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1 Introduction

Recent developments in pore-scale modeling and imaging 
techniques are playing a key role in our understanding of 
the feedback between small-scale physics and macroscale 
modeling of flow and transport processes in natural and/or 
reconstructed porous media [18, 28]. In particular, high-
resolution mapping and visualization of the structure of 
geologic materials allow detailed pore-scale modeling of 
flow in topologically complex pore spaces. Direct numer-
ical simulation of flow through intricate microscopic 
structures yields insights into the effects of pore space 
characteristics on both microscopic and macroscopic flow 
properties. Modeling these phenomena has applications that 
range from groundwater flow and transport [29], to geo-
physics, including, e.g., petroleum extraction [28] and car-
bon sequestration [4], to filter design [15]. The spatially 
variable resistance to flow offered by the solid phase of 
a porous medium induces nonuniform fluid velocity fields 
where the observed dynamics range from stagnation to 
chaotic separation of fluid particle trajectories [19]. The 
effects of these flows taking place at the microscale can be 
embedded into continuum scale models, which can then be 
used to support field-scaled decision-making in oil, gas, and 
groundwater reservoir management.

As opposed to a pore-network modeling approach 
[4, 5, 34, 47] or a particle-based Lagrangian methodology, 
e.g., lattice Boltzmann [6, 8, 9, 16, 23, 26, 30] and smoothed 
particle hydrodynamics [44, 45], in the Eulerian methodol-
ogy for simulating flow in microscopic pore structures, a 
particular numerical scheme, such as finite difference [26], 
finite element [10], or finite volume [11, 49], is selected, 
and the governing equations of flow are discretized 
accordingly. This discrete approximation is then 
numerically integrated on a computational mesh 
representing the pore space in a direct numerical 
simulation of flow. Comparisons of direct simulations of 
single-phase flow with particle-based methods [11, 26] 
revealed minimal and essentially negligible differences 
between the results obtained with the methodologies 
tested, but a clear advantage of the Eulerian methods was 
observed with regard to the required computation time. 
Lagrangian methods are slow to converge to a steady-
state solution (for cases when the system evolves to attain 
steady-state) even when the codes are highly parallelized 
[9, 16].

Here, we compare three methodologies for the direct 
numerical simulation of gravity-driven, fully saturated, 
single-phase flow at the pore microstructure scale in

two millimeter-scale natural rock samples. All three mod-
els are comparable in terms of resolution, but they are 
fundamentally dissimilar in terms of numerical method-
ologies and algorithmic complexity. We consider (a) the 
ANSYS� FLUENT� software [2], which integrates the 
Navier–Stokes equations using a finite-volume method on a 
hexagonal mesh; (b) the EULAG system [33], which uses 
conservative finite differences coupled with the volume-
penalizing immersed boundary (IB) methodology to resolve 
the Navier–Stokes equations on a uniform Cartesian grid; 
and (c) the SSTOKES software, which uses standard 
second-order finite differencing and the ghost-cell IB 
method proposed by [35] to resolve the Stokes equations 
on meshes composed of cubic voxels. The natural porous 
media samples we consider consist of a quasi-pure silica 
sandstone and an oolithic limestone, which are charac-
terized by distinctly different pore-scale structures. These 
types of geo-materials are found in several hydrogeology 
and petroleum engineering applications, and are viewed as 
typical media for the oil and gas industry. A detailed recon-
struction of the pore space geometry of these systems was 
performed using X-ray microtomography [14], which pro-
vides information about the internal structure of natural 
samples in a nondestructive way [48].

Quantification of similarities/differences is performed 
according to (i) integral quantities, such as the Darcy flux, as 
well as (ii) the structure of the velocity distributions, charac-
terized through their empirical probability density function 
(PDF) and the associated key statistical moments, including 
local correlations between velocity fields. These measure-
ments are employed to probe in a statistical sense the 
internal similarities/differences across sample populations 
of velocities obtained for the two porous media analyzed 
using the three different computational systems. While the 
adopted methodologies are notably contrasting in terms of 
numerical schemes, our results show that they all produce 
results that are reasonably close to one another. In the case 
of the limestone sample, the structures of the velocity fields 
obtained using ANSYS FLUENT and EULAG are more 
alike than either with that obtained using SSTOKES. In the 
case of the sandstone sample, the structures of the velocity 
fields obtained by EULAG and SSTOKES are more like one 
another than either to the solution obtained using ANSYS 
FLUENT. So far as macroscopic quantities are concerned, 
ANSYS FLUENT and SSTOKES provide similar results 
in terms of the average vertical velocity for both of the 
complex microscale geometries considered, while EULAG 
tends to render larger velocity values with greater variabil-
ity. The documented correspondence among the results sup-
ports the reliability of computational approaches to detailed 
pore-scale simulations.

The remainder of the paper is divided into three main 
sections. Section 2 describes the two natural rock samples
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and the three modeling approaches in terms of geometrical 
description, mathematical formulation, and numerical tech-
niques. Section 3 is devoted to the comparison of the results 
from the three different methodologies in terms of local 
and integral quantities. Concluding remarks are presented in 
Section 4.

2 Methods

2.1 Description of rock samples

We study flow through samples of two different (natural) 
rocks: (a) an oolithic limestone from the Mondeville for-
mation of the middle Jurassic age, and (b) a Fontainebleau 
sandstone, both from the Paris Basin (France). The over-all 
dimensions of the analyzed blocks are 0.65 × 0.65 × 
1.3 mm  , and we refer to them as the limestone sample and 
the sandstone sample. The limestone is composed of 
millimeter-scale recrystallized ooliths, partially cemented 
with micritic calcite [13]. The limestone sample was sub-ject 
to carbonate dissolution performed under laboratory 
conditions that increased the total connected porosity of the 
sample from about φL ≈ 6.8 % to  φL = 31.41 %. The 
sandstone is a quasi-pure silica sandstone that is often used 
as a standard analog for sandstone reservoirs. Porosi-ties of 
samples of these sandstones usually range from 5 to 30 %, 
and grain sizes are relatively homogeneous, typically around 
250 μm [7]. The sandstone sample is characterized by a total 
connected porosity φS = 7.05 %. The porosity values 
provided here represent the connected pore network, i.e., the 
void space that connects the flow inlet and outlet boundaries.

The three-dimensional structure of each sample is recon-
structed via synchrotron X-ray microtomography, with a 
voxel size of �z = 5.06 μm [14]. Both samples were imaged 
using the ID19 beam at the European Synchrotron Radiation 
Facility (Grenoble, France). Figure 1a illustrates the 
structure of the pore space of the limestone sample by means 
of a set of horizontal cross-sections; Fig. 1b shows  the 
vertical profile of surface porosity (each value is associ-ated 
with a volume of size 0.65 mm × 0.65 mm × �z); and Fig. 
1c depicts the sample probability density functions of pore 
sizes, S, normalized by the grid step, evaluated along the 
three Cartesian axes, x, y, and  z and computed on the 
whole domain according to the methodology employed in 
[37]. Figure 2 depicts graphically the corresponding set of 
information for the sandstone rock.

Surface porosities computed along horizontal planes 
range between 13 and 50 % for the limestone and between 
1.4 and 23 % for the sandstone. Each sample exhibits an 
abrupt change in porosity starting a little further than mid-
way down the sample column and ending well before the

bottom, the limestone showing an anomalous region of low 
porosity and the sandstone showing an anomalously high-
porosity region. The empirical probability density functions 
(PDFs) of pore sizes (Figs. 1c and  2c) reveal that 
each system is relatively isotropic. When plotted on a 
semi-logarithmic scale, the PDF tails display a clear 
exponential decay for an intermediate range of pore size 
values, analo-gously to what observed by [37] for 
synthetically generated pore structures. The range covered 
by the pore size values in the limestone (i.e., the medium 
with largest porosity) is wider than in the sandstone in all 
directions.

2.2 Mathematical formulation of the flow problem

The governing equations for a single-phase, incompressible 
Newtonian fluid, i.e., water, fully saturating the pore space, 
are the transient Navier–Stokes equations,
∇ · v = 0 (1)

∂v
∂t

+ v · ∇v = − 1

ρ
∇p′ + g + ν�v (2)

Here, Eqs. 1 and 2 respectively represent the mass and 
momentum conservation; v is the Eulerian fluid velocity 
vector, ν is the fluid kinematic viscosity, ρ is the fluid den-
sity, p′ = (p − p0) is the relative pressure, and g = 
(0, 0, −g) is the gravity force (p, g, and p0 respectively 
being pressure, gravity, and a constant reference pressure). 
Fluid density and kinematic viscosity are set respectively as 
ρ = 1025 kg m−3 and ν = 1 × 10−6m2s−1 for all simula-
tions. No-slip boundary conditions, i.e., v = 0, are enforced 
along pore walls boundaries.

The Reynolds number associated with flow through nat-
ural fractured and porous media is usually small enough 
to consider creeping-flow regime as a valid assumption 
[4, 11]. Under this assumption, the nonlinear term in Eq. 2 
can be disregarded, and the governing equations are the 
incompressible Stokes equations, i.e.,

∂v
∂t

= − 1

ρ
∇p′ + g + ν�v (3)

together with Eq. 1 in the void space of the samples.

2.3 Problem setting

Comparisons among the ANSYS FLUENT, EULAG, and 
SSTOKES computational models are performed at steady-
state flow conditions for both rock samples considered. We 
define steady-state conditions to be reached when the fol-
lowing criteria are met. First, the relative difference between 
the average velocity magnitude observed at two consecutive



Fig. 1 Mondeville limestone: a Horizontal cross-sections, white
regions represent the pore space; b vertical distribution of surface
porosity; c empirical probability density functions (PDFs) of pore

sizes, S, normalized by the grid step, �z = 5.06 μm, evaluated along
the three Cartesian axes, x, y, and z, and computed on the whole
domain

time steps, symbolized as t and (t + 1), is such that

∣
∣
∣
∣

〈|v|〉t+1 − 〈|v|〉t
〈|v|〉t

∣
∣
∣
∣
< 10−6 (4)

〈·〉 being the sample average evaluated over all pore vox-
els. Second, the difference between the vertical (i.e., along
direction z) component of velocity, w, observed at two con-
secutive time steps at corresponding nodal locations is such

that

〈|w(x, y, z, t + 1) − w(x, y, z, t)|〉
〈|w(x, y, z, t)|〉 < 10−6 (5)

ANSYS FLUENT and EULAG solve (1) and  (2), 
while SSTOKES solves (1) and (3). All flow simulations 
are per-formed in the discretized domains of size 128 × 
128 × 256 voxels depicted in Figs. 1a and  2a. 
Impermeable boundary conditions are set on the lateral 
sides of the samples for all of the approaches. In each case 
flow is gravity driven (i.e.,

Fig. 2 Fontainebleau sandstone: a Horizontal cross-sections, white
regions represent the pore space; b vertical distribution of surface
porosity; c empirical probability density functions (PDFs) of pore

sizes, S, normalized by the grid step, �z = 5.06 μm, evaluated along
the three Cartesian axes, x, y, and z, and computed on the whole
domain



Table 1 Mean, standard deviation (SD), and coefficient of variation
(CV) of vertical velocity summed over all points in the pore space of
the Mondeville limestone sample

Mean (×10−4m s−1) SD (×10−4 m s−1) CV

EULAG −3.23 4.55 1.41

SSTOKES −1.93 2.76 1.43

ANSYS FLUENT −1.93 3.00 1.55

induced by g) and takes place predominantly in the vertical 
direction, z. Periodic boundary conditions are employed in 
EULAG, v(x, y, 0) = v(x, y, L), along the vertical direc-
tion, together with the corresponding periodic boundary 
conditions for the gradient of relative pressure in Eq. 1. Ben-
efits of considering periodic boundaries include the ability 
to handle blocked flows in incompressible fluid settings 
and to ensure compatibility of initial conditions with the 
governing equations. It has to be noted that ensuring flow 
periodicity requires the (physical) domain to be periodic. 
With synthetically generated virtual media, system period-
icity can be achieved during the generation process [20]. 
Periodicity for a real rock sample is achieved by mirroring 
the (generally nonperiodic) sample image along the verti-
cal direction. The resulting medium is then symmetric with 
respect to the middle horizontal plane. The same geometric 
model and periodic conditions are adopted for consistency 
within the ANSYS FLUENT and the SSTOKES software 
environments. As a result of this vertical mirroring, the 
size of each simulated system is 128 × 128 × 512 voxels. 
Only the results associated with the original sample with 
size 128 × 128 × 256 voxels are analyzed and presented in 
Section 3.

2.4 Numerical methods

Major challenges for the direct simulation of flow in explicit 
pore structures include (a) the representation of the com-
plicated geometry of the porous microstructure and (b) 
the enforcement of no-slip boundary conditions along pore 
walls. Accurate representation of a pore space at the scale 
and resolution of interest associated with a binary digi-
tal image of pore spaces can be achieved using smooth, 
unstructured meshes and refined octree grids that conform 
to the geometry of the pore space [21, 49]. These vari-
able resolution meshes can be refined along pore walls to 
resolve boundary layer effects in the flow field that occur 
at length scales smaller than the resolution of the imaged 
pore spaces. Generating conformal meshes to represent the 
intricate geometries that make up real porous microstruc-
tures is demanding, both in terms of computer memory 
and computational time. A first-order accurate stair-step 
representation of the void space, where the pore space is

discretized by structured hexahedral cells or cubic voxels, 
offers a meshing approach that partially overcomes these 
demands. Although the accuracy of the representation of the 
solid boundary is somewhat compromised, stair-stepping 
yields meshes that are efficient and low cost but accurate 
within bounds of computational error for simulations of 
flow through pore microstructures [18]. Gerbaux et al. [11] 
compared the performance of tetrahedral and hexagonal 
meshes, and concluded that the latter required less compu-
tational resources, with minimal discrepancies between the 
flow results. Analogous results stem from pore-scale flow 
simulations of Peszynska and Trykozko [32], who tested 
unstructured hexahedral and body-fitted mesh performances 
within the ANSYS FLUENT software environment.

Once the mesh has been selected, no-slip boundary con-
ditions can be directly enforced by spatially varying the 
difference stencil to conform with the pore space geometry. 
The efficient implementation of this approach still remains 
a critical challenge. A promising alternative is given by 
the immersed boundary method (IB) [27]. According to the 
latter, no-slip boundary conditions are enforced at the fluid-
solid interface by inserting a fictitious forcing term into the 
governing equations of flow to mimic the resistance offered 
by the solid wall boundaries. The advantage of this approach 
is that a uniform Cartesian grid can be employed to simu-
late flow in complex pore spaces and the difference stencil 
is uniform throughout the computational domain. This uni-
formity makes the method well suited for existing and future 
HPC architectures, such as GPUs and MIC. The IB has been 
successfully applied to two- [24, 25] and three-dimensional

Fig. 3 Mondeville limestone. Cross-correlation coefficients R by ver-
tical level of the cross-section (here, wE, wS, and wF respectively
denote vertical velocities computed by means of EULAG, SSTOKES,
or ANSYS FLUENT). The vertical profile of porosity, φ, is also
reported



Table 2 Mean and standard
deviation (SD) computed for
four selected cross-sections of
the Mondeville limestone
sample

Mean (×10−4 m s−1) SD (×10−4 m s−1)

LEVEL EULAG SSTOKES ANSYS EULAG SSTOKES ANSYS

FLUENT FLUENT

65 −3.35 −2.02 −2.02 3.56 2.26 2.42

120 −3.81 −2.30 −2.30 5.83 3.79 4.02

180 −6.88 −4.01 −3.99 7.95 4.48 5.05

215 −2.00 −1.20 −1.22 2.59 1.56 1.81

[17–19, 36, 37, 43] simulations of flow in microscopic pore 
structures.

Immersed boundary methods are naturally divided into 
continuous and discrete (or direct) forcing approaches, 
depending on the way the fictitious forcing term is imple-
mented. In the continuous approach, the forcing term is 
included in the original continuous form of the governing 
equations, while in the discrete approach, the fictitious 
boundary force is introduced after the equations have 
been discretized. Examples of the continuous forcing class 
include volume penalizing [1] and feedback forcing meth-
ods [12] that set the additional forcing term to be propor-
tional to the flow velocity. An example of the discrete-
forcing class of IB approaches is the ghost-cell method [31, 
46] where the computational (discretized) domain is parti-
tioned into physical and ghost-cell sub-domains. The phys-
ical sub-domain contains only computational cells associ-
ated with the fluid, whereas computational cells that reside 
within the solid domain and have at least one neighbor-
ing cell in the fluid phase form the ghost-cell sub-domain. 
Velocity values are computed for each ghost cell through 
interpolation so that the desired boundary conditions at 
the fluid-solid interface are enforced on the basis of a 
“projection node” located within the fluid region.

2.5 Computational systems

ANSYS FLUENT The first computational system
employed in this study is embedded in the ANSYS 
FLUENT software and uses a finite-volume method to 
numerically integrate (1) and (2) on a first-order hexag-
onal grid representation of the fluid domain. FLUENT is a 
commercial code maintained by ANSYS, Inc.,
(www.ansys.com). A segregated transient formulation using 
the non-iterative pressure implicit splitting of operators 
(PISO) algorithm [2, 22] for pressure-velocity coupling is 
employed. The advection term in Eq. 2 is discretized using a 
second-order upwind scheme developed for unstruc-tured 
meshes and limiting the gradient of the advected quantity to 
avoid occurrence of new maxima or minima [3]. Pressure is 
discretized using a body force weighted scheme and linear 
second-order accurate interpolations are used for the 
discretization of the viscous term [2]. All variables are 
collocated on the hexahedral mesh. The faces of the hexa-
hedral elements lying at the fluid–solid interface define the 
boundary position and no-slip conditions are set directly at 
the face center using the adopted finite-volume method. The 
time step employed in the simulations performed with 
ANSYS FLUENT is �t = 2.5 × 10−6 s. For this study, the

Fig. 4 Spatial distribution of
the vertical velocity component,
w, obtained by a ANSYS
FLUENT, b EULAG, and c
SSTOKES along the plane at
elevation z = 127�z of
Mondeville limestone



Fig. 5 Scatter diagrams of values of a–c |w| and d–f p computed at the nodes within the fluid region by the three methodologies analyzed for
Mondeville limestone

code was run in parallel on 12 CPUs, on a Dell™ Pow-
erEdge™ R410 machine, with 2x Intel� Xeon� X5670 (6 
cores at 2.93 GHz and 32 GB of RAM).

EULAG The second system we use in this study is the 
modification of the EULAG system provided by Smo-
larkiewicz and Winter [43]. EULAG is an open source 
code and can be obtained by contacting the developers at 
http://www2.mmm.ucar.edu/eulag/. In this framework, no-
slip boundary conditions are enforced using a continuous

forcing IB method. Formally, a modification of the momen-
tum (2) allows for the implicit enforcement of no-slip 
conditions along the fluid-solid interface,

∂v
∂t

+ v · ∇v = −∇π ′ + g
ρ′

ρ
+ ν�v − αv (6)

As in Eq. 2, here, primes refer to perturbations with respect 
to static ambient atmospheric conditions charac-terized by a 
constant density, ρ0, and pressure, p0, i.e., π ′ = (p − p0)/ρ 
and ρ′ = ρ − ρ0, where  ρ =
const >> ρ0 denotes the density of water. The fictitious 
repelling body force, αv, is inserted in the right side of

Fig. 6 Empirical PDF of a u

and b w/〈w〉—where 〈·〉
represents the sample
average—computed over the
whole fluid domain with the
three methodologies analyzed
for Mondeville limestone



Table 3 Comparison of mean Darcy flux computed using the three
methodologies analyzed

Mondeville Fontainebleau

Limestone Sandstone

Model qave (×10−5 m s−1) qave (×10−6 m s−1)

EULAG −9.97 −2.16

SSTOKES −6.06 −1.04

ANSYS FLUENT −6.08 −1.13

the momentum (2) to circumvent the difficulty of gener-ating 
a conforming mesh representation of the void space. In Eq. 6, 
α(x) vanishes when vector location x is in the pore volume 
and is large otherwise. Intuitively, setting α(x) = 0 within 
the pore volume admits Navier–Stokes flows away from the 
solid boundaries and (6) reduces to Eq. 2; on the other hand, 
requiring α(x) → ∞ within the solid prevents flow therein 
[41, 43]. The governing sys-tem of Eqs. 1 and 6 is cast in the 
conservation form and integrated numerically at every 
computational node in the uniform Cartesian grid using a 
second-order-accurate, semi-implicit, non-oscillatory 
forward-in-time (NFT) approach. Theoretical bases, 
implementation, and applications of the approach are broadly 
documented [38–40, 42]. The NFT approach is a flux-form 
finite difference method, an equiva-lent of finite-volume 
approach on a Cartesian grid. The res-olution is globally 
semi-implicit: convective and diffusive terms are solved 
explicitly, whereas all the forcing terms in Eq. 6 are dealt 
with implicitly using a preconditioned Krylov method to 
solve the resulting elliptic equation. Details of the discretized 
set of equations and of the numer-ical integration procedure 
are found in [43]. The EULAG code is run in parallel using 8 
CPUs on the Dell™ Pow-erEdge™ R410 machine with 2x 
Intel� Xeon� X5670 (6 cores at 2.93 GHz and 32 GB of 
RAM) for the lime-stone sample and using 16 CPUs on the 
Dell™ Pow-erEdge™ R620 machine with 2x Intel� Xeon� 

E5-2680 (8 cores at 2.70 GHz and 64 GB of RAM) for the 
sand-stone. For our simulations, we follow Smolarkiewicz et 
al. [43]  and  set  α−1 = �t/2 = 2 × 10−8s. This value is 
con-siderably smaller than the time scales associated with the 
effects of viscous and gravity forces evaluated at the grid 
scale that are respectively (�z)2/ν = 2.5 × 10−5s and 
(2�z/g)1/2 = 1 × 10−3s.
SSTOKES The third system we use is the SSTOKES 
code [35], which can be made available upon request. 
SSTOKES enforces internal boundary conditions using a 
discrete IB method, and the space and time derivatives of 
Eqs. 1 and 3 are discretized using second-order centered-
difference and forward-difference schemes, respectively, 
and solved implicitly. SSTOKES uses a staggered approach

Table 4 Mean, standard deviation (SD), and coefficient of variation
(CV) of vertical velocity summed over all points in the pore space of
the Fontainebleau sandstone sample

Mean (×10−5 m s−1) SD (×10−5 m s−1) CV

EULAG −3.07 7.90 2.57

SSTOKES −1.48 4.45 3.01

ANSYS FLUENT −1.60 3.81 2.38

where pressure is defined at the cell center, and veloc-
ity components are considered along the cell faces. In
this framework, velocities tangential to the solid bound-
ary are not defined at the boundary itself. The ghost-cell
IB method is used to enforce the no-slip boundary con-
ditions along internal solid boundaries. At each time step,
flow variables in the ghost cells outside of the void space
are determined using linear interpolation with the neigh-
boring image points inside of the void space to enforce
no-slip conditions exactly along the void–solid interface.
The computational mesh is a first-order cubic stair-step
approximation of the void space embedded within the solid
phase. The computational parameters considered for the
SSTOKES system are those controlling the convergence to
a steady-state solution. The time step employed in the sim-
ulations performed with SSTOKES is �t = 2 × 10−8s.
The SSTOKES code is not parallelized. In this study, it
was run on one core of the HP Z800 workstation equipped
with 2x Intel� Xeon� E5-2680 (8 cores at 2.7 GHz and 64
GB RAM).

Fig. 7 Fontainebleau sandstone. Cross-correlation coefficients R by
vertical level of the cross-section (here, wE, wS, and wF respectively
denote vertical velocities computed by means of EULAG, SSTOKES,
or ANSYS FLUENT). The vertical profile of porosity, φ, is also
reported



Table 5 Mean and standard
deviation (SD) of vertical
velocity computed on four
selected cross-sections of the
Fontainebleau sandstone
sample

Mean (×10−5 m s−1) SD (×10−5 m s−1)

LEVEL EULAG SSTOKES ANSYS EULAG SSTOKES ANSYS

FLUENT FLUENT

50 −0.57 −0.28 −0.25 0.46 0.27 0.19

100 −0.46 −0.23 −0.24 1.44 0.81 0.71

140 −0.11 −0.05 −0.07 0.19 0.11 0.11

200 −0.52 −0.26 −0.26 1.68 0.99 0.84

2.6 Metrics for system comparison

The analysis of the simulation results compares the capa-
bilities of the three considered methodologies to simulate
pore-scale flow fields in natural porous media at the mil-
limeter scale. The local Eulerian vertical velocity compo-
nent, w, is a key quantity of interest in the comparison due
to its relevance in transport processes occurring at the scale
of porous microstructure. The comparison of the steady-
state flow fields is performed in terms of the structure of the
velocity and pressure fields, the distribution of the vertical
velocities, as well as integral quantities, namely the Darcy
flux, q(z) computed at steady-state, i.e.,

q(z) = 1

N

NP(z)∑

i=1

wi (7)

In Eq. 7, NP(z) is the number of nodes in the pore space 
of the horizontal plane at elevation z; N = 16, 384 is the 
total number of nodes at a given horizontal cross-section; 
wi is the vertical component of the Eulerian velocity cal-
culated at node i. Since nowadays we still do not have at 
our disposal high-quality laboratory flow experimental data 
which can be employed for a point-by-point comparison 
against computed values in real rock samples of the size

we consider, the structures of the resulting velocity fields
are also compared in terms of their empirical probabil-
ity density functions (PDFs) and associated main statistics.
These include the coefficient of variation related to the
calculated local velocities as well as the point-wise cross-
correlation coefficient between vertical velocity fields at
every horizontal cross-section of the system, defined as

Rij =
〈

(wi − 〈wi〉)
(

wj − 〈

wj

〉)〉

σwi
σwj

(8)

where i, j = E, S, or F (E, S, or F respectively denot-
ing EULAG, SSTOKES, or FLUENT), and 〈wi〉 and σwi

respectively are average and standard deviation of nodal val-
ues of wi computed across a given cross-section located at
vertical elevation z.

When considered jointly with integral quantities, these
metrics provide additional layers of information regarding
the structure of the velocity fields and allow investigating
in a statistical sense the similarities/differences between the
distributions of velocity. The standard deviation provides
information about the variability of the spatial distribution
of the values of a given quantity, and the coefficient of
variation is an indicator of the intrinsic variability result-
ing from each computational system after accounting for
the multiplicative effect of the mean. The cross-correlation

Fig. 8 Spatial distribution of
the vertical velocity component,
w, obtained by a ANSYS
FLUENT, b EULAG, and c
SSTOKES along the plane at
elevation z = 127 �z of
Fontainebleau sandstone



coefficient is a measure of the linear dependence between
two variables and quantifies (in a statistical sense) the
degree of similarity of the flow solutions obtained by two
computational suites. A qualitative description and compar-
ison of the contour plots of velocities of the cross-sections
is also provided. Flow statistics such as mean vertical
velocity, standard deviation, and cross-correlation are cal-
culated over the total number of nodes in the pore space,
i.e., NP(z) within a cross-section, or NP,TOT for the entire
volume.

3 Results

3.1 Mondeville limestone sample

The three computational systems produce fluid veloc-
ities that are the same order of magnitude, i.e.,
O(10−4 m s−1). The Reynolds number Re = UL/ν,
L and U respectively being the mean hydraulic radius
and mean vertical velocity, is of order O(10−3) for all
approaches.

It can be noted that EULAG produces higher average
vertical velocities (by a factor of about 5/3) with more
spatial variability than either SSTOKES or ANSYS FLU-
ENT (Table 1). The mean values associated with SSTOKES
and ANSYS FLUENT are essentially the same, and ANSYS
FLUENT shows slightly enhanced overall variability with
respect to SSTOKES. Values of the coefficient of variation
(CV) obtained through all three systems are about the same,
with ANSYS FLUENT yielding a slightly higher value than
the other two.

Linear correlations between horizontal cross-sections of
vertical velocity fields produced by the simulation sys-
tems are high (> 0.85) at all elevations within the
limestone sample (Fig. 3), indicating a general agree-
ment among the structures of the fields. This is consis-
tent with the values of CV listed in Table 1. Nonethe-
less, the two-sample Kolmogorov–Smirnov test rejects the
hypothesis that the simulated vertical velocities within a
cross-section are from the same distribution at the 5 %
significance level. Correlations between EULAG and the
other two systems are somewhat reduced at elevations (≈
150 − 200 �z) where a large decrease in local porosity
is observed.

Cross-sectional means and standard deviations of ver-
tical velocities are consistent with the observed pattern
resulting in higher velocity and variability for EULAG sim-
ulations than for the other two systems (Table 2). The results
listed in Table 2 are associated with cross-sections which
are all l ≈ 30 �z apart. The mean values associated
with ANSYS FLUENT and SSTOKES results coincide,
and ANSYS FLUENT simulations exhibit somewhat higher

standard deviations than SSTOKES does. All three compu-
tational systems produce relatively higher (more negative)
vertical velocities in the region of low porosity (e.g., at an
elevation of about 180 �z) than at other elevations, and
all three show relatively lower (less negative) velocities at
elevations (e.g., 215 �z) where porosity is highest. Sim-
ilar results (not reported) are obtained on other sets of
cross-sections, extracted using the same criteria. Variability,
as measured by standard deviation, follows the same pat-
tern of relatively high variability where porosity is lowest
(e.g., 180 �z) and resistance to flow is highest, and low
variability where porosity is highest and resistance to flow
is least.

Contour plots of the vertical velocity component pro-
duced by each model in the plane at elevation z = 127� z

produce similar patterns for the flow field, with EULAG
exhibiting higher overall fluxes and more spatial variabil-
ity in the velocity values than either SSTOKES or ANSYS
FLUENT (Fig. 4). In each case, the majority of the veloc-
ity field is stagnant, or nearly so. This is consistent with
the results of [17] who found that most of the flux through
a sample of realizations of synthetically generated porous
media occurs in a relatively small percentage of the pore
volume. Regions of higher velocity in the upper left quad-
rant and lower middle part, indicated by dark color in Fig. 4,
are more finely resolved by ANSYS FLUENT and EULAG
than SSTOKES. The sharp gradients that form in the veloc-
ity field due to the variable resistance offered by the pore
wall geometry are not as apparent in the solution provided
by SSTOKES. Qualitatively similar results are obtained for
other planes (not shown).

Scatter plots of values of |w| computed at all nodes
within the fluid region by the three methodologies are
depicted in Fig. 5a–c. These plots illustrate the general
agreement between the ANSYS FLUENT and SSTOKES
estimates (values of |w| distributed around the unit slope
line) with EULAG estimates that are relatively higher than
either (results that consistently lie below this line). Com-
plementary scatter plots of nodal values of fluid pressure
are depicted in Fig. 5d–f. These fall on the unit slope line
indicating that the three methodologies produce consistently
similar results for pressure.

Empirical PDFs of horizontal velocities (u) and nor-
malized vertical velocities (w/ 〈w〉, 〈·〉 representing sample
average) are depicted in Fig. 6a–b. Both PDFs are based
on estimates from the whole fluid domain. The horizon-
tal velocity component along the y direction, v, displays
similar behavior to u (not shown). Horizontal velocity
components from all three simulations display symmetric
distributions centered on zero. However, the PDF based
on EULAG is characterized by higher tails, indicating a
tendency to assign more probability to the tails of the
distribution. The normalized vertical velocity component



Fig. 9 Scatter diagrams of values of a–c |w| and d–f p, computed at the nodes within the fluid region by the three methodologies analyzed for
Fontainebleau sandstone

w/〈w〉 exhibits clear positive skewness in all three exam-
ples, consistent with the gravity-driven flow regime studied. 
Following [37], a stretched exponential model is juxtaposed 
to the data in Fig. 6b: the decay of the tails of all three PDFs 
is consistent with this model, which includes the exponen-
tial trend (i.e., linear trend in semi-log scale) as a particular 
case. The occurrence of only a small fraction of nodes asso-
ciated with an upward value of w (i.e., negative tail of the 
PDF) indicates that there is only a limited set of localized 
recirculation paths in the internal structure of the pore space.

When normalized by the sample average, the tail of the PDF 
obtained using ANSYS FLUENT is slightly higher than 
that obtained via EULAG or SSTOKES, which is consistent 
with the CV values listed in Table 1.

The three methods yield values for the (macroscopic) 
mean Darcy flux, qave, [Eq. 7, averaged over all horizon-
tal cross-sections] that are of the same order of magnitude 
(Table 3). Consistent with the results illustrated in Fig. 5, the 
estimation of qave provided by EULAG is larger than those 
provided by SSTOKES or ANSYS FLUENT.

Fig. 10 Empirical PDF of a u

and b w/〈w〉—where 〈·〉
represents the sample
average—computed over the
whole fluid domain with the
three methodologies analyzed
for Fontainebleau sandstone



3.2 Fontainebleau sandstone sample

In general, results of comparisons among simulated states 
are similar to those observed for the limestone. As in the 
case of the limestone medium, the three systems produce 
fluid velocities that are of the same order of magnitude, in 
this case O(10−5 m s−1), and Reynolds number, which is of 
order O(10−4). EULAG renders higher average vertical 
velocities (now by a factor of about 2) with more spa-tial 
variability than either SSTOKES or ANSYS FLUENT, as 
shown by the results listed in Table 4. The mean val-ues 
rendered by SSTOKES and ANSYS FLUENT are also 
essentially coinciding, with SSTOKES showing slightly 
more pronounced overall variability than ANSYS FLUENT. 
The CVs produced by all three systems are very similar also 
in this case, with SSTOKES yielding a slightly higher value 
than the ANSYS FLUENT or EULAG for this sample. Sim-
ulation results of vertical velocity in the sandstone medium 
are intrinsically more variable than those observed in the 
more porous limestone.

Linear correlations between horizontal cross-sections of 
vertical velocity fields produced by the simulation systems 
are high (> 0.85) at all elevations, except over the set of 
elevations (∼ 120 − 180 �z) where porosity increases 
abruptly (Fig. 7). Correlations between all three pairs of the 
simulations are considerably reduced there, with the 
EULAG–SSTOKES pair being least affected. Similar to 
what is noticed for the limestone rock sample, the two-
sample Kolmogorov–Smirnov test rejects the hypoth-esis 
that the simulated vertical velocities within any given cross-
section are from the same distribution at the 5 %significance 
level.

Cross-sectional means and standard deviations of vertical 
velocities are in line with the general pattern of higher veloc-
ity and variability in EULAG simulations (Table 5). The 
means of ANSYS FLUENT and SSTOKES estimates are 
again practically the same, but this time it is the SSTOKES 
simulations that exhibit somewhat higher standard devia-
tions than ANSYS FLUENT. All three systems produce 
relatively lower (less negative) vertical velocities in the 
region of high porosity (e.g., at elevation z = 140 �z) 
than at other elevations. Similar results (not reported) are 
obtained on other sets of cross-sections extracted using the 
same criteria as above. Variability, as measured by stan-
dard deviation, follows the same pattern of relatively high 
variation where porosity is lowest and resistance to flow is 
highest and low variability where porosity is highest and 
resistance to flow is least.

Contour plots of simulated vertical velocities in the plane 
at the middle elevation z = 127 �z produce roughly sim-
ilar patterns for the flow field (Fig. 8). The majority of 
the velocity field is stagnant, or nearly so, with highest 
flows occurring in the middle of the large pore spanning

the cross-section and in the isolated pore toward the bot-
tom, consistent with the observation of [17] that flow in pore 
spaces tends to occur in a relatively small percentage of the 
pore volume. EULAG exhibits higher flow overall and more 
variability than either SSTOKES or ANSYS FLUENT.

Scatter plots of values of |w| computed at all nodes 
within the fluid region by the three methodologies are 
depicted in Fig. 9a–c. As in the case of the limestone 
sample, these illustrate the general agreement between the 
ANSYS FLUENT and SSTOKES estimates, EULAG esti-
mates being relatively higher than either. Scatter plots of 
nodal values of fluid pressure are depicted in Fig. 9d–f. 
These are close to the line of unit slope indicating again that 
the three methodologies produce consistently similar results 
for pressure.

Empirical PDFs (Fig. 10a–b) of horizontal, u, and nor-
malized vertical, w/〈w〉, velocities are based on estimates 
from the whole fluid domain, which is consistent with 
the analysis of the limestone sample. The PDF for u is 
symmetric and centered on zero, and EULAG distributes 
more probability to the tails of the distribution than either 
SSTOKES or ANSYS FLUENT. The normalized vertical 
velocity component is again skewed in the direction of flow. 
Figure 10b highlights that, similar to what observed for the 
limestone, the positive tails of the normalized velocity com-
ponent decay following a stretched exponential model [37]. 
In this case, the tail of the PDF obtained using ANSYS 
FLUENT is slightly lower than that associated with the 
other two samples.

The value of the mean Darcy flux qave provided by 
EULAG exceeds those resulting from SSTOKES and 
ANSYS FLUENT by a factor of about two (see Table 3).

4 Summary and conclusions

Direct numerical simulations of fully saturated, gravity-
driven flow are performed in millimeter-scale digitally 
reconstructed images of a high-porosity (31 %) limestone 
sample and a low-porosity (7 %) sandstone sample using 
three different Eulerian approaches: (a) ANSYS FLUENT,
(b) the EULAG system, and (c) the SSTOKES code. These 
computational systems vary widely in terms of their algo-
rithmic complexity and differ in terms of the associated 
numerical methodologies, enforcement of no-slip boundary 
conditions on internal walls, parallelization, and implemen-
tation of the Poisson solver. The resulting steady-state flow 
solutions are compared in terms of global quantities, the 
empirical probability density function (PDF) and associated 
main statistical moments of the local velocity fields.

When performing comparisons of computational results 
obtained with diverse codes, the notion of accuracy is poorly 
defined without a benchmark against which the solutions



can be compared. Because nowadays we still do not have 
at our disposal high-quality and high-resolution laboratory 
flow experimental data against which a pointwise compar-
ison of calculated quantities can be accomplished in real 
rock samples of the size we consider, and it is virtually 
impossible to state without ambiguities if one solution is 
more accurate than another one. However, the distributions 
of velocity can be probed to assess similarities and differ-
ences between the computational methods. To do so, we 
consider the local structure of the velocity field, empirical 
PDFs of vertical and horizontal components of velocity and 
pressure, the first two moments of the velocity distributions, 
as well as the cross-correlation coefficient between the ver-
tical velocities rendered by the codes we analyze at level 
planes. Beyond first-order comparisons, such as the mean 
Darcy flux, the higher order moments and cross-correlations 
provide information about the structure and similarities of 
the velocities fields in a statistical sense.

Given that the methods are notably different in a num-ber 
of ways, it is remarkable that they produce results that are 
reasonably close to one another. Using the metrics men-
tioned above, it was observed that the simulation results are 
similar with respect to (i) the overall structure of the empir-
ical PDF of horizontal and vertical velocity components 
(Figs. 6 and 10), (ii) the structure of the spatial distribu-tion 
of velocities as revealed by cross-correlations (Figs. 3 and 
7) and pattern (Figs. 4 and 8), and (iii) the magnitude of 
macroscopic parameters, specifically mean Darcy flux 
(Table 3), although they differ in details. Notably, the Darcy 
fluxes computed by the three methodologies are all of the 
same order of magnitude for a given sample. We note that in 
principle one could estimate Darcy flux on a rock core of 
characteristic length of the order of 10−3 m. A straightfor-
ward calculation shows that in case of such a rock sample 
the relative measurement errors on permeability and flux 
would be of about 130 and 250 %, respectively. However, 
these estimates should only be considered as purely theoret-
ical since setting up such measurements is highly difficult 
with currently available resources, due to (a) difficulties in 
the preparation of the sample and (b) the smallness of the 
pressure drop, which is notably complex to be mea-sured. 
On the basis of these considerations, we conclude that 
Darcy flux values obtained using the computational suites 
considered would be within theoretical bounds associated 
with what would be a hypothetical laboratory experiment on 
millimeter-scale samples.

The three simulation environments produce steady-state 
flow fields that differ in their local details. When consider-
ing the pore-scale quantities associated with the Mondeville 
limestone, the similarity between the solutions obtained 
using ANSYS FLUENT and EULAG suggests that steep 
gradients in the velocity field, which result from the wider 
pores and nonuniform resistance offered by the variable

geometry of the pore space, are more finely resolved 
when the nonlinear term in the Navier–Stokes equations is 
retained (Figs. 3 and 4). In the case of the Fontainebleau 
sandstone, the structure of the velocity fields obtained using 
EULAG and SSTOKES agree more than either does with 
ANSYS FLUENT (Figs. 7 and 8). In this low-porosity 
sample, solutions obtained using EULAG and SSTOKES 
capture the spatial influence of the geometry and topology 
of the pore space on the velocity field.

When considering upscaling of flow solutions to macro-
scopic quantities, including Darcy flux and thus permeabil-
ity, the most relevant difference among the methodologies is 
the relatively large flow velocities computed by EULAG 
compared to ANSYS FLUENT and SSTOKES (Figs. 5 and 9 
and Table 3). We also note that if simulation of pore-scale 
flow is aimed at understanding the influence of pore space 
geometry and topology on local fluid dynamics, then 
EULAG appears to provide consistent results with respect to 
structure and variability of the velocity fields in these two 
samples. The computed Reynolds numbers, O(10−3/10−4), 
might not be completely consistent with the assumptions 
upon which the Stokes equation rests. The observed differ-
ence in Darcy flux between EULAG and FLUENT could 
also result from the adopted numerical scheme to resolve 
the advective term in the corresponding momentum 
equations. FLUENT uses an upwinding scheme, which 
are numerically diffusive, and could result in the 
underesti-mation of the flux due to numerical diffusion. 
Otherwise, EULAG uses a nonlinear flux-limiting 
advection scheme to resolve high gradients and minimize 
numerical diffusion, which is consistent with the highest 
value obtained for the Darcy flux. This notwithstanding, 
we remark that the computed values could still be 
considered as comprised within theoretical laboratory 
measurement error bounds, as discussed above.

When compared across the two media investigated here, 
the Darcy fluxes in the limestone (see Table 3) sample are 
larger than those computed for the sandstone, consistent 
with the significant difference between the porosities (31 
to 7 %) of the two rock samples. The associated empirical 
PDFs of horizontal components, u, and normalized verti-
cal components, w/〈w〉, of velocity are qualitatively similar 
(Figs. 6 and 10). The positive skewness of the PDFs of 
w/〈w〉 obtained from all three simulations (Figs. 6b and 
10b) reflects the dominant downward direction (i.e., in the 
direction of the negative z-axis) of flow, consistent with 
the gravity-driven flow regime studied. In general, the three 
computational systems analyzed produce normalized verti-
cal velocities exhibiting about the same level of variability. 
This similarity indicates that the intrinsic variability of the 
results among these computational systems arises primar-
ily from a multiplicative effect that is cancelled through 
normalization by the means. The small fraction of nodes



associated with a positive value of w (the negative tail of 
the PDF) suggests that there is only a limited set of local-
ized recirculation paths in the pore spaces of both media. 
The tails corresponding to simulated values of u produced 
by EULAG are larger in both media than the tails associated 
with ANSYS FLUENT or SSTOKES (Figs. 6a and 
10a). This is consistent with observations of generally 
higher degree of heterogeneity of the state of flow arising 
from the EULAG-based simulations.

As a general conclusion, these comparisons indicate that 
the three computational systems produce consistent esti-
mates of the state of flow through explicit natural porous 
microstructures. This is observed despite the considerable 
differences among the three solution techniques. The cor-
respondence among the results supports the reliability of 
employing computational approaches to perform detailed 
simulations of flow dynamics in complex pore spaces of 
the kind associated with high definition imaged rock sys-
tems which are becoming increasingly available due to the 
advancement of digital rock physics techniques.
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35. Sarkar, S., Toksöz, M.N., Burns, D.R.: Fluid flow simulation in
fractured reservoirs. Report, Annual Consortium Meeting. MIT
Earth Resources Laboratory (2002)

36. Siena, M., Guadagnini, A., Riva, M., Gouze, P., Smolarkiewicz,
P.K., Winter, C.L., Hyman, J.D., Inzoli, F., Guédon, G.R.,
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