarios, respectively. The curves iden-
tified by labels “O.”, “G.1”, “G.2” and “G.3” illustrate,

respectively, the performance metrics computed using
the optimal and greedy algorithms with the three sorting
rules defined in Table 2 (i.e., G.1, APs sorted according to
their bids per number of covered MCs, G.2, bids per channel
utilization, and G.3, bids per maximum channel utilization).
For the sake of clarity, the cost has been normalized with
respect to the maximum value obtained over all the three
scenarios.
In particular, Figures 3(a), 4(a), and 5(a) show the

overall cost paid by the operator to offload the data traffic
of its MCs with the proposed mechanisms. It can be ob-
served that the greedy use scheme (G.2) well approaches
the optimal solution in all scenarios. The slightly lower
cost achieved by G.2 in Figure 3(a) is due to the addi-
tional contribution of the optimal payment rule (11). In
contrast, the optimal solution always achieves the lowest
value for the objective function, which represents the
social welfare in our auction. Interestingly, the greedy
max use approach (G.3) produces very different solutions
with respect to the greedy use scheme. Specifically, in the
low-density scenario the cost increases as a function of the
APs, since the sorting rule sets approximately the same
unitary price for all APs ignoring their positions, which
instead can lead to lower costs as illustrated by the greedy
use curve. However, as long as the MC density increases,
the greedy max use scheme approaches the cost obtained
using the greedy use scheme, since the capacity of the BS
sector is spread among more MCs and their utilization
of the spare APs capacity gets similar for the allocation
rules of the two corresponding greedy algorithms. The
greedy MC solution (G.1) provides similar results to the
optimal algorithm in the low-density scenario, since the
sorting rule provides higher ranks to those APs that are
selected by the optimal allocation. However, considering
only the number of covered MCs while completely ig-
noring their resource utilization results in higher costs
when the MC density increases, because the lower MC
demand can be better offloaded to closest APs (recall
that the BS capacity is evenly distributed among MCs).
We further emphasize that all proposed solutions

achieve high fairness, since the JFI, which we omit for the
sake of brevity, is always higher that 0.85. In particular,
the gap between optimal and greedy JFI values is neg-
ligible (the greedy curves are almost always overlapped
to the optimal curve, and only in the worst case the JFI
gap reaches 10%). Therefore, the data offloading price
paid by the operator is almost independent of the AP
selected by our proposed mechanisms.
Figures 3(b), 4(b), and 5(b) show the fraction of served

MCs whose traffic demand can be offloaded onto WiFi
APs. All schemes satisfy approximately the same num-
ber of MCs (all curves are practically overlapped). It can
be further observed that the higher density has a positive
effect on the number of offloaded MCs connections, as
illustrated in the mid and high-density scenarios (Fig-
ures 4(b) and 5(b)). Indeed, the higher the MC density
within a BS sector, the lower the amount of data traffic
of each MC connection. Moreover, the higher density
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Fig. 3: Performance metrics measured in the low-density scenario (2 MCs in each of the 21 sectors).
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Fig. 4: Performance metrics measured in the medium-density scenario (4 MCs in each of the 21 sectors).
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Fig. 5: Performance metrics measured in the high-density scenario (6 MCs in each of the 21 sectors).

increases the proximity among MCs and APs, thus in-
creasing the transmission rate that can be used on the
links established among these devices.

Figures 3(c), 4(c), and 5(c) show the fraction of APs
that are selected as winners to offload the traffic from
the mobile network. In the low-density scenario, while
all schemes offload the same amount of data traffic, the
greedy algorithms that sort the APs according to the
channel utilization select a larger number of winners
with respect to the optimal and greedy MCs solutions.
Similarly to previous metrics, by spreading the BS ca-
pacity among a larger set of MCs we can reduce the
number of APs necessary to satisfy the same amount
of aggregated demand, thus increasing the competition
among the APs that participate to the auction. As the
curves G.2 and G.3 show, when we increase the number
of MCs, the number of winners selected by the greedy
use and greedy max use solutions decreases down to 20%,
dropping from 100% in the low-density scenario to 60% in
the high-density scenario. We can finally observe that the
AP density contributes to reduce the number of winners
selected by all greedy schemes, with a gain that ranges
from 10% to 25% when the number of available APs in

each sector varies from 10 to 15.

6.3 Analysis of Traffic Load

The second set of simulated scenarios, whose results
are depicted in Figures 6, 7 and 8, aims at evaluating
the effect of the traffic load heterogeneity on the perfor-
mance of our proposed schemes. To this end, within each
of the 21 sectors, we randomly place 6 MCs. The MC
traffic demand, dj , is distributed uniformly in the range
[x− 0.4, x+0.4] Mbps, with x = {6, 7, 8} Mbps: this cor-
responds to three traffic load scenarios that we denote,
respectively, with underload, peak-load and overload (the
aggregated bandwidth in every sector is equal to 36, 42
and 48 Mbps). Furthermore, we vary the number of APs
in the [5, 15] range, generating 100 device deployments
and 100 different demand distributions for each network
scenario. Due to the high computational time, we solve
the optimal auction only for a subset of network in-
stances. Since the results confirm the trends and gaps ob-
tained in the scenarios described in Section 6.2, we only
show the curves obtained using the greedy auctions. In
particular, the greedy use algorithm (G.2) achieves the
best performance among the greedy algorithms in terms
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Fig. 6: Performance metrics measured in the underload scenario (average traffic demand equal to 6 Mbps).
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Fig. 7: Performance metrics measured in the peak-load scenario (average traffic demand equal to 7 Mbps).
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Fig. 8: Performance metrics measured in the overload scenario (average traffic demand equal to 8 Mbps).

of cost paid by the mobile operator.The offloading cost
obtained using the greedy schemes (see Figures 6(a), 7(a)
and 8(a)) keeps increasing as long as the APs density
achieves a knee point, where the leasing cost slightly
decreases due to the higher competition. We further ob-
serve that the variability of the traffic demand increases
the gap between the greedy use auction (G.2) and the
other approximated solutions, due to the suboptimal
allocations implemented by the different schemes.

Figures 6(b), 7(b), and 8(b) show the fraction of MCs
that are offloaded from the mobile network on the leased
WiFi APs. While all greedy auctions need approximately
7 APs per sector to offload all data connections in the
underload scenario, every increase of 1 Mbps of the
average data traffic demand (i.e., peak-load and overload
scenarios) requires two additional APs to satisfy all MCs.

The curves illustrated in Figures 6(c), 7(c), and 8(c),
which represent the fraction of winners selected by the
proposed auctions, follow a trend similar to the overall
cost paid by the operator. Specifically, the increasing part
of the curves obtained using the greedy algorithms is
due to the low AP density. In such cases, some APs are
too far from the MCs and cannot be used to serve the
MCs data traffic, forcing the algorithm to select all APs

that permit to offload the greatest portion of traffic. The
greedy algorithms keep selecting APs as long as their
density achieves the point where the WiFi capacity is
enough to serve all MCs and additional APs are useless.
Nonetheless, we underline that, while there exists an
optimal number of APs for offloading the whole data
traffic, the higher is the number of APs, the higher is
the competition, thus increasing the economic efficiency
of the mechanism.

7 CONCLUSION

This paper proposed a new trading marketplace where
mobile operators can rent the bandwidth of Internet
connections made available by third party WiFi Access
Points to offload the data traffic of their mobile cus-
tomers.
The offloading problem was formulated as a combi-

natorial auction, and an innovative payment rule was
designed to guarantee both individual rationality and
truthfulness for realistic scenarios in which only part of
the data traffic can be offloaded.
In order to solve efficiently (i.e., in polynomial time)

the offloading problem for large-scale network scenarios,



we also proposed a greedy algorithm, with two alterna-
tive versions of the allocation phase, that preserves the
truthfulness property.
Numerical results demonstrate that the proposed

schemes well capture the economical and networking
essence of the problem, thus representing a promising
solution to implement a trading marketplace for next-
generation access networks composed of heterogeneous
systems.
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