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Introduction 

Controlling exercise intensity using heart rate monitors (HRMs) has long been a centerpiece of 

training for professional athletes as well as for sports enthusiasts. Heart rate (HR) measured by 

electrocardiography (ECG or EKG), i.e. the electrical activity of the heart, provides the individual with an 

immediate feedback on the cardiac response to exercise, and therefore represents a valuable and easily 

accessible tool for training programs aimed at improving conditioning [1-31]. HRMs, employing short-

range telemetry, are used ubiquitously among all levels of exercisers because they are un-cumbersome, 

relatively simple to operate, economical and portable. Their popularity has increased tremendously over 

the last decade due to their seamless integration with mobile phones and other sensing technologies 

such as global positioning systems (GPS) that allow improved computing capabilities and user-friendly 

data exporting and visualization.  

Heart rate has also been proposed as a surrogate of other physiological measurements relevant 

to exercise training. For instance, numerous studies have indicated that HR represents a valid proxy 

measure of oxygen uptake and energy expenditure at the individual level in healthy subjects tested 

under laboratory-controlled conditions [13, 32-42]. While such correlations have been shown to weaken 

among different age groups [27, 43-49], genders [48, 50-55], sporting disciplines [56-58] and under 

uncontrolled experimental conditions such as field training or competitive racing [27, 59],  other studies 

have found stronger estimations of V̇O2 and energy expenditure when adjunct physiological parameters 



such as rate of perceived exertion (RPE) [32, 60-68] and biomechanical measures (i.e., stride frequency 

via accelerometers output) [69-83] are included in prediction algorithms alongside HR. Thus, novel 

exercise measures that can be paired with HR have the potential to maximally exploit the mass adoption 

of HRMs by providing a more accurate prediction of the level of conditioning of exercising individuals. To 

be adopted by trainers, self-training individuals and exercise physiologists, such measures should be 

easily accessible and should integrate with existing HRM equipment without requiring additional actions 

that increase the burden on the exerciser and discourage adherence, such as requiring frequent data 

input by the user. 

Photoplethysmography (PPG) is an optical method for detecting blood volume changes in 

microvasculature sites. Since measurements can be performed at easily accessible body sites such as the 

fingertip, toe tip or earlobe [84] using small and unobtrusive sensors, PPG is a good candidate technique 

for measuring exercise-related physiological parameters ubiquitously. The technique relies on the partial 

optical transparency of human tissues to near-infrared light, and it quantifies the changes in blood 

perfusion in the catchment volume. When paired with ECG, PPG allows the measurement of time-

related cardiovascular parameters such as pulse transit time (PTT) and pulse wave velocity (PWV) [85]. 

PTT is defined physiologically as the time interval between the ventricular contraction and the 

appearance of the arterial blood wave at the periphery, and it is practically measured as the time 

interval between the peak of the ECG R-wave and the peak of the synchronized PPG waveform. 

Additional definitions of PTT are formulated in relation to other PPG waveform features, such as the 

foot or the maximum slope (first derivative) of the PPG signal [86]. PPG is consensually accepted as a 

surrogate of arterial compliance, as arterial stiffness increases PWV and decreases PTT [87-95]. In the 

past few years, PTT has also been shown to be linearly correlated with blood pressure [88, 96-105], but 

without the level of accuracy needed to represent beat-to-beat blood pressure [106, 107]. Pulse arrival 

time (PAT), defined as the sum of PTT and pre-ejection period, has also been proposed as an alternative 

measure of blood pressure without sphygmomanometric cuffs [108-110], although recent literature has 

questioned the reliability of this method [107]. 

In this work, we tested the ability of PTT to represent a valuable pairing to heart rate for 

estimating cardiovascular parameters during exercise. HR and PTT were correlated with cardiac output, 

stroke volume and oxygen uptake measured in a group of healthy young subjects during a graded 

incremental cycling protocol. Although the accuracy of clinically-accepted measurements of cardiac 

output (i.e., Fick equation, dye or thermo-dilution, Doppler echocardiography) is currently unsurpassed, 

these methods are either invasive or unusable for use outside of clinical or laboratory settings. Similarly, 



portable metabolic carts for measurement of human performance parameters (V̇O2max, ventilatory 

threshold and cardiac output by Wassermann method [111]) are impractical due to being cumbersome, 

expensive and requiring periodic calibration.  Therefore, non-invasive surrogate methods for indirect 

assessment of cardiac output, stroke volume, or oxygen uptake would represent valuable tools in both 

research and clinical settings and eventually in field conditions. We found that the addition of PTT 

improved the modeling of cardiac output, oxygen uptake and stroke volume at individual level 

compared to predicting models based solely on HR. 

 

 

Materials and methods 

Subjects 

Fifteen volunteers (10 males, 5 females, age 25.7 ± 4.5 years, V̇O2peak = 33 ± 4.7 ml/kg/min) were 

recruited from the student and staff population of the University of Houston for performing a maximal 

cycling test. All subjects received an explanation of the experimental tasks and were asked to sign an 

informed consent form before testing. All subjects certified that they were healthy, had no 

contraindications for performing vigorous exercise, and were not taking any medication within 6-weeks 

prior to enrolling in the study. No alcohol or caffeine was consumed by the subjects for at least 12 hours 

before the experiment, and no strenuous exercise was performed for at least 48 hours prior to the 

experiment. All procedures were approved by the Committee for the Protection of Human Subjects at 

the University of Houston. 

 

Cardiovascular measures 

Three-lead electrocardiographic and photoplethysmographic signals were collected using OEM 

sensors (respectively EG01010 and EG00532, Medlab, Germany) embedded in a custom-designed 

wearable system [112]. Analog outputs from the sensors were simultaneously acquired and digitized by 

a microcontroller to maximize the accuracy of timing computations between their significant features. 

Adhesive stress ECG electrodes (Blue Sensor SP, Ambu A/P, Denmark) were placed across the chest in a 

conventional 3-lead layout (left and right shoulders, left hip) to optimize the quality of the ECG readings. 

The PPG probe consisted of a sensor that was clipped on the right thumb, i.e. the location least sensitive 

to reduced blood perfusion in the fingertips caused by grasping the handlebars on the cycle ergometer. 

ECG and PPG analog signals were sampled synchronously every 20ms and transmitted wirelessly to a 



remote receiver (i.e., laptop) for further processing. To minimize the error on the calculated PTT, ECG’s 

QRS complexes and PPG pulses affected by excessive noise or movement artifacts were removed from 

processing. All significant features (maxima, minima, maximum slopes) of ECG and PPG signals were 

automatically identified by peak-detection algorithms applied after noise-reduction filtering (low-pass 

Butterworth filter, 3rd order, cut-off frequency 40Hz). Beat-to-beat heart rate (HR) was calculated as a 

reciprocal of ECG’s R-R interval. Pulse transit times were calculated as the time interval between the 

electrocardiographic R-wave peak and the maximum amplitude (peak, PTTp), minimum amplitude (foot, 

PTTf) and maximum first derivative of the rising slope (PTTs) of the photoplethysmographic waveform. 

We also calculated the beat-to-beat ratio between PTTp and R-R interval (hereby specified as PTTp/RR) as 

an indicator of the balance between the expected decreases of RR and PTT during graded exercise. 

Moving averaging (20-sample window) was applied to all beat-to-beat recordings to reduce short-time 

variability and instrumental noise. During the experiment, oxygen uptake (V̇O2) was measured by 

respiratory gas analysis using a metabolic cart (Quark, Cosmed Inc., Italy). Cardiac output (Q) and stroke 

volume (SV=Q/HR) were estimated by the cart’s software with the Wassermann method [111]. All signal 

processing steps on ECG and PPG waveforms were performed in MATLAB (The MathWorks, Natick, MA). 

 

Experimental protocol 

All subjects performed a cycling exercise protocol consisting of a 5-minute warm-up at a 50W workload, 

followed by a graded increment of 15W/minute until volitional exhaustion or task failure occurred 

following the protocol described by Storer et al. [113]. The task failure was determined by the inability 

of the subject to maintain a set cadence of 60 ± 5rpm throughout each 1-minute exercise stage. The 

exercise workload was controlled by an electromechanical resistance (CompuTrainer Lab, RacerMate 

Inc., Seattle, WA) applied to the rear wheel of a stationary road bicycle previously calibrated to the body 

mass of each individual.  

 

Statistical analysis 

We evaluated statistically significant relationships between independent variables (HR, PTTp, PTTf, PTTs, 

PTTp/RR) and dependent variables (Q, SV) using linear regression models and linear mixed models.  

Linear regression was used to model the variability of group-averaged outcomes, while mixed models 

were used to provide a more complete description that included within-subject and between-subject 



variability. The type I error rate used to determine the significance of the model terms was set at 5%. 

Akaike Information Criterion (AIC) was used for selection among competing linear mixed models [114]. 

To standardize the workload (WL) across subjects, WL was normalized to the maximum workload WLmax 

that each individual was able to exert. All statistical computations were computed in R  using the 

package lme4 for linear mixed modeling [115, 116]. 

 

Results 

Heart rate 

The increase in heart rate (HR) as a function of exercise workload at individual and group level is 

reported in Fig. 1. The basal HR at the start of the exercise (0%WL) was recorded at the end of the 5-

minute warm-up period. When individual variability was retained, the data were best fit by a mixed 

model with fixed effects represented by a second-order polynomial increase with both intercept and 

growth rate (slope) allowed to vary randomly across subjects. The group-averaged heart rate also grew 

as a quadratic polynomial (adjusted R2=0.995). Both growth curves were modeled by the equation 

p2WL2+p1WL+p0 (p2=-0.29, p1=10.99, and p0=105.2), where WL denotes the normalized workload. 

Pulse Transit Times 

During exercise, the flow-mediated dilation of the arteries increased the velocity of the blood wave 

travelling from the heart to the periphery as a result of workload increase, thus causing the pulse transit 

times to decrease. The transit time PTTp from the ECG R-wave to the peak amplitude of the PPG signal is 

reported in Fig. 2a at both the individual and group level. PTTp was notably affected by a substantial 

variance at the individual level across the workload stages, which is mainly explained by movement 

artifacts and by poor time resolution of the PTT sensor compared to the average change of PTTp induced 

by each workload increment. Specifically, since PTTp was calculated as the time difference between two 

waveform features (i.e., peak of ECG and PPG signals) each identified with an uncertainty of ±10ms, the 

resulting variance of PTTp was ±20ms (with triangular distribution). The decay of PTTp as a function of 

workload was best fit by a quadratic mixed model with random intercept and slope. The group average 

equally exhibited a quadratic decay with coefficients p2=0.34, p1=-14.68, and p0=424.1 (adjusted 

R2=0.9848). 

The average pulse transit time PTTf between the R-wave of the ECG signal and the foot of the 

PPG signal is shown in Fig. 2b. In the same chart, we reported also the average R-R interval and pulse 



transit times PTTp and PTTs for comparison. For improved readability of the charts, individual growth 

curves for these measures are not reported. In contrast to PTTp, the decay of PTTf flattened after 50% 

workload, thus indicating a profile change of the PPG waveform along the exercise. The span of the 

group-averaged PTTf (i.e., PTTp(100%WL) - PTTp(0%WL)) was 56ms, which was substantially lower than 

the corresponding span of PTTp (108ms). Similarly, the time interval PTTs between the peak of R-wave 

and the maximum rising slope of PPG spanned 69ms at group level (Fig. 2a). Since the overall changes of 

PTTf and PTTs were modest compared to the noise level induced by motion artifacts and inherent 

resolution of the sensor, we chose to exclude these two PTT measures from statistical models. 

The percent ratio between PTTp and R-R interval calculated at the individual and group levels are 

shown in Fig. 2c. This measure exhibited a substantial degree of variability across subjects. The best 

fitting model across individuals was a quadratic fixed effect with random intercept and slope, whereas 

the group-averaged data were best fit by a quadratic polynomial growth with parameters p2=-0.23, 

p1=4.48, and p0=74.59 (adjusted R2=0.9648).  

 

Oxygen Uptake (V̇O2), cardiac output and stroke volume 

Oxygen uptake (V̇O2) measured by respiratory gas analysis at the individual and group levels are shown 

in Fig. 3. The V̇O2 growth was best fit by a model with quadratic dependence on workload and random 

intercept and slope (p2=-0.11, p1=26.5, and p0=946 (adjusted R2=0.988)). 

Cardiac output (Q) measured by respiratory gas analysis [111] and calculated stroke volume 

(SV=Q/HR) are shown in Fig. 4 and Fig. 6, respectively. The increase in Q at the individual level is best 

fitted with a quadratic model for both fixed and random effects; the same model also best fit the group-

averaged Q (adjusted R2=0.9981). Similarly to Q, the increase in SV is best fitted with a quadratic 

function for both random and mixed effects (adjusted R2=0.8547).  

 

Models of Cardiac Output, Stroke Volume, and Oxygen Uptake 

Since the main goal of this study was to assess if pairing PTT to HR improved the indirect estimation of 

cardiovascular parameters of interest to exercise monitoring such as cardiac output, stroke volume and 

oxygen uptake, we sought to find statistically significant models of these physiological measures using 

both HR and PTT as independent variables. 

Prior to modeling, we normalized HR and PTTp to their resting value (denoted as HRn, PTTpn) and 

applied logarithmic transformation to all variables to improve handling of their nonlinear relationships. 



The dependent variables Q, SV, V̇O2 were modeled with linear mixed models using main effects and 

interactions of the log-transformed variables, including resting values (HR0, PTTp0) and normalized values 

(HRn, PTTpn). The within-subject correlation and inter-subject variance were taken into account 

simultaneously by inclusion of random intercept and slope that varied per subject. Since we sought to 

compare models of the outcomes Q, SV, V̇O2 built using both HR and PTT to models built with just HR, 

the random slope of the mixed models was kept simple and corresponded to the HRn term. 

We found that the mixed models that best fitted each of the three outcomes Q, SV, V̇O2 used similar 

terms, i.e. log(HR0), log(HRn), log(PTTpn), log(HRn)*log(PTTpn) (Table 1). Specifically, PTTpn contributed 

significantly to all models, whereas resting heart rate HR0 was a significant predictor for stroke volume 

only. The reason for this was the existence of a linear inverse relationship between HR and SV in resting 

conditions (Fig. 6, p=0.013), which implied that some of the between-subject variability was not random. 

A measure of the goodness of fit of linear mixed models, denoted R1
2 and analogous to the Pearson’s 

coefficient R2 for regression models [117], was found to be greater in all models including PTTp (0.419 for 

SV, 0.548 for Q, and 0.771 for V̇O2) than in the best models based on HR alone (0.379 for SV, 0.503 for Q, 

and 0.745 for V̇O2). 

 

Discussion 

In this study, we investigated the relationship between standard (Q, SV, V̇O2) and non-standard (PTT) 

measures of cardiovascular response to graded cycling exercise. Respiratory gas analysis was used to 

measure oxygen uptake and estimate cardiac output and stroke volume [111], while 

electrocardiography and photoplethysmography were used to measure heart rate and pulse transit 

times. We found that PTTp ― i.e., the time interval between the R-wave of ECG and the peak of 

amplitude of the PPG signal ― improved the fit statistics of mixed model of Q, SV and V̇O2 with respect 

to best-fitting mixed models based on HR alone. Oxygen uptake expectedly exhibited the best fit 

statistics amongst all variables dependent on HR and PTTp, as HR alone is known to be a good predictor 

of V̇O2 in healthy young adults during non-steady exercise [39]. The goodness of fit of the best-fitting 

model of SV was also significantly improved when the linear relationship between resting stroke volume 

and resting HR was accounted for. Hence, the results of this study suggest that combining HR and PTT 

could serve as a superior surrogate measure of established physiological responses to exercise, 

particularly in applications where standard measuring methods are either impractical or not accessible. 

Indeed, ECG and PPG sensing technologies have additional advantages in being portable, non-invasive, 



economical, and not requiring calibration, thus enabling the uncomplicated assessment of 

cardiovascular functions when exercising under field conditions. For instance, the integration of these 

techniques into wearable sensors could serve as valuable accompaniments to heart rate monitors in 

fitness and telemedicine realms. ECG and PPG could also impact clinical applications where continuous 

monitoring of cardiac output is valuable yet impractical, such as home-based monitoring of congestive 

heart failure or in cardiac rehabilitation. 

Notwithstanding, combining these sensing technologies has challenges with regards to the 

implementation, validation and adoption by end-users. Specifically, unlike ECG that is being used in 

mass-produced products like heart rate monitors, PPG has yet to find widespread applications outside of 

the clinical setting (e.g., pulse oximetry). Our work, although limited in scope, has confirmed some 

general drawbacks that adversely affected the diffusion of PPG for the assessment of fitness and human 

performance. Primarily, PPG has shown to be inherently sensitive to movement artifacts, which may 

limit widespread usability in the field. Ideally, a PPG sensor is required to maintain secure contact with a 

tissue where a capillary bed is optically accessible, yet without applying excessive pressure that would 

cause capillary occlusion. In this study, we noticed that PPG signals collected using a standard pulse 

oximetry probe was strongly sensitive to the placement site and to the grasping force that the subject 

exerted on the bike’s handlebar, which occasionally caused poor blood perfusion of the fingertips. To 

consistently obtain PPG signals of acceptable quality during the cycling protocol, we asked the subjects 

to support the upper body with the palms of their hands on the handlebar and to relax the thumbs, to 

which we clipped the sensor. Occasionally, portions of PPG signals in some subjects were not 

decipherable due to movement artifacts, compromising the calculation of pulse transit times during 

those adverse events. Future investigations with cycling protocols should consider alternate placements 

for PPG, such as earlobes, that are supposedly less sensitive to posture and movement. Importantly, the 

physiological interpretation of PTT in relation to the measuring location for PPG has yet to be fully 

understood. Although vasodilation is a known systemic effect of physical exercise, differences exist 

between vasodilatory responses of different arteries within and across different types of exercise. For 

instance, recent studies showed that a marked vasodilation of the brachial artery induced by shear 

stress occurs during prolonged leg cycling exercise, but only following a temporary decrease of blood 

flow taking place immediately after the onset of exercise [118, 119]. This finding is consistent with the 

results of our study. In contrast, another study suggests that local dilation mechanisms may play a 

preponderant role in mediating shear rate and blood flow in the femoral artery during arm-crank 

exercise [120]. Hence, since vascular adaptation is the main determinant of changes in PTT during 



exercise, its physiological meaning and its relationship with other cardiovascular measures need to be 

interpreted within the context of a specific exercise protocol. 

An important caveat of this study was that the fitting of the models was affected by a significant 

variance of the PTT measurements to which several factors contributed, including the intrinsic time 

resolution of the sensor, physiological differences across subjects and movement artifacts. In resting 

conditions, i.e. discounting the effect of movement artifacts, PTTp exhibited a standard deviation across 

subjects of 43.3ms, which was largely influenced by the limited time resolution (20ms) of the sensors 

used in this study. In addition, the variance of the training status of the individuals recruited for this 

study may have had a role in the overall variance of PTTp, although mixed models were used to minimize 

such influence. We therefore hypothesize that a custom-designed sensor with time resolution of 5ms or 

better, whilst also accounting for the age and fitness status of the individual, will substantially reduce 

measurement error and improve statistical modeling.  Ultimately, this will provide greater insight to the 

relationships between PTT and physiological measures such as cardiac output, stroke volume and 

oxygen uptake during physical exercise. 
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Figure 1: Individual (colored lines) and group average (black marked line) of heart rate recorded at each 
10% workload increment. The error bars represent the standard error of the averaged HR values at each 

normalized workload increment. 
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Figure 2: (a) Individual (colored lines) and group average (black marked line); (b) Group average of pulse 
transit times (PTTp, PTTf, PTTs) and R-R interval; (c) Group average of the percent ratio between PTTp and 
R-R interval. In all charts, the error bars represent the standard error of the measure at each normalized 

workload increment. 
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Figure 3: Group average of oxygen uptake (V̇O2) at group level. The error bars represent the standard 
error at group level evaluated at 10% workload increments. 
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Figure 4: Group average of cardiac output (Q) as a function of workload. The error bars represent the 

standard error at group level evaluated at 10% workload increments. 
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Figure 5: Group average of stroke volume (SV) as a function of workload. The error bars represent the 

standard error at group level evaluated at 10% workload increments. 
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Figure 6: Stroke volume as a function of heart rate in resting condition (WL=0%), after logarithm 

transform.  
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 Stroke Volume Cardiac Output Oxygen Uptake 

Predictor Estimate 95% 
Confidence  
Interval 

p-value Estimate 95% 
Confidence  
Interval 

p-value Estimate 95% 
Confidence  
Interval 

p-value 

  Lower Upper   Lower Upper   Lower Upper  

Intercept 3.510 0.346 6.673 0.030 2.321 2.248 2.395 0.000 6.946 6.868 7.023 0.000 

Log(HR0) -1.260 -1.937 -0.583 0.000 - - - - - - - - 

Log(HRn) -0.112 -0.192 -0.032 0.006 0.816 0.734 0.898 0.000 1.725 1.567 1.884 0.000 

Log(PTTpn) -0.341 -0.502 -0.180 0.000 -0.305 -0.459 -0.151 0.000 -0.515 -0.821 -0.210 0.001 

Log(HRn)  
x Log(PTTpn) 

0.950 0.612 1.288 0.000 0.867 0.544 1.190 0.000 1.355 0.708 2.002 0.000 

Random 
intercept 
(Std. Dev.) 

0.154    0.141    0.139    

Random 
slope 
(Std. Dev.) 

0.072    0.092    0.164    

Residual 
(Std. Dev.) 

0.047    0.044    0.088    

 

Table 1: Estimated coefficients, confidence intervals and p-values of best-fitting linear mixed models for 

cardiac output (Q), stroke volume (SV) and oxygen uptake (V̇O2). 


