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Abstract

As the need to model flexibility arose in multibody dynamics, the floating frame

of reference formulation was developed but this approach can yield inaccurate results

when elastic displacements becomes large. While the use of three-dimensional finite el-

ement formulations overcomes this problem, the associated computational cost is over-

whelming. Consequently, beam models, which are one-dimensional approximations of

three-dimensional elasticity, have become the workhorse of many flexible multibody

dynamics codes. Numerous beam formulations have been proposed, such as the ge-

ometrically exact beam formulation or the absolute nodal coordinate formulation, to

name just two. New solution strategies have been investigated as well, including the

intrinsic beam formulation or the DAE approach. This paper provides a systematic

comparison of these various approaches, which will be assessed by comparing their

predictions for four benchmark problems. The first problem is the Princeton beam

experiment, a study of the static large displacement and rotation behavior of a simple

cantilevered beam under a gravity tip load. The second problem, the four-bar mecha-

nism, focuses on a flexible mechanism involving beams and revolute joints. The third

problem investigates the behavior of a beam bent in its plane of greatest flexural rigid-

ity, resulting in lateral buckling when a critical value of the transverse load is reached.

The last problem investigates the dynamic stability of a rotating shaft. The predictions

of eight independent codes are compared for these four benchmark problems and are

found to be in close agreement with each other and with experimental measurements,

when available.

∗To appear in Multibody System Dynamics, 2016
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1 Introduction

Multibody dynamics was originally developed to deal with simple tree-like topologies com-
posed of rigid bodies. As the need to model flexibility arose, the floating frame of reference
formulation [1] was proposed. Unfortunately, as the magnitude of the elastic displacements
increases, this formulation becomes increasingly inaccurate and the multibody dynamics
community began to turn its attention to finite element based formulations. Simo [2] pro-
posed the geometrically exact beam formulation (GEBF), which corrected the shortcomings
of earlier co-rotational formulations [3]. In recent years, the absolute nodal coordinate for-
mulation (ANCF) developed by Shabana et al. [4, 5] has received considerable attention for
the modeling of flexible multibody systems. The GEBF and ANCF are easier to derive than
the floating frame of reference approach and involve fewer assumptions, but little effort has
been devoted to the systematic comparison of these two approaches.

Romero [6] has presented a comparison of both qualitative and quantitative aspects of the
two approaches. He concluded that the ANCF is more straightforward, while GEBF involves
thorny issues, such as the treatment of finite rotation. Unfortunately, the ANCF suffers
from a number of locking mechanisms that must be eliminated to obtain accurate results.
As pointed out by Gerstmayr et al. [7], this can be accomplished in a number of ways, but
the proposed techniques complicate the description of elastic forces, leading to more arduous
implementations and moving away from the simplicity of the initial implementation. In some
of the examples treated by Romero, the ANCF and GEBF did not converge to the same
solution. In all cases, the computational efficiency of the GEBF was found to be superior to
that of the ANCF.

Bauchau et al. [8] further compared the GEBF and ANCF to identify the causes of their
differing computational efficiencies. First, they performed a kinematic analysis, in which
the exact nodal displacements were prescribed and the predicted displacement and strain
fields were compared for the two methods. The accuracies of the predicted strain fields were
found to differ markedly: the predictions of the GEBF were more accurate than those of the
ANCF. They attributed this phenomenon to the fact that the curvature field is obtained as
a second derivative of the displacement in the ANCF, but as a first derivative only for the
GEBF. Next, they carried out a static analysis to determine the solution of the problem. For
the GEBF, the predictions of the static analysis are far more accurate than those obtained
from the kinematic solution; in contrast, the same order of accuracy was obtained for the two
solution procedures when using ANCF. In all cases, they reported that the predictions of the
GEBF were more accurate than those of the ANCF. A further study by Bauchau et al. [9]
compared the predictions of the two methodologies against experimental measurements.

Besides these various formulations of beam problems, novel solution strategies have also
been investigated. For instance, Hegemier [10] and Hodges [11] have developed intrinsic for-
mulations for beams. By eliminating the displacement and rotation fields from the geomet-
rically exact equations of the problem, quadratic equations result and this feature simplifies
the solution process. Cardona and Géradin [12] adapted the well known Hilber-Hughes-
Taylor [13] time integration scheme initially developed for the finite element method to the
finite rotation problems found in geometrically exact beams. Betsch and co-workers [14]
proposed the use of the direction cosine matrix to represent the rotation tensor; this lead to
differential-algebraic equations (DAE), which they solved using novel integration techniques.
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Finally, it is worth mentioning the increased application of Lie group techniques in rigid and
flexible multibody dynamics [15]. The resulting solution techniques aim at preserving the
invariant manifolds that characterize multibody systems.

2 The four benchmark problems

This study focuses on four benchmark problems: the Princeton beam experiment, the four-
bar mechanism, the lateral buckling of a beam, and the stability of a rotating shaft described
in sections 2.1, 2.2, 2.3, and 2.4, respectively. For each benchmark problem, beam sectional
properties such as bending, shearing, and torsional stiffnesses must be evaluated. In this
effort, these properties were computed from the section’s geometric and stiffness properties
using the procedure developed by Bauchau and Han [16, 17].

2.1 The Princeton beam experiment

The Princeton beam experiment [18, 19] is a study of the large displacement and rotation
behavior of a simple cantilevered beam under a gravity tip load. A straight aluminum (T
7075) beam of length L = 0.508 m with a rectangular cross-section of thickness t = 3.175 mm
and height h = 12.7 mm was cantilevered at its root and subjected to a static concentrated
transverse load P at its tip.

Figure 1: Configuration of the Prince-
ton beam experiment.

Figure 1 shows an end-view of the test set-
up. An inertial frame of reference is selected as
F I = [O, I = (̄ı1, ı̄2, ı̄3)] and material frame FB =
[O,B = (b̄1, b̄2, b̄3)] is attached at the beam’s root
section, which is cantilevered into a bearing that al-
lows rotation of the beam about its reference axis by
an angle θ, called the “loading angle.” The gravity
load applied at the beam tip is acting in the op-
posite direction of unit vector ı̄3. Variation of the
loading angle from 0 to 90 degrees yields a range
of nonlinear problems where torsion and bending in
two directions are coupled.

Experimental results [18] consist of measure-
ments of the beam’s tip deflection along the ma-
terial unit vectors b̄2 and b̄3, denoted u2 and u3,
respectively, and called the “flapwise” and “chordwise displacements,” respectively. The
beam’s tip twist was also measured. Let RE = {b̄E

1
, b̄E

2
, b̄E

3
} denote the rotation ten-

sor characterizing the orientation of the beam’s tip cross-section. In the absence of tip
load, RE(P = 0) = {b̄E

1
, b̄E

2
, b̄E

3
}, where b̄ET

3
= {0, sin θ, cos θ}, and it then follows that

θ = arctan(RE
23
(P = 0)/RE

33
(P = 0)), where the subscripts refer to the corresponding entries

of rotation tensor RE . Under tip load P , the orientation of the tip section is defined as

arctan(RE
23
(P )/RE

33
(P )) and the beam’s tip twist is defined as

φ = arctan(
RE

23

RE
33

)− θ. (1)
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The procedure used to measure the twist angle experimentally is detailed in the report by
Dowell and Traybar [18].

Data was acquired at loading angles of θ = 0,±15,±30,±45,±60,±75,±90, and 180
degrees. For a perfect system, symmetry implies that the absolute values of the tip displace-
ments and twist should be identical for loading angles ±θ. In the experimental setting, these
measurements differed, providing an estimate of their accuracy. Three loading conditions
were used, P1 = 4.448 N, P2 = 8.896 N, and P3 = 13.345 N.

The linear solution of the problem is found using the shear deformable beam theory
described in structural analysis textbooks [20]. The tip transverse displacements are

uT
2
=

[

PL3

3H33

+
PL

K22

]

sin θ, uT
3
=

[

PL3

3H22

+
PL

K33

]

cos θ, (2)

where H22 and H33 are the bending stiffnesses about material unit vectors b̄2 and b̄3, respec-
tively, and K22 and K33 the shearing stiffnesses along the same unit vectors, respectively. Of
course, for linear theory, the tip twist vanishes.

For θ = 0 or 180 and θ = ±90, the beam undergoes planar deformation and elementary
formulæ of Timoshenko beam theory (2) provide the tip deflection in the linear regime.
Using the Young’s modulus of T 7075 aluminum as E = 71.7 GPa and Poisson’s ratio ν
= 0.31, hand calculations yield uT

2
= 5.004 and uT

3
= 80.034 mm for the chordwise and

flapwise tip displacements, respectively, at loading level P1. This compares favorably with
experimental measurements of uT

2
= 5.3594 and uT

3
= 77.635 mm, respectively, resulting in

-6.6% and +3.1% error, respectively. In this effort, the dimensions of the cross-section were
adjusted slightly to achieve good correlation between measurements and predictions of linear
theory in these two cases. The following data was used: L = 0.508 m, t = 3.2024 mm, h =
12.377 mm, E = 71.7 GPa, ν = 0.31, and G = E/2(1 + ν) = 27.37 GPa. These physical
properties translate to the sectional stiffness properties listed in table 1 and the sectional
mass properties per unit span is m00 = 0.1062 kg/m.

Table 1: Sectional stiffness properties of the Princeton beam
Axial Shearing Shearing Torsional Bending Bending

S [MN] K22 [MN] K33 [MN] H11 [N·m2] H22 [N·m2] H33 [N·m2]

Beam 2.842 0.6401 0.9039 3.103 36.28 2.429

2.2 The four-bar mechanism

Figure 2 depicts a flexible four-bar mechanism. Bar 1 is of length 0.12 m and is connected
to the ground at point A by means of a revolute joint. Bar 2 is of length 0.24 m and is
connected to bar 1 at point B with a revolute joint. Finally, bar 3 is of length 0.12 m and is
connected to bar 2 and the ground at points C and D, respectively, by means of two revolute
joints.

In the reference configuration, the bars of this planar mechanism intersect each other at
90 degree angles and the axes of rotation of the revolute joints at points A, B, and D are
normal to the plane of the mechanism. To simulate an initial defect of the mechanism, the
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axis of rotation of the revolute joint at point C is rotated by +5 degrees about unit vector
ı̄2 indicated in fig. 2. The angular velocity of bar 1 at point A is prescribed as Ω = 0.6 rad/s
for the duration of the simulation.

Figure 2: Configuration of the
four-bar mechanism.

Bars 1 and 2 are of square cross-section of size 16 by
16 mm; bar 3 has a square cross-section of size 8 by 8
mm. The three bars are made of steel, whose mechanical
characteristics are Young’s modulus E = 207 GPa and
Poisson’s ratio ν = 0.3. These physical properties translate
to the sectional stiffness properties listed in table 2. The
sectional mass properties are as follows: mass per unit
span m00 = 1.997 and 0.4992 kg/m, moments of inertia
per unit span m22 = m33 = 42.60 and 2.662 mg·m2/m for
bars 1 and 2, and bar 3, respectively.

If the bars were infinitely rigid, no motion would be
possible because the mechanism locks. For elastic bars,
motion becomes possible, but generates large, rapidly varying internal forces and moments. If
the axes of rotation of the four revolute joints were orthogonal to the plane of the mechanism,
the response of the system would be purely planar, and bars 1 and 3 would rotate at constant
angular velocity about points A and D, respectively. The initial defect in the mechanism
causes a markedly different response. Bar 1 rotates at the constant prescribed angular
velocity, but bar 3 now oscillates back and forth, never completing an entire revolution.

Table 2: Sectional stiffness properties of the bars
Axial Shearing Shearing Torsional Bending Bending

S [MN] K22 [MN] K33 [MN] H11 [N·m2] H22 [N·m2] H33 [N·m2]

Bar 1 & 2 52.99 16.88 16.88 733.5 1131 1131
Bar 3 13.25 4.220 4.220 45.84 70.66 70.66

2.3 Lateral buckling of a thin beam

If a beam is bent in its plane of greatest flexural rigidity, lateral buckling will occur when a
critical value of the transverse load is reached. In this benchmark problem, the tip of a beam
is subjected to a transverse load applied through a crank and link mechanism, as depicted in
fig. 3. The beam is clamped at one end, while the other end is connected to the link through
a spherical joint. The crank and link are modeled by flexible beams connected by revolute
joints. As the crank rotates, the beam tip is pushed up. When the buckling load is reached,
the beam snaps laterally and becomes significantly softer in bending due to the pronounced
twisting deformation.

Figure 3 depicts the configuration of the problem. The beam is of length L = 1 m, the
crank and link lengths are Lc = 0.05 m and Lℓ = 0.25 m, respectively. The rotation of the
crank is prescribed as φ = π(1− cosπt/T )/2, for t ≤ T and φ = π for t > T , where T = 0.4
s. To simulate an initial imperfection of the system, the tip of the beam is connected to the
spherical joint via a rigid-body connection of length d = 0.1 mm. The plane of the crank
and link mechanism is offset from the plane of the beam by the same distance d.
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Figure 3: Configuration of the crank ac-
tuated beam.

The beam’s rectangular cross-section is of
width b = 10 mm and height h = 100 mm. The
link has a circular cross-section of radius Rℓ = 12
mm. Finally, the crank also features a circular
cross-section, but its radius is Rc = 24 mm. All
components are made of aluminum, whose me-
chanical characteristics are Young’s modulus E =
73 GPa and Poisson’s ratio ν = 0.3. These phys-
ical properties translate to the sectional stiffness
properties listed in table 3. The sectional mass
properties are as follows: mass per unit span m00

= 2.68, 1.212, and 4.85 kg/m, moments of iner-
tia per unit span m22 = 2233, 43.65, and 698.3,
m33 = 22.33, 43.65, and 698.3 mg·m2/m for the
beam, link, and crank, respectively.

Table 3: Sectional stiffness properties of the beams
Axial Shearing Shearing Torsional Bending Bending

S [MN] K22 [MN] K33 [MN] H11 [N·m2] H22 [N·m2] H33 [N·m2]

Beam 73 5.025 23.40 877.2 60,830 608.3
Link 33.02 10.81 10.81 914.5 1,189 1,189
Crank 132.1 43.22 43.22 14,630 19,020 19,020

2.4 Stability of a rotating shaft
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joint

Revolute
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_

i2

_
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_
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_
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Figure 4: Configuration of the rotating shaft

A flexible shaft of length L is supported at
its ends by bearings, as depicted in fig. 4. At
point R, the shaft is connected to the ground
by means of a revolute joint and the angular
speed of the shaft is a prescribed function of
time, Ω(t). At point T, the shaft is connected
to the ground via a cylindrical joint. A rigid
disk is attached to the shaft at its mid-span
point M. Initially, the disk’s center of mass is
located a distance d above the reference axis
of the shaft, thereby creating an unbalance of
the system.

At the initial time, the shaft is at rest and
deformed under the effect of the gravity loads
acting in the vertical direction, as indicated
in the figure. The shaft is set in motion by
prescribing its rotation at point R and lateral
oscillations ensue due to the initial imperfection of the system. As the shaft accelerates,
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it passes through the first natural bending frequency of the system and the operation goes
from sub- to super-critical. As predicted by linear rotor dynamics theory, the shaft becomes
unstable when operating at the critical speed. In the present example, the magnitudes of
lateral oscillations and corresponding internal forces rise as the shaft is accelerated through
the critical speed.

The shaft has a length L = 6 m and is made of steel (density ρ = 7800 kg/m3, Young’s
modulus E = 210 GPa, and Poisson’s ratio ν = 0.3). The cross-section is annular with inner
and outer radii rI = 0.045 and rO = 0.05 m, respectively. The shaft’s sectional stiffness
properties are summarized in table 4. The mass per unit span is m = 11.64 kg/m, the
moments of inertia per unit span are m22 = m33 = 13.17 g·m2/m and the resulting polar
moment of inertia per unit span is m11 = m22 +m33 = 26.34 g·m2/m.

The mid-span circular disk is of mass md = 70.573 kg, radius rd = 0.24 m, and thickness
td = 0.05 m. Its inertial tensor computed with respect to the center of mass is diagonal,
diag(2.0325, 1.0163, 1.0163) g·m2. Its center of mass is located a distance d = 0.05 m above
the shaft reference axis. The acceleration of gravity is g = 9.81 m/s2.

Axial Shearing Shearing Torsional Bending Bending
S [MN] K22 [MN] K33 [MN] H11 [kN·m2] H22 [kN·m2] H33 [kN·m2]

313.4 60.5 60.5 272.7 354.5 354.5

Table 4: Sectional stiffness properties of the shaft

The shaft’s rotation at point R is prescribed to be

Ω(t) =



















A1ω[1− cos(πt/T1)]/2, 0 ≤ t ≤ T1,

A1ω, T1 < t ≤ T2,

A1ω + (A2 − A1)ω{1− cos[π(t− T2)/(T3 − T2)]}/2, T2 < t ≤ T3,

A2ω, t > T3,

(3)

where A1 = 0.8, A2 = 1.2, T1 = 0.5 s, T2 = 1 s, T3 = 1.25 s and ω = 60 rad/s is close to the
first natural frequency of the shaft in bending (ω1 = 56.7 rad/s).

3 General description of beam formulations

A beam is defined as a structure having one of its dimensions much larger than the other
two, as depicted in fig. 5. The axis, or reference line, of the beam is defined along that
longer dimension and its cross-section is normal to this axis. The cross-section’s geometric
and physical properties are assumed to vary smoothly along the beam’s span.

Figure 5 depicts an initially curved and twisted beam of length L, with a cross-section
of arbitrary shape and area A. The volume of the beam is generated by sliding the cross-
section along the reference line of the beam, which is defined by an arbitrary curve in space.
Curvilinear coordinate α1 defines the intrinsic parameterization of this curve, i.e., it measures
length along the beam’s reference line. Point B is located at the intersection of the reference
line with the plane of the cross-section.
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3.1 Kinematics of the problem

In the reference configuration, an orthonormal basis, B0(α1) = (b̄01, b̄02, b̄03), is defined at
point B. Vector b̄01 is the unit tangent vector to the reference curve at that point, and
unit vectors b̄02 and b̄03 define the plane to the cross-section. An inertial reference frame,
FI = [O, I = (̄ı1, ı̄2, ı̄3)], is defined, and the components of the rotation tensor that brings
basis I to B0, resolved in basis I, are denoted R

0
(α1).

Figure 5: Curved beam in the reference
and deformed configurations.

The position vector of point B along the beam’s
reference line is denoted u

0
(α1). The position vec-

tor of material point P of the beam then becomes
x(α1, α2, α3) = u

0
(α1)+α2 b̄02+α3 b̄03, where α2 and

α3 are the material coordinates along unit vectors
b̄02 and b̄03, respectively. Coordinates α1, α2, and
α3 form a natural choice of coordinates to represent
the configuration of the beam.

In the deformed configuration, all material
points located on a cross-section of the beam move
to new positions. This motion is decomposed into
two parts, a rigid-body motion and a warping dis-
placement field. The rigid-body motion consists of
a translation of the cross-section, characterized by
displacement vector u(α1) of reference point B, and
of a rotation of the cross-section, which brings basis
B0 to B(α1) = (b̄1, b̄2, b̄3), see fig. 5. The components of the position vector of point B in the
deformed configuration are denoted x(α1) and the components of the rotation tensor that
brings basis B0 to B are denoted R(α1); all tensor components are resolved in basis I.

For shear deformable beams, the deformation is characterized by six sectional strains: the
axial strain, the two transverse shear strains, the twist rate, and the two bending curvatures.

3.2 Definition of the sectional strain

In the GEBF, the geometry of the beam is described by the displacement field of the beam’s
reference axis and by the rotation field of its cross-section. The sectional strains and curva-
tures, denoted ε(α1) and κ(α1), respectively, are expressed [2] as

ε(α1) = u′

0
+ u′ − (RR

0
)̄ı1, (4a)

κ(α1) = axial(R′RT ), (4b)

where u
0
is the position vector of the beam’s axis in its reference configuration and

notation (·)′ denotes a derivative with respect to α1. The strain vector is defined as
εT =

{

ε11, γ12, γ13
}

, where ε11 is the sectional axial strain, and γ12 and γ13 the two compo-
nents of transverse shearing strains.
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3.3 The strain energy

The strain energy stored in the beam [20] of length L is expressed as

A =
1

2

∫ L

0

E∗TC∗E∗ dα1, (5)

where array E∗T = {ε∗T , κ∗T} stores the beam’s sectional strain components resolved in
material basis B, i.e., ε∗ = (RR

0
)T ε and κ∗ = (RR

0
)Tκ. If the beam’s cross-section is made

of isotropic materials and characterized by double symmetry, the sectional stiffness matrix
referred to the centroid of the section is diagonal, C∗ = diag(S,K22, K33, H11, H22, H33),

where S is the beam’s axial stiffness, K22 and K33 its shear stiffnesses along unit vectors b̄2
and b̄3, respectively, H11 its torsional stiffness, and H22 and H33 its bending stiffnesses about
unit vectors b̄2 and b̄3, respectively.

3.4 Equilibrium equations

The sectional forces and moments resolved in basis I are denoted N and M , respectively.
When rotated to material basis B, the corresponding quantities are denoted N∗ and M∗,
respectively where N ∗T = {N∗

1
, V ∗

2
, V ∗

3
} and M∗T = {M∗

1
,M∗

2
,M∗

3
}. The sectional axial

force is N∗

1
, and V ∗

2
and V ∗

3
are the shear forces along unit vector b̄2 and b̄3, respectively.

Finally, M∗

1
is the torque, and M∗

2
and M∗

3
are the bending moments about unit vector b̄2

and b̄3, respectively. Array F∗T = {N∗T ,M∗T} stores the six sectional stress resultants and
the sectional constitutive laws are F∗ = C∗E∗,

Application of the principle of virtual work then yields the static equilibrium equations
of the problem

N ′ = −f, (6a)

M ′ + (b̄1 + u′)×N = −m, (6b)

where f and m denote the externally applied forces and moments per unit span of the beam,
respectively.

4 Description of the codes used in this effort

This paper will present the predictions of eight different codes for the four benchmark prob-
lems introduced in section 2. These eight codes are described in the present section in a very
succinct manner. Table 5 lists the eight codes and the references providing details about
them. Clearly, the details of the finite element implementation of each of the formulations
is beyond the scope of this paper.

Description of Dymore. Dymore is based on the geometrically exact beam formula-
tion. The sectional strains are defined by eq. (4) and the strain energy by eq. (5). The results
presented in this paper use a four noded element based on cubic Lagrangian shape functions.
Each node features six degrees of freedom (DOFs), three displacement components and three
rotation components. The Wiener-Milenković [22] parameters are used to represent finite
rotations. A complete description of the formulations is found in refs. [21, 22].
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Table 5: Summary of the codes used for the numerical predictions.
Code name Symbol References

Dymore ∗ [21, 22]
Hotint © [23]
MBDyn △ [24, 25]
Mecano ▽ [12, 26]
MOPEDS � [27, 28]
Oofelie × [29, 30]
SE(3) + [31, 32]
Spacar ⋄ [33, 34]

Description of Hotint. HOTINT (http://www.hotint.org) is an open source multi-
body dynamics simulation code, which has been developed at the Johannes Kepler University
Linz and at the Linz Center of Mechatronics. HOTINT includes various possibilities for the
modeling of point masses, rigid bodies, beams, plates, and modally reduced multibody sys-
tems. The beam formulation is based on the ANCF described by Nachbagauer et al. [23].
The nodal coordinates are given by a displacement vector and two slope vectors, which co-
incide with the principal axes of the cross section in the reference configuration. As these
two slope vectors are not necessarily perpendicular (but they are nearly) during deformation
of the beam, a modification of constraints, moments and sensors which are related with the
rotation of the cross-section is performed. Thus, for the computation of the rotation matrix
from the two slope vectors in any point at the beam axis, a Gram-Schmidt projection of the
slope vectors is utilized in order to obtain rotational parameters as provided in the results.
The multibody system is represented by means of a differential algebraic equations of index
3, which is solved by means of a RadauIIA scheme with two stages (order 3) to provide
numerical damping.

Description of MBDyn. The structural DOFs used by MBDyn are the absolute posi-
tion of the nodes in reference I and the Cayley-Gibbs-Rodrigues [22] parameters, which are
used to represent finite rotations. The approach uses an incremental scheme that resembles
an updated Lagrangian approach, which has been termed updated-updated [24]. The con-
strained dynamics problem is formulated as DAEs that express Newton-Euler’s equations
of motion of rigid bodies connected by deformable components and subjected to kinematic
constraints in form of algebraic equations. It is integrated using an implicit, A/L stable
multistep scheme with tunable algorithmic dissipation [24].

MBDyn supports GEBF elements implemented according to the finite-volume approach
developed by Ghiringhelli et al. [25]. The generalized strains are defined according to eqs. (4).
Integration by parts of the equilibrium equations (6), weighted by piecewise constant test
functions centered on the nodes, yields the elastic contribution to the equilibrium of naturally
discrete pieces of beam. When a three-node discretization is considered, with the interfaces
between the mid- and the end-nodes at points corresponding to the two Gauss quadrature
points, an intrinsically shear-locking free discrete element is obtained, which yields the exact
static solution for any end-applied node. Inertia loads are accounted for using rigid-body
elements at the nodes.
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Description of Mecano. Mecano includes a large rotation nonlinear finite element
beam based on the static equilibrium equations (6) resolved in the material frame [12, 26].
Rotations are parameterized using the rotational vector [22] and an updated Lagrangian
scheme allows the handling of rotation in excess of 2π in magnitude. The element fields are
interpolated linearly within the element and a single Gauss point is used for integration. To
enable large finite rotations, incremental rotations with respect to the previous converged
configuration are interpolated. This scheme requires tracking of total rotations both at the
element nodes and at the Gauss point. This code, which is part of the LMS Samtech-
SAMCEF software, has been used in industrial applications extensively for the last twenty
years.

Description of MOPEDS. The beam finite element is based on the GEBF described
in sections 3.1 to 3.4. The finite element formulation relies on standard Lagrangian shape
functions used for the interpolation of the beam reference line, u

0
(α1) + u(α1), and the ro-

tation tensor, R(α1)R
0
(α1). The orthogonality of the rotation tensor is relaxed to the nodal

points of the finite element. To this end, either Lagrangian multipliers or three (incremental)
rotations are employed. Details of the finite element formulation can be found in Betsch and
Steinmann [27]. The incorporation of the beam finite element formulation into a general
framework for flexible multibody dynamics is described by Leyendecker et al. [28]. It is
worth noting that the present approach makes possible the design of energy-momentum con-
sistent time integrators. A refined version of the beam finite element formulation exhibiting
improved convergence properties has recently been proposed by Eugster et al. [35]

Description of Oofelie. A large rotations nonlinear beam finite element model was
developed by Lens and Cardona [29]. The finite element is able to handle large three-
dimensional rotations and displacements but is restricted to small strains. Simplifications
are made in the kinematics that allowed to obtain quite simple compact expressions. The
kinematics expressions are based on assuming small relative displacements and rotations
within the element. A single Gauss point is used to compute the strain energy and the ex-
pressions of rotations at the middle point are computed using a multiplicative decomposition
of the increment of rotation from one node to the other. Then, curvatures and strains are
obtained by assuming simple approximations for the derivative of the rotation tensor with
respect to the axial coordinate, evaluated at the middle point. Full analytical expressions
of the internal forces, inertia forces, stiffness, and mass matrices can be obtained, allowing
an easy implementation of the element. The element was implemented in the finite ele-
ment code Oofelie [30], which is being developed jointly between the University of Liège, the
Universidad Nacional del Litoral and the company Open Engineering sa.

Description of formulation in the Special Euclidean group. The kinematics of
mechanical systems are described using frame transformations, which are treated as elements
of the special Euclidean group SE(3). Brüls et al. [36] used this approach to simulate rigid
bodies. Generalizations to kinematic joints and beam elements were proposed by Sonneville
and Brüls [31] and Sonneville et al. [32]. The constraint equations and the internal and inertia
forces are naturally expressed in terms of unknowns evaluated in the material frame, and
hence, the tangent matrix depends on local relative motions only and remains constant under
rigid-body motions. By construction, the formulation is frame invariant. The equations of
motion take the form of second-order differential-algebraic equations on a Lie group and are
solved using a Lie group time integration scheme, the generalized-α method proposed by
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Brüls et al. [36].
In the beam formulation, a material frame is attached to each point of the neutral axis

of the beam, accounting for the position of the point and the orientation of the cross-section
at that point with respect to the inertial frame. A two-node element is used and the finite
element interpolation of the nodal frames is based on the exponential map of the special
Euclidean group SE(3). The resulting shape functions are helicoidal functions and the
coupling between rotations and translations they introduce yields a naturally locking-free
element.

Description of Spacar. Spacar is based on the generalized strain beam formulation
of Besseling [37] (http://www.utwente.nl/ctw/wa/software/spacar). A key point in this
formulation is the selection of generalized strains as discrete deformations that are invari-
ant for rigid-body motions of the element. The deformations are expressed as analytical
functions of the absolute nodal coordinates in a co-rotational framework. The deformation
functions include the specification of rigid body motions as displacements for which the
discrete deformations are zero. This avoids the shortcoming of standard co-rotational for-
mulations when describing rigid bodies. Flexible elements are handled by allowing non-zero
deformations and specifying constitutive relations between the discrete deformations and
stress-resultants. The derivation of the element stiffness matrix is based on a discretization
of the elastic line of a three-dimensional Timoshenko beam model in a co-rotational frame,
whereas the inertia properties are derived using a discretization of the elastic line in the
inertial frame of reference.

Geometric non-linearities arising from changes in geometry involving finite deflections and
pre- an post-buckling, are approximated by additional second-order terms in the expressions
for the deformations. These second-order terms are derived from a non-linear continuum
model of the elastic line in the co-rotational frame, including a finite strain description
proposed by Reissner [38]. A Taylor series expansion is used to express the non-linear
curvature and strain displacement equations into a second-order polynomial. Integrating
these equations over the length of the beam and using the second moment-area theorem
yields the additional second-order terms describing the geometric couplings among the axial
elongation, bending, and torsion deformations. A detailed description of the formulation is
found in Jonker et al. [33, 34].

5 Comparison of numerical predictions

In this section, the numerical predictions of the beam formulations described in sections 3
and 4 will be compared for the four benchmark problems listed in section 2. The first and
second columns of table 5 lists the name of the formulations and the symbol that will be
used to identify the numerical predictions of each code.

5.1 The Princeton beam experiment

In this correlation effort, the distributed weight of the beam was neglected. Unit vector b̄3,
see fig. 1, was left in the vertical orientation and the orientation of the tip load was rotated
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from 0 to 90 degrees. While this represents an approximation, its effect on the numerical
predictions is far smaller than the observed scatter in the experimental measurements.

Figures 6, 7, and 8 show the tip flapwise displacement, u2, chordwise displacement, u3,
and twist, φ, respectively. The experimental measurements (average © and error bars) for
each of the three loading cases, labeled P1, P2, and P3, respectively, are shown in the figures.
The numerical predictions of the eight codes presented in section 4 are also shown, using the
symbols listed in table 5. For reference, the linear solution given by eqs. (2) is also shown
in figs. 6 and 7 with dotted lines; the linear solution predicts a vanishing tip twist. The tip
rotation is the quantity most affected by nonlinear behavior. The eight predictions of the
maximum values of the tip rotation for load case P3 were averaged to find µφ = 0.06177 rad
and the coefficient of variation was σφ/µφ = 0.0076, where σφ is the standard deviation of
the distribution. Clearly, the predictions of the eight codes are in very close agreement.

Note that the Dowell and Traybar report [18] provides no measurements for loading
condition P2 at loading angles θ = 75 and 90 degrees and for loading condition P3 at loading
angles θ = 60, 75, and 90 degrees. A cursory look at fig. 6 reveals that those loading
cases would result in large flapwise deflections, which could generate permanent plastic
deformations in the beam. It is likely that the authors of the study did not want to damage
the test article and hence, did not acquire data at those loading conditions.

Figure 6: Tip flapwise displacement vs.
loading angle for three loading conditions.

Figure 7: Tip chordwise displacement vs.
loading angle for three loading conditions.

5.2 The four-bar mechanism

For this problem, the simulation was run for three complete revolutions of the crank, starting
from initial conditions at rest. At the beginning of the first revolution, high-frequency
oscillations are observed, but due to the algorithmic dissipation, these oscillations have
all but disappeared in the second revolution. The results presented in the sequel are the
numerical predictions for the third revolution. This problem was simulated for a total of 12
s using 3000 time steps of constant size ∆t = 4 ms.

The components of axial force, F1, and bending moment, M2, along unit vector b̄1 and
about unit vector b̄2, respectively, at the mid-span of bar 1, both resolved in the material
basis are depicted in figs. 9 and 10, respectively. The component of rotation of bar 2 at
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Figure 8: Tip twist vs. loading angle for three loading conditions.

point C, ϕ, is shown in fig. 11. At point C, the Euler angles (sequence 3-1-2) defining the
orientation of bar 2 in the inertial basis are computed and the first angle of the sequence is
presented in the figure. The relative rotation, θ, at the revolute joint at point D is depicted
in fig. 12. The predictions of the eight codes are shown using the symbols listed in table 5.

Figure 9: Axial force, F1, at the mid-span of
bar 1.

Figure 10: Bending moment, M2, at the
mid-span of bar 1.

The four figures show that the predictions of the eight codes are in excellent agreement
with each other. To quantify the quality of the agreement, the eight predictions of the
minimum values of the axial force shown in fig. 9 were averaged to find µF1

= - 5,966 N
and the coefficient of variation was σF1

/µF1
= 0.0043, where σF1

is the standard deviation
of the distribution. Clearly, the predictions of the eight codes are in very close agreement.
Similarly, the average of the eight maximum relative rotations at point D appearing in fig. 12
was found to be µθ = 1.579 rad and the corresponding coefficient of variation was σθ/µθ =
0.0032.

5.3 Lateral buckling of a thin beam

For this problem, the simulation was run for a total of 0.5 s. The beam quickly buckles
laterally, generating violent oscillations that continue after the crank has stopped in the 180
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Figure 11: Rotation, ϕ, at the tip of bar 2
at point C.

Figure 12: The relative rotation, θ, at the
revolute joint at point D.

degree position at time t = 0.4 s. Figures 13 and 14 show the component of displacement,
u2, along unit vector ı̄2 and angular velocity, ω1, about unit vector ı̄1, respectively, at the
beam’s mid-span. Figure 15 shows the component of transverse shear force, F3, along unit
vector ē3, resolved in the material basis, at the beam’s mid-span. The rotation, θ, at the
beam’s mid-span was also evaluated: the beam’s Euler angles (sequence 3-1-2) in the inertial
basis were computed and the second angle of the sequence is presented in fig. 16.

Figure 13: Displacement u2 at the beam’s
mid-span.

Figure 14: Angular velocity ω1 at the beam’s
mid-span.

Due to the highly oscillatory nature of the response, the time integration process is more
arduous. Yet, the agreement among the eight predictions remained excellent. For instance,
the eight predictions of the peaks in angular velocity at time t ≈ 0.25 s were averaged to
find µω1

= -27.11 rad/s and the coefficient of variation as σω1
/µω1

= 0.066.

5.4 Stability of a rotating shaft

The angular velocity of the shaft was prescribed according to eq. (3) and the response was
simulated for a total time of 2.5 s with a constant time step ∆t = 0.1 ms. The shaft’s
dynamic response is best illustrated by the trajectory of its mid-span point as viewed by
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Figure 15: Shear force F3 at the beam’s mid-
span.

Figure 16: Rotation θ at the beam’s mid-
span.

inertial and rotating observers, see figs 17 and 18, respectively. Because the shaft operates
above its critical speed for time t > 1.25 s, it becomes self-centering, explaining the circular
trajectory of its geometric center observed by a rotating observer, see fig. 18.

Figure 19 and 20 show the phase plot of shaft’s mid-span for the displacement and velocity
components along unit vectors ı̄2 and ı̄3, respectively. Here again, excellent agreement is
observed between the eight codes.

Figure 17: Trajectory of shaft’s mid-span
viewed by inertial observer.

Figure 18: Trajectory of shaft’s mid-span
viewed by a rotating observer.

6 Conclusions

This paper has described in details four benchmark problems for the validation of beam
models used in flexible multibody dynamics simulations. For each of the four benchmark
problems, the numerical predictions of eight independent codes have been presented and the
formulations on which these codes are based have been described succinctly.

Many of the formulations are related closely to the geometrically exact beam formulation
but they differ in their finite element implementation, time integration scheme, treatment of
the constraints and invariants, and solution techniques. The eight formulations have been
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Figure 19: The phase plot of shaft’s mid-
span for components along unit vector ı̄2.

Figure 20: The phase plot of shaft’s mid-
span for components along unit vectors ı̄3.

implemented by eight researchers independently. Yet, this paper shows that the predictions
obtained by the eight researchers are in very good agreement with each other and with
experimental results, when available.

Because the proposed benchmark problems have been described accurately and have
been run by eight different researchers successfully, they are expected to be use-
ful to other researchers for the validation of future beam element formulations. All
the numerical predictions presented in the paper are available in electronic format at
http://www.dymoresolutions.com/Benchmarks/Benchmarks.html.

The present paper has focused on the consistency of the predictions of eight different
codes. The efficiency of these codes, however, has not been assessed. Indeed, assessment
of computation efficiency would require the eight codes to be run on the same computer
hardware, or at least to evaluate their computational complexity. This difficult issue will
have to be addressed in the future to be able to assess both accuracy and efficiency of the
various formulations.

7 Compliance with Ethical Standards
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