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Abstract—Goal: To investigate the accuracy of template match-
ing for classifying sports activities using the acceleration signal
recorded with a wearable sensor. Methods: A population of 29 nor-
mal weight and 19 overweight subjects was recruited to perform
eight common sports activities, while body movement was mea-
sured using a triaxial accelerometer placed at the wrist. User- and
axis-independent acceleration signal templates were automatically
extracted to represent each activity category and recognize activity
types. Five different similarity measures between example signals
and templates were compared: Euclidean distance, dynamic time
warping (DTW), derivative DTW, correlation and an innovative
index, and combining distance and correlation metrics (Rce).
Template-based activity recognition was compared to statistical-
learning classifiers, such as Naı̈ve Bayes, decision tree, logistic
regression (LR), and artificial neural network (ANN) trained
using time- and frequency-domain signal features. Each algorithm
was tested on data from a holdout group of 15 normal weight
and 19 overweight subjects. Results: The Rce index outperformed
other template-matching metrics by achieving recognition rate
above 80% for the majority of the activities. Template matching
showed robust classification accuracy when tested on unseen data
and in case of limited training examples. LR and ANN achieved
the highest overall recognition accuracy ∼85% but showed to
be more vulnerable to misclassification error than template
matching on overweight subjects’ data. Conclusion: Template
matching can be used to classify sports activities using the wrist
acceleration signal. Significance: Automatically extracted template
prototypes from the acceleration signal may be used to enhance
accuracy and generalization properties of statistical-learning
classifiers.

Index Terms—Activity classification, dynamic time warping,
template prototypes, overweight subjects.

I. INTRODUCTION

R ECENT and rapid advances in wearable sensing and com-
puting technologies have opened new avenues to a wide

range of applications in the manufacturing, entertainment, and
healthcare domain [1]. Special attention has been dedicated to
the automatic recognition of users physical activity with the
intention to foster context-aware applications for health and
lifestyle monitoring [2], [3].
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Several researchers have approached the challenge of rec-
ognizing human activities such as walking, running, and cy-
cling from wearable sensors [3], [4]. A tradeoff is often ob-
served between complexity of the classification problem and
user-friendliness of the measurement system. For example, to
successfully achieve activity classification using a single wear-
able accelerometer, different activity types are often grouped in
a few large clusters which are then targeted by the classification
algorithm [5]–[7]. On the other hand, identification of several
activity types often requires recording discriminative features
from multiple accelerometer units. The seminal work of Bao
and Intille [8] employed a large set of accelerometers to dis-
criminate between 20 activities. The authors also tried to keep
an acceptable accuracy level while reducing the number of sen-
sors used. However, the simplest system still required data from
two accelerometers to preserve classification accuracy. Studies
focusing on measuring physical activity with a single wearable
sensor [9], [10] showed that the acceleration signal recorded at
the trunk and lower limbs offered better discriminatory features
for classifying types of movement of the body center of mass
like walking [10]. Yet, sports and activities that involve move-
ment of upper limbs are difficult to identify by monitoring the
acceleration of the trunk and legs only [8], [11].

Statistical-learning methods have been extensively applied to
solve activity recognition problems [12]. Gupta and Dallas [13]
developed a Naı̈ve Bayes (NB) and a k-nearest neighbor classi-
fier to recognize seven activities, such as walking, jumping, and
running. Other popular algorithms are: Artificial neural network
(ANN), decision tree (DT), support vector machine (SVM), ran-
dom forest, etc., [14]–[16]. Despite the successful application
of these algorithms for activity recognition, their evaluation is
often restricted to a limited set of data obtained in supervised
and structured settings. Testing robustness of the classification
accuracy on data collected from different population and mea-
surement settings is often neglected. Several studies focused
on analyzing data collected from a small and homogeneous
group of individuals with minimally varying anthropometric
characteristics and motor skills. In addition, there is evidence
that laboratory-trained algorithms such as ANN and SVM have
poor reproducibility in free living [16], suggesting a significant
decrease in classification accuracy when applied on data from
previously unseen conditions.

In an attempt to bridge the gap between laboratory experi-
ments and real-life applications, this paper proposes a template-
matching-based framework to recognize a set of eight sports
activities from a single accelerometer worn at the wrist. We
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carefully selected the wrist placement of the sensor for its
unobtrusiveness. The focus on recognizing sports activities is
derived from their high relevance for healthcare and lifestyle
applications. Distinguishing between different types of sports al-
lows precise assessment of energy expenditure and cardiofitness
level [17]. Moreover, automatically detecting different types of
exercise are relevant for several rehabilitation and lifestyle in-
tervention programs providing coaching tools to guide patients
and users toward a better health and fitness.

Template matching has been seldom applied for physical ac-
tivity. Muscillo et al. [18] proposed user-dependent templates
to target recognition of arm-specific tasks. Likewise, Chen and
Shen [19] focused on recognizing activities performed with
the right upper limb using a classification framework based on
template matching. Stifefmeier et al. [20] proposed an innova-
tive approach consisting of encoding motion data into sequence
of finite symbols and performing activity recognition by using
string-matching algorithms.

Finally, Muscillo et al. [21] applied template matching to the
shin acceleration signal to distinguish between walking, climb-
ing, and descending stairs but still based on subject-, sensor-
, and even measurement-axis-specific templates which cannot
generalize to data from unknown subjects.

To summarize, many existing methods to automatically rec-
ognize several types of sports and human physical activity often
rely on a set of a few accelerometers. Exceptions that reduce
this set to one single sensor are either target very broad activ-
ity classes or focus on limb-specific movements, for example
arm-related activities. Additionally, most studies fail to test the
robustness of the method and ability to generalize on different
groups of users. The purpose of this paper was to investigate
the use of template matching for recognizing sports activities
using one single accelerometer worn at the wrist. In particu-
lar, we wanted to evaluate the ability of a template-matching
classification algorithm to generalize on a population of over-
weight subjects and compare it to popular statistical-learning-
based classifiers.

II. BACKGROUND

Template matching has been successfully applied in several
domains, such as computer vision [22], speech recognition [23],
and gait analysis [24]. Its main idea consists of two major steps:
1) generating templates for each target class using entities with
particular patterns, 2) comparing each new entity to the set of
generated templates in order to find the best-fitting one. Thus, the
unknown entities can be classified to the target class represented
by the selected template [25]. In this section, we describe these
two steps and provide an overview of their principal techniques.

A. Generating Templates from Time Series Signal

A template is defined by Brunelli [22] as: 1) Anything fash-
ioned, shaped, or designed to serve as a model from which
something is to be made: a model, design, plan, outline. 2)
Something formed after a model or prototype, a copy; a like-
ness, a similitude. 3) An example, an instance; esp. a typical
model or a representative instance. Thus, a useful template has

to be general enough to match the corresponding patterns de-
spite their potential distortion, but also specific enough so to
substantially differ from all other types of patterns. Considering
time series, a reference template consists of a specific periodic
waveform which is repeated in entities of the same class. The
template formation can be carried out in two different ways.

The first method consists of extracting repetitive waveforms
from few signal instances and selecting those that ensure the
highest recognition rate. Often, in order to increase the classi-
fication performance, multiple templates are generated for each
class. However, this comes at higher computational costs. A
compromise to reduce the number of references per class and to
improve the template robustness would be to generate a template
by averaging waveforms extracted from different examples.

The second approach consists of extracting and interpolating
fiducial points, which synthesize the specific shape, by applying
spline function [26]. Such an approach can be seen as a smooth-
ing procedure that may affect the waveform specificity and lead
to a high misclassification incidence when classes present some
similarities.

B. Matching Time Series Signal with Generated Templates

Brunelli [22] defines matching as comparing with respect to
similarity; to examine the likeness or difference of. Hence, once
a template is generated for each target class, unseen entities
are compared to available templates and are associated to the
class with the highest matching level. The matching level is
usually evaluated based on distance or correlation measures. The
smaller the distance between two time series, or the higher their
similarity, correlation and, hence, likelihood that they belong to
the same class. Some of the most popular similarity measures
that have been applied in the context of template matching are
described below.

1) Euclidean Distance: It is the simplest similarity index
employed to quantify the correspondence between two se-
quences of points [27]. Let X and Y be two time series as
follows:

X = x1 , x2 , . . . , xi , . . . , xn , Y = y1 , y2 , . . . , yi , . . . , ym .

The distance d(i) with i = 0, . . . , m − n − 1 and n < m, is
calculated by comparing X with Y divided into overlapped
segments composed by n samples. For each ith sample, the
norm of the difference (distance) between X and n samples
of the signal Y is computed. The Euclidean metric, d(i) is
computed as:

d(i) = 2

√
√
√
√

n∑

k=1

(Y (i + k) − X(k))2 . (1)

If the compared entities have the same overall shape but dif-
ferent time scale, this metric would fail to assess the real sim-
ilarity between them. This is the case of acceleration signals
detected from activities characterized by different speed of ex-
ecution. To overcome this limitation, nonlinear algorithms such
as dynamic time warping (DTW) and derivative dynamic time
warping (DDTW) [28] are often employed.



Fig. 1. Example of alignment between two time series, using DTW (to the
left) and DDTW (to the right). Both methods present singularities, although
DDTW shows to provide a more accurate alignment.

2) DTW: It searches for the best alignment of two series
by considering all the compressions or stretching of the x-axis
(time axis for time series), in order to find the mapping which
provides the lowest cumulative distance. Thus, it addresses the
challenge of similarity evaluation between sequences of points
having same shape yet, unaligned on the x-axis.

Basically, given the two series X and Y introduced above,
the algorithm consists of

1) Building a m × n matrix, where elements represent the
distance d(yi , xj ) between each couple of points yi , xj .

2) Defining all the sequences W of matrix elements, called
warping paths, with wk = (i, j)k , where w1 = (1, 1) and
wk = (m,n) and constrains of continuity and monotonic-
ity between adjacent wk elements are respected.

3) Finding the optimal warping path W ∗ by minimizing the
cost function DistW (Y,X), which represents the normal-
ized cumulative distance associated to each W

W ∗ = arg min
W ∈W

DistW (Y,X). (2)

Thus, the distance between X and Y is given by adding up
the norm difference between those pairs of points belonging to
the optimal warping path. The constraints regulating the con-
struction of this warping, however, might lead to nonoptimal
alignments. Indeed, as illustrated in Fig. 1, one single point of
one sequence may be mapped to multiple points of the other
sequence producing the so-called singularities. Also, differ-
ences in the amplitude scales of the two signals might result in
aligning the peak of one sequence to the valley of the second,
which in turn, affects the similarity evaluation.

3) DDTW: It is a modified version of DTW which allows
us to prevent misalignment resulting from offset translation or
different amplitude range. This is achieved by comparing the
derivative of the considered series. The derivative of a sequence
X is calculated as

Dx[q ] =
(qi − qi−1) + ((qi+1 − qi−1)/2)

2
. (3)

Interestingly, DDTW outperforms DTW [21], [28] even though
both methods have the same complexity O(mn). Nevertheless,
DDTW is not exempt from the presence of singularities. In-

deed, calculating the derivative of noisy signals might enhance
noise and result in unreliable comparisons. Thus, a prefiltering
step is usually required, despite the increased computational
cost.

4) Cross Correlation: It offers an alternative matching ap-
proach to the distance measures presented above. It is based on
a cross-correlation index [29] which allows the quantification of
the relationship between waveforms both in terms of shape and
mutual time delay. Given two time series X of length n points
and Y of length m points, the cross correlation CY X (τ), with
τ = 0, . . . ,m − 1, is defined as

CY X (τ) =
1

n − 1

n−1∑

i=0

[Y (i + τ)][X(i)]. (4)

Often the cross-correlation index is normalized with respect to
the standard deviation of the two signals and is called correlation
coefficient γY X (τ). It is defined as

γY X (τ) =
CY X (τ)
σY Y σX X

(5)

where σY Y and σX X refer to the standard deviations of Y
and X , respectively. Its value ranges between −1 and +1. The
γY X (τ) equals to−1 indicates same shape but opposite phase, 0
indicates the absence of similarity, and 1 refers to total similarity.

When a signal is compared with itself, the cross correlation
is called autocorrelation. It is defined as follows:

R̂Y Y (τ) =
1

m − 1

m−τ−1∑

i=0

[Y (i + τ)][Y (i)]. (6)

Such function is usually exploited to distinguish periodic signals
from white noise and for identification of repetitive patterns and
signal periodicity [30].

5) Rce: It is an innovative index that we proposed in this
paper as additional measure to find shape similarity between
signal segments. This was calculated as the ratio of correlation
coefficient to Euclidean distance

Rce =
γY X

dist(Y,X)
. (7)

III. RECOGNITION OF SPORT ACTIVITIES USING

TEMPLATE MATCHING

In this section, we present our data analysis and classification
framework and explain the different processing steps carried out
to classify sports activities using wrist acceleration data.

A. Data and System Overview

The dataset used in this study was collected in three differ-
ent trials. In each trial, we used the same set of sensors but
included different types of common activities, which could be
mapped into eight main classes. Twenty-two primitive activ-
ity types were identified from the trials protocol and grouped
in eight main categories: cycling, cross trainer, rowing, squat-
ting, stepping, running, walking, and weight lifting, represent-
ing the target of our classification systems. The activities were
carried out by 48 subjects (24 females and 24 males, age:



29 ± 9 years) wearing a triaxial accelerometer at the wrist
(Philips DirectLife, Philips Consumer Lifestyle, Amsterdam,
The Netherlands) characterized by a dynamic range of ±2g and
sampling frequency of 20 Hz. The population included 29 nor-
mal weight subjects (16 females and 13 males, body mass index
BMI = 22 kg/m2 on average) with a BMI below the thresh-
old of 25 kg/m2 and 19 overweight subjects (8 females and
11 males, BMI = 27 kg/m2 on average) with a BMI higher
than 25 kg/m2 . Data from 50% of the normal weight subjects
(randomly selected) were used to generate the signal templates
(training group). The same subset was also used for training
statistical classifiers for comparison purposes as explained later.
Data from the remaining participants as well as the entire over-
weight group were kept for testing purposes (test group). Be-
cause data were gathered in separate experiments, a different
number of participants performed the considered activity types.
Each activity lasted about 3 min except the squatting and weight
lifting which had a duration of 45 and 60 s, respectively. An-
notation on start and stop time of each activity were used to
select intervals of the time series data belonging to each activity
type. Visual inspection of the signal allowed to precisely detect
activity onset and termination.

As explained in Section II, our approach consisted of two ma-
jor steps: 1) generation of templates for each target activity type
based on training data, and 2) classifying unseen data by com-
paring it to the set of generated templates and searching for the
best match. Based on the collected data, a detailed description
of these two phases are provided in the following sections.

B. Signal analysis

To test the viability of template-based activity classification,
we investigated the periodicity of the acceleration signal using
frequency-domain analysis. We designed a method independent
from sensor orientation, thus we focused the analysis on a com-
bination of the acceleration components x, y, z in the vector
magnitude (VM)

VM =
√

x2 + y2 + z2 . (8)

Examples of VM signals for different activities are shown in
Fig. 2. From the VM signal of each activity type, we calculated
the averaged power spectral density, using Welch’s algorithm,
and the spectral entropy, using the histogram method. The signal
entropy was calculated as average of the spectral entropy values
calculated for each signal of a specific activity. Low spectral
entropy generally indicates high periodicity, while high spec-
tral entropy indicates the absence of a repetitive pattern. The
obtained results are reported in Table I. As expected from tar-
geted sport activities, the highest entropy was related to cycling.
Unlike the others, this activity does not induce a cyclic wrist
movement.

C. Template Generation

Signal templates were generated by an automatic process con-
sisting of two phases: 1) calculation of the template length then
2) extraction of relevant repetitive waveform in the signal. The
length 2n of a template corresponds to the mean repetition pe-

Fig. 2. Plots show segments of centered VM signals extracted from eight
sports activities recorded with an accelerometer located at the wrist. The depicted
activities are: Cross trainer 80 W, cycling at 70 r/min, rowing self-paced, running
at 8 km/h, squatting, stepping 96 b/min, walking at 3 km/h, and weight lifting.

TABLE I
AVERAGE SPECTRAL ENTROPY CALCULATED PER ACTIVITY

CLASS FOR TRAINING AND TEST DATA

Entropy-Training set Entropy-Test set

Activity Mean SD Mean SD

Cycling 4.20 0.35 4.20 0.28
Cross trainer 2.47 0.75 2.55 0.72
Rowing 3.25 0.58 2.96 0.69
Running 1.10 0.24 1.28 0.33
Squatting 1.65 0.15 1.93 0.24
Stepping 3.01 0.26 2.96 0.30
Walking 1.96 0.58 2.02 0.65
Weight lifting 1.47 0.13 1.71 0.41

riod of each example signal belonging to the same type, which
is expressed in number of samples n. It is calculated by aver-
aging the peak-to-peak distance in the autocorrelation function
of each signal. This first phase is illustrated in Fig. 3. The sec-
ond phase of template generation encompasses several steps as
illustrated in Fig. 4 and summarized in Algorithm 1. To extract
relevant and repetitive waveforms from the example signals, the
following steps were undertaken.

1) Normalizing all the instances by the standard score. Given
y as a signal instance, μ̂y as a mean estimator of y, and σ̂y

as an estimator of standard deviation, the score normal-
ization is calculated as follows:

ynorm =
y − μ̂y

σ̂y
. (9)



Fig. 3. Example of autocorrelation function (to the right) applied to VM signal
recorded during squatting (to the left) for the extraction of the signal period. The
autocorrelation function shows peaks reproducing the periodicity of the original
signal.

Fig. 4. Illustration of the template generation algorithm. The first row of plots
shows segments of running at 8 km/h belonging to the subjects included in the
training set. The second row shows the 2n segment extracted from the signal
of subject 1 and representing the preliminary pattern. The third row shows a
segment of the cross-correlation function calculated between the preliminary
pattern and the others three signals. The fourth row shows the new 2n segments
selected according to the analysis between cross correlation maximum peaks.
The final row shows the template obtained by outliers correction and averaging
over all the signal segments.

2) Selecting one instance for each activity type and extraction
of a segment composed by 2n samples from a stationary
activity phase (e.g., at the middle of the signal).

3) Cross correlating between the segments extracted in the
previous step and all the others instances belonging to the
same activity.

4) Extracting signal segments with length 2n samples from
each instance starting from the sample corresponding to
the maximum cross-correlation coefficient.

Algorithm 1 Template generation
Require: Activity signals set, dim
Ensure: Template

N ← num(Signals)
k ← 1
{Build a matrix where each row stores a segment of each
signal}
Smatrix ← zeros(N, dim)
{Extraction of the first segment from the middle of the
first signal}
S1 ← Signals(1)
start ← length(S1)/2 − dim/2
end ← start + dim/2 − 1
Segm1 ← S1(start : end)
Smatrix(k, :) ← Segm1
{Find max correlation between the first segment and the
other signals}

for k = 2 to N do
Sk ← Signals(k)
Indmax ← corr(Sk , Segm1);
start ← Indmax

end ← start + dim − 1
Smatrix(k, :) ← Sk (start : end)

end for
{Outliers correction based on statistic distribution}
for j = 1 to dim do

q ← quantile(Smatrix(:, j))
for i = 1 in N do

if (Smatrix(i, j) < q0.25 or SMatrix(i, j) >
q0.75 then

Smatrix(i, j) ← q0.50
end if

end for
end for
{Averaging over the Smatrix rows}
Template ← sum(SMatrix, 1)/N
Return Template

5) Construction of a statistical distribution of values for each
sample in the 2n length of the segments extracted at step
4 from each example signal.

6) Calculating the quantiles = {q0.25 , q0.50 , q0.75} for each
sample among the segments.

7) Removing outliers by deleting samples from the 2n
segments and substituting those with value > q0.75 or
value < q0.25 with q0.50 .

8) Averaging over all the signal segments to obtain the tem-
plate prototype for the activity.

9) Rescaling the signal amplitude based on activity-type-
specific amplitude ranges.

D. Template Matching

Once the activity templates have been generated, any un-
known signal could be classified into the target activity classes
by comparing it to each of these templates. In order to speed up



the classification, we first applied a discriminating rule based
on the amplitude range of the instances. This step also allows to
simply distinguish between signals with similar waveforms, yet
clearly different amplitude range. The acceleration signal was
segmented in windows of 120 samples and was compared to the
template set using the five similarity functions explained in the
background section: Euclidean distance, DTW, DDTW, correla-
tion, and Rce. A dc offset removal was applied to each window
of acceleration signal and a moving average filter was applied
before computation of the DDTW distance, in order to prevent
noise enhancement due to the calculation of signal derivative.

E. Activity Classification Performance

The accuracy of the classification algorithm was evaluated by
calculating for each activity class the true positives rate, known
as sensitivity, and the true negative rate, known as specificity.
To evaluate the robustness of the presented methods, two dif-
ferent target populations have been tested. The first consisted
of 29 normal weight subjects and the second of 19 overweight
subjects. One challenging aspect of the collected data is that
the number of participants varied from one activity to another.
Indeed, while a total of 48 participants performed walking ac-
tivities, only 8 engaged in squatting exercise. This resulted in
an unbalanced training data across activity classes.

We applied a nonoverlapping windowing technique to process
the acceleration data. The windows consisted of 120 samples
that with a sampling rate of 20 Hz corresponded to a duration of
6 s. This window size was chosen in agreement with previous
studies on activity recognition based on statistical features [8],
which assessed that windows approximately of 6 s are sufficient
to characterize different types of body motion and capture ac-
tivity periodicity. The total number of windows was 7848 for
normal weight subjects data and 4187 for the overweight one.
Twenty-two templates have been generated, one for each prim-
itive activity type in the protocol, and grouped in eight classes
in accordance with the number of target classes. Therefore,
each activity category was represented by multiple templates.
The classification algorithms were tested on 15 normal weight
subjects (3994 epochs) and on the entire overweight population
(4187 epochs). The overweight subjects were excluded from the
training set and used for testing in order to investigate whether
different biomechanical characteristics due to excess weight had
an impact on the performance of the activity classification sys-
tem built on data extracted from normal subjects.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Template-Matching Metrics for Activity Classification

In our framework, we compared the activity classification
accuracy of five different template-matching metrics listed in
Tables II and III. The true negative rate was above the 90% for
all the classification methods, while sensitivity varied substan-
tially. The results suggest that both correlation-based match-
ing techniques and Rce generally outperformed the similarity
measures (Euclidean, DTW, and DDTW). Sensitivity for the
correlation metric and Rce was above 80% for the majority

TABLE II
TEMPLATE-MATCHING PERFORMANCE EVALUATED ON A NORMAL

WEIGHT POPULATION

Sensitivity%

Activity (*) Euclidean DTW DDTW Correlation Rce

Cycling (14) 82.2 87.7 83.2 48.2 88.4
Cross trainer (12) 19.8 15.5 19.5 5.0 7.6
Rowing (12) 38.3 43.4 54.0 10.6 52.3
Running (12) 86.0 70.5 62.5 94.0 73.8
Squatting (2) 73.9 8.7 47.8 82.6 91.3
Stepping (12) 10.5 14.8 39.9 86.0 68.1
Walking (14) 80.4 23.4 72.5 81.9 87.4
Weight lifting (4) 62.2 37.8 56.8 83.8 73.0

*Number of subjects per activity included in the training set.

TABLE III
TEMPLATE-MATCHING PERFORMANCE EVALUATED ON AN OVERWEIGHT

POPULATION

Sensitivity%

Activity(*) Euclidean DTW DDTW Correlation Rce

Cycling (14) 85.9 91.6 87.1 54.7 92.4
Cross trainer (12) 39.3 15.2 32.6 10.9 12.9
Rowing (12) 49.4 54.4 60.2 6.5 58.7
Running (12) 85.3 77.2 76.4 95.8 84.8
Squatting (2) 68.2 45.5 36.4 86.4 100.0
Stepping (12) 58.7 10.6 10.2 80.6 79.7
Walking (14) 80.5 24.3 70.4 88.0 91.2
Weight lifting (4) 57.7 75.7 79.3 63.1 64.0

*Number of subjects per activity included in the training set.

of activities on both test datasets, normal weight and over-
weight subjects. The classification accuracy for certain activity
types worsened when using DTW and DDTW metrics as com-
pared to Euclidean distance which could indicate the presence
of singularities generated by the DTW and DDTW algorithms
(see Section II-B) during waveforms alignment, which leads to
a higher cumulative distance. Poor classification accuracy was
obtained by the DTW for squatting (sensitivity = 8.7%) on the
normal weight population. This may be due to increased dis-
tance metric and suboptimal template-signal alignment related
to differences in amplitude scales between the template proto-
type and the waveforms used as test set. Correlation measures
and DDTW, which are less sensitive to differences in signal
amplitude, showed larger classification accuracy for squatting.
Nonetheless, all matching techniques showed a clear variabil-
ity in the recognition accuracy between activity types. Despite
the lack of abundant training data, the squatting activity type
could be well classified by the Rce method (see Fig. 6). Indeed,
the squatting class showed a large recognition accuracy with
template matching even if only two subjects were available in
the template generation phase. The template extracted from the
squatting acceleration signal was well representative and spe-
cific for such activity type regardless the amount of example
data available.

The poor classification accuracy obtained for some periodic
activities, such as cross trainer and rowing, might be explained



TABLE IV
LIST OF SELECTED FEATURES

Features Domain

Mean Time
Variance Time
Root Mean Square of the derivative signal Time
Range (maximun-minimun) Time
Total energy Time
Skewness Time
Main frequency Frequency
Entropy Frequency
Quantile 0.25 Frequency
Quantile 0.50 Frequency
Quantile 0.75 Frequency

by the subject-specific interaction with the gym equipment em-
ployed in the execution of the activity. Indeed, unforeseen wrist
acceleration patterns may have been present in the test datasets
due to peculiar preference in the usage of supporting handlebars.
This may depend on the participant skill and familiarity with the
exercise, as no specific instructions were given to the user on
how to perform the activities. Conversely, the cycling activity
was recognized with high accuracy despite its nonperiodic na-
ture. This was due to its discriminatory amplitude range that
differs it from other types of exercise as explained in the pre-
vious section. Combining distance-based and correlation-based
techniques (Rce) yielded the highest average classification re-
sults, while showing reproducible accuracy in both test datasets
(see Table V).

B. Template-Matching Metrics Versus Classic
Statistical-Learning Algorithms

To gain better insights into the viability of the presented
template-matching approach, we compared the classification re-
sults to those of common classification algorithms for physical
activity recognition. These included linear classifiers (NB and
LR), DT and ANN. A set of 11 acceleration features were se-
lected using the Relief method (see Table IV) to obtain a ranking
among the 13 most commonly used time- and frequency-domain
features. A principal component analysis representation of the
data [31] is illustrated in Fig. 5. Such analysis shows a clear
distinction of the different activity classes, except for squatting
since this activity was poorly represented in the training data,
as mentioned earlier. The classification results for all the pro-
posed methods are shown in Table V. Statistical-learning algo-
rithms (DT, NB, LR, ANN) only slightly outperformed the best
template-matching method (Rce). The ANN and LR achieved
the highest recognition accuracy (∼85%) showing to be more
accurate than the other proposed techniques. The LR results de-
serve particular attention since this model offered recognition
rate close to the ANN, despite the fact that is a simpler classifier
and includes a much lower number of parameters which need
to be optimized during training. When comparing statistical-
learning algorithms to template-matching methods, the first ones
were less robust when tested on unseen data. In fact, we observed
higher generalization ability for the template-based methods as

Fig. 5. Distribution of the selected features represented into a two-dimensional
space. The first plot (to the left) shows the projection of the training data,
while the second plot (to the right) shows the projection of the test data. Each
region belongs to a specific activity. Brown: Cycling; Red: Cross trainer; Green:
Rowing; Blue: Running; Black: Squatting; Cyan: Stepping; Magenta: Walking;
Yellow: Weight lifting.

TABLE V
OVERALL CLASSIFICATION PERFORMANCE

Aggregated Sensitivity%

Classifier Normal Overweight Δ

Euclidean 66.1 72.6 6.5
DTW 43.4 47.5 4.1
DDTW 64.9 64.7 −0.2
Correlation 62.3 63.9 1.6
Rce 74.7 78.7 4.0
DT 81.9 80.6 −1.3
NB 79.6 79.7 0.1
LR 84.6 83.5 −1.1
ANN 86.7 85.9 −0.8

compared to DT, LR, and ANN whose accuracy decreased when
applied to the overweight subjects test dataset. Each template-
based classifier and the NB maintained their classification per-
formance when tested on both normal weight and overweight
subjects. The activity-specific accuracy of the methods as ob-
tained on data from the overweight population is depicted in
Fig. 6.

The need for abundant and representative training data is es-
pecially clear for the squatting activity type, which achieved
a high recognition rate only with the Rce method. The results
confirmed the robustness of the template-matching approach
against deterioration in classification accuracy due to previously
unseen data and subjects. This aspect may increase the likeli-
hood of obtaining large recognition accuracy in free-living con-
ditions, where the performance of statistical-learning algorithm
usually decreases. Several advantages of the template-matching
method emerged from our analysis. First, template matching
showed high robustness with respect to unseen data: Classifica-
tion accuracy was preserved when the models were applied to
the overweight subject data. The template-matching accuracy
was unaffected by small training datasets: High classification
accuracy could be obtained for the squatting and weight lifting
categories with training examples from only two to four subjects.



Fig. 6. Classification accuracy for the overweight population.

Thus, template matching successfully discriminated most of the
sport activities by using user-independent and automatically ex-
tracted template prototypes. On the other hand, template match-
ing was poorly effective for classifying activities characterized
by high signal spectral entropy (e.g., wrist acceleration signal
during cycling) for which a repetitive template could not be
determined. This suggests that activity classification based on
template matching alone may be inadequate for recognizing cer-
tain activity types given a sensor wearing position. Additionally,
the use of template matching for embedded signal processing in
wearable sensors may be restricted by its computational com-
plexity. Given these strengths and weaknesses, combining tem-
plate matching to the output of a statistical-learning algorithm
could lead to superior performance in filed applications [32].
Template matching can compensate the problem arising from
poor features separation for activities showing similar period-
icity, regularity, and intensity but different morphology (e.g.,
walking and cross trainer). At the same time, template matching
may compensate statistical features vulnerability to discriminate
between activities carried out at different and previously unseen
speed or intensity. Indeed, classic temporal and frequency fea-
tures may substantially vary within the same activity category
with changing speed and execution intensity while the main
repetitive pattern would remain unchanged.

V. CONCLUSION

In this paper, we investigated the use of template matching for
classifying sport activities using one single accelerometer worn
at the wrist. User-independent signal templates were created
and five distance- and correlation-based matching techniques
were proposed for activity classification to target eight sports
activities, such as cycling, cross trainer, rowing, squatting, step-
ping, running, walking, and weight lifting. The framework was
evaluated using data collected in a gym environment involving
two different groups of volunteers: normal weight and over-
weight subjects. The viability of our classification approach
was analyzed by comparing its recognition accuracy with that
of four popular classifiers: DT, NB, LR, and ANN. Based on
this comparison, we concluded that template matching is well

suited for the recognition of sport activities due to their inher-
ent periodic nature. In particular, our template-matching-based
method showed to be robust to data generated by previously un-
seen subjects with different biometric characteristics and pos-
sibly motor skills. The overall classification accuracy of the
best (Rce) template-matching metric was lower than that of-
fered by the statistical classifiers, which can be imputed to the
lower accuracy in classifying cross trainer and rowing activities.
However, a template-matching framework preserved classifica-
tion accuracy during testing, whereas several statistical-learning
algorithms did not. Future work should focus on exploring the
added value of measurement-axis-specific templates for improv-
ing the classification accuracy and on investigating the advan-
tages of combining template-matching metrics with statistical
classifiers.
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