W
it iy, "
—~T

e
2
iy

RE.PUBLIC@POLIMI
Research Publications at Politecnico di Milano

This is the accepted version of:

A. Montorfano, F. Piscaglia, A. Onorati

An Extension of the Dynamic Mesh Handling with Topological Changes for Les of ICE in
OpenFOAM

Paper presented at: SAE 2015 World Congress and Exhibition, Detroit, MI, USA, 21-23 April
2015, p. 1-15, 2015-01-0384

doi:10.4271/2015-01-0384

The final publication is available at https://doi.org/10.4271/2015-01-0384

When citing this work, cite the original published paper.

Permanent link to this version
http://hdl.handle.net/11311/978503

2015-01-0384

An extension of the dynamic mesh handling with
topological changes for LES of ICE in OpenFOAM-*

Copyright © SAE International

Abstract

The paper focuses on the development of a mesh mov-
ing method based on non-conformal topologically chang-
ing grids applied to the simulation of IC engines, where
the prescribed motion of piston and valves is accomplished
by rigidly translating the sub-domain representing the mov-
ing component. With respect to authors previous work, a
more robust and efficient algorithm to handle the connec-
tivity of non-conformal interfaces and a mesh-motion solver
supporting multiple layer addition/removal of cells, to de-
couple the time-step constraints of the mesh motion and
of the fluid dynamics, has been implemented as a C++ li-
brary to extend the already existing classes for dynamic
mesh handling of the finite-volume, open-source CFD code
OpenFOAM®. Other new features include automatic de-
composition of large multiple region domains to preserve
processors load balance with topological changes for par-
allel computations and additional tools for automatic pre-
processing and case setup. Finally, a transient solver for
compressible viscous flows based on the transient SIMPLE
algorithm has been implemented in order to enhance con-
servation of mass and energy for domains sliding over dy-
namically attached/detached boundaries. The advantages
are significant: mesh changes in terms of topology and
deformation are fully managed by the mesh motion solver
without remeshing, with a consequent reduction of the over-
all simulation time. Most important, the method allows to
preserve the quality of the mesh initially defined by the user
(skewness, non-orthogonality and aspect ratio) during the
whole engine cycle, favoring a faster convergence of the
solver and a very accurate fluid-dynamic solution. Used in
conjunction with LES turbulence modeling, the method al-
lows to decouple mesh motion by LES filter operation, since
the filter width is kept constant during the entire cycle. Val-
idation tests have been performed on the full-cycle simula-
tion of a Transparent Combustion Chamber (TCC) engine,
whose experimental data are available through the Engine
Combustion Network database (ECN). The implementation
of the described methodology is absolutely general, it works
on any number of processors and it can be applied to any
application where moving parts and non-conformal inter-
faces are involved.

A. Montorfano, F. Piscaglia, A. Onorati
Dipartimento di Energia, Politecnico di Milano, Italy

Introduction

The original aim of this work was to implement a paral-
lel, fully automatic mesh motion strategy for Large Eddy
Simulation (LES) of IC engines, where the LES filter op-
eration could be fully independent by the mesh changes
due to the point motion. The computational tool used is
the open-source CFD software OpenFOAM® (in the ver-
sion released by OpenCFD®), which has been extended by
the authors with SGS models, boundary conditions, pre-
and post-processing applications to perform LES of ICE
[1, 2,3, 4, 5, 6]. The implemented code was used to sim-
ulate the complex unsteady flow features in a engine-like
geometry, consisting of a flat-top cylinder head with a fixed,
axis-centered valve and a low-speed piston. A purely hex-
ahedral mesh having about 4.6 million elements was used
and mesh motion was based on a point-stretching concept
[1]. The followed procedure proved to be accurate both
in the prediction of average quantities and turbulence dy-
namics; on the other hand, when cell stretching (as well as
remeshing) is used for mesh motion, cell volume and shape
change. In particular, during cylinder compression:

- a reduction of the cell sizes Az leads to a lower dis-
cretization error, yielding an improved numerical accu-
racy;

- if the cutoff length A is tied to Az, mesh refinement will
also induce a decrease in A and make the LES SGS
model less influential on the results, since a larger part
of the exact solution is directly captured.

As stated in [7], a dynamic reduction of the LES filter size
requires to find an error estimate and a bound for the algo-
rithm, in order to guarantee a sufficient resolution of the grid
to resolve the main turbulent scales of the engine. Since
the geometry of the engine is dynamically changing and
the projection, the discretization and the modeling error are
present at the same time, it is difficult to determine whether
resolution of the turbulent scales improves with the reduc-
tion of the filter size during compression. At the same time,
it is quite natural to think that the solution at a time step is
correlated to the solution of the earlier time step; it is then

important that the mesh at the bottom dead center (BDC)
before starting compression has a sufficient resolution to
capture the main turbulent scales. This issue is even bigger
during the expansion phase, as cells are stretched, since
the grid resolution decreases unconditionally; to have suf-
ficient resolution at the BDC, the resulting mesh at the top
dead center (TDC) must be extremely fine, with strong con-
straints on the time step due to the CFL criterion. If remap-
ping over multiple meshes between different time steps is
adopted, the change of the LES filter size is even more diffi-
cult to handle and it is impossible to determine any criterion
for error estimation, that will result uncontrolled. Hence, the
choice of the pre-processing (mesh generation) and of the
mesh motion strategy represents a crucial aspect for solver
convergence and accuracy.

There is a wide range of examples about mesh handling of
IC engine geometries [8, 9, 10, 11, 12, 13, 14] in the existing
literature and also from the same authors’ research group
[15]. Most of these strategies use multiple grids, that are
sometimes generated before the fluid dynamics is solved
or automatically during the calculation. Despite algorithms
for automatic mesh generation were significantly improved
through the years and they represent reliable tools for mas-
sive CFD simulations, automatic generation of high quality
grids suitable for LES still remains a difficult task to accom-
plish: any even small loss of quality in the grid is paid in LES
in terms of an increased numerical viscosity, which affects
the quality of the results and the speed of convergence of
the solver. Also, mesh quality has direct influence on the
stability of the solution, unless strongly limited numerical
schemes are used [16, 17].

Among all the possible approaches, a strategy based on a
wide use of so called topology modifiers, namely:

- slidingInterface, to connect dynamically different
mesh regions through non conformal interfaces;

- layerAdditionRemoval, dynamic addition/removal of
layers of hexahedral cells during piston and valve mo-
tion;

- attachDetach of boundaries, to model the valve open-
ing and closure event;

has been chosen. During the simulation, a large part
of mesh points remains fixed while boundaries (piston,
valves) move; almost no cell deformation and remeshing
are present, therefore mesh quality away from the bound-
aries is fully preserved and it can still be controlled near
moving walls. The user is only asked to provide a single
mesh with the piston at Top Dead Center (TDC), which can
be generated both with commercial [?, 18] and by open-
source grid generators (i.e. snappyHexMesh, [19]); an ad-
hoc designed algorithm calculates the automatic mesh mo-
tion for the whole engine cycle, thus the case setup results
simplified. The advantages of such a technique are multi-
ple. First, this approach allows to preserve the initial mesh
quality (skewness, non-orthogonality and aspect ratio) dur-
ing the whole engine cycle (or, more in general, during all
the simulation), since grids at different time steps differs
only for layers of fully orthogonal hexahedral cells. As a con-

sequence, in LES it is possible to keep the filter cell size un-
changed during the whole engine cycle, favoring a very fast
convergence of the solution over a multi-block grid. Finally,
in terms of computational time, the technique is very effi-
cient since the mesh changes are triggered only locally and
the global morphology of the mesh is not recalculated dur-
ing the simulation. Also, a novel formulation of a transient
solver for compressible viscous flows based on a merged
PISO-SIMPLE algorithm is presented, in order to efficiently
enforce conservation of interface fluxes for domains slid-
ing over dynamically attached/detached boundaries. The
construction, activation and interaction of the mesh mod-
ifiers with the FV mesh is handled by the newly imple-
mented topoManager class, whose structure makes the use
of topology modifiers transparent to the developer, as new
point motion strategies based on topological changes are
written; in this way, the user can set up a large number
of different dynamic mesh cases very quickly with little or
no programming effort. The implementation presented in
this work is completely based on the mesh definition of
the OpenFOAM® version released by ESI-OpenCFD® [19],
hence it is different from others available on other distribu-
tions [20]. At the time this paper is written, the features im-
plemented and described in this work are missing in the of-
ficial release of the code available for download on the web-
site [19]. Thanks to the general and flexible implementation
of the class, the presented methodology can be applied to
the simulation of two- and four-stroke engines with moving
valves, as well as to many simulation involving mesh mo-
tion with topological changes. The Transparent Combustion
Chamber (TCC) engine, whose geometry and experimental
data are publicly available through the Engine Combustion
Network (ECN) database [21], represents a very good test
case to compare different CFD approaches for mesh man-
agement, compressible solvers and turbulence modeling.

Dynamic mesh strategy

The dynamic mesh handling presented relies on a combina-
tion of prescribed motion laws to apply to boundaries com-
bined with the use of topological changes. Fig. 1 shows in
detail how the topology modifiers are used for valve motion
and how cellSets/faceSet must be set. For each moving ob-
ject of the geometry (either piston or valve), the user must
define:

- alist of cells (ce1l1Set) that will be rigidly moved along a
given direction with a prescribed velocity

- one or multiple lists of faces (faceSets), where dynamic
layer addition/removal will be applied. For any given
faceSet, the algorithm runtime calculates the average
cell height of the cell layer (hexahedral or prismatic), to
check whether layer addition and removal must be trig-
gered. Cells in a deleted layer are merged into neigh-
boring cells, with physical variables in the resulting cell
being the volume-average of deleted and neighboring
cells; cells of added layers have a constant thickness
that is defined by a dictionary;

- one or multiple lists of faces (at least one per valve bank)
where attach/detach of the boundaries is applied.

In Fig. 1, the blue area represents the set of cells of a
valve that are moving according to a prescribed motion law
(lift profile); cells belonging to this cellset can be of any
kind (hex, tet, prism, hybrid) and they are surrounded in
the upper part by a layer of hexahedral cells. Additionally,
slidingInterface topology modifier [6, 22] is applied on
the sides of the cellset, because the static mesh of the
engine head and the sliding valve are connected by non-
conformal hybrid interfaces. A point motion strategy, based
on addition/removal of cell layers, is applied both in the
cylinder and in the valve region where uniform grid veloc-
ity of the moving boundaries is also set to the layers of cells
nearby, that act as a rigid body. The remaining mesh points
are fixed in space as the moving boundary is displaced: as
a consequence, the cell layer located between the moving
and the fixed points undergo a deformation (stretching or
compression) that changes its thickness. As the height be-
comes too high or too low, the deforming layer is split into
two parts or it is merged with the one right above. Threshold
thickness values for addition/removal of layers are specified
by the user.

N

S

e

R
S
N

DR

N

N
RN

exhValve-stem -- =~

X
g

walls - _ _

exhvalve-top _ - ----~

exhValve-side

cyllnderHeadQ

exhValve-bottom

liner

non-conformal interface
(slidingInterface)

Figure 1: Schematic view of moving mesh strategy for an engine
with vertical valves.

Layer addition/removal, a well-known strategy for mesh mo-
tion in IC engines [23], has been applied to piston and
valves. The underlying assumption for the mesh motion
technique presented in this work is that the cylinder (and
valve) region must be composed by fully-structured hexa-
hedra, or at least by extruded prisms; such a requirement is
however easy to achieve, at least in proximity of the piston.
On the other hand, there are no constraints related to the
piston shape, for a suitable set of translating cells can be
defined for any piston configuration (flat, convex, reentrant,
...). The algorithm distributed along with the base version
of OpenFOAM® has been enhanced to make it more robust
when inserted in complex meshes, and to improve its inter-
action with other topology modifiers. The insertion/deletion
of layers on valve surfaces has to be limited to a restricted
region around the valve axis, to reduce the number of cells
affected by topological changes. Therefore, a discontinuity

in mesh topology arises between the valve and the cylin-
der region, and it must be accounted for properly. This is
done with the slidingInterface mesh modifier, that allows
for a reversible coupling/decoupling of non-conformal mesh
interfaces. Implementation of a robust and effective de-
coupling procedure for the slidingInterface mesh mod-
ifier required a thorough rewriting of the related classes in
OpenFOAM® [19]. Finally, the overall topology of fluid vol-
ume changes as valves open/close, and a topological split
has to be performed to account for this effect. Topological
split is done by the attach-detach mesh modifier, that al-
lows for creating a solid boundary between two fluid mesh
regions. The point coordinates do not change during an
attach/detach operation, so the mesh quality is preserved.
Fig. 1 summarizes the type and number of topology modi-
fiers for an engine with vertical valves. The increased com-
plexity of the topological changes that have to be applied
is balanced by the fact that the largest part of mesh points
inside the cylinder do not move, as can be seen in Fig. 1.

PtrList<engineValve > Time List<polyMeshModifierDefinition*=>
fwMesh | valveBank | ‘ engineTime | ‘ enginePiston ‘ ‘ topoManager |
3 ¥ 7 4

N engineValves_ | engmeDB_/ /p\ston_ -~ ’topcl‘u‘lgr_
N =

- -

engineTopoMesh

fourStroke

Figure 2: Collaboration diagram for the engineTopoMesh class.

Organization of the mesh class

The required functionality for point motion and topologi-
cal changes have been included in the extensions of the
dynamicMesh class in the OpenFOAM® Technology and
they are used by engineTopoMesh, a new class developed
with expandability and modularity as primary requirements,
that contains and handles all dynamic features required
for the simulation of IC engines with topological changes.
engineTopoMesh includes a set of subclasses, each one
representing a different physical component (piston, valve,
etc) as shown in Fig. 2. In turn, each component is sup-
plied with all the information reqgired by the mesh motion
algorithm:

- piston: point motion is calculated according to
crankshaft speed, connecting rod length and stroke.
Layer addition/removal is performed on bowl surface;

- valves: point motion is calculated according to user-
specified valve lift table. Layer addition/removal is per-
formed on top and bottom surfaces. Sliding interfaces
connect valve and cylinder regions. Attach-detach of
boundaries simulates the valve opening and closing
events, whenever the lift falls below a specified value.

All topology modifiers are referenced by a separate class

sliding interface

master layer A/R
zone

only one cell between
master zone and
boundary

Figure 3: a) during layer addition/removal, newly inserted stick-out
faces are dynamically included into the face zone, preserving mesh
topology; b) layer removal is automatically deactivated when only
one layer of cells exists between the master face zone and a mesh
boundary.

topoManager, which handles their creation, activation and
update. This allows a high flexibility of geometry definition,
when different types of engines (e.g. two-stroke, canted
valves, etc.) are to be simulated.

Layer addition/removal

Although the layer addition/removal feature has been in-
cluded in OpenFOAM® since its earliest releases, some en-
hancements were required for its application to engine sim-
ulation. The main improvements regarded:

- enhancement of inter-processor communication for rel-
evant data for dynamic mesh, that are exchanged be-
tween different processors in case of parallel comput-
ing. These quantities include mean layer thickness and
addressing of the face sets used to add/remove layers;

- runtime update of face zones affected by layer A/R. If
a face zone extends perpendicularly to the master lay-
ering face zone (even through it), newly inserted stick-
out faces automatically are included into the face zone,
thus preserving its topology (see Fig. 3-a);

- checking for boundary proximity: dynamic removal of
cell layers is automatically deactivated, as only one
layer of cells between the master face zone and a
mesh boundary is left; in this way, deletion of bound-
ary faces and subsequent topological inconsistency
are prevented (see Fig. 3-b).

Sliding interface

A slidingInterface is a topology modifier that allows for
the dynamic stitching and splitting of mesh regions with dif-
ferent mesh structures (see Fig. 4), so that a reversible,
non-conformal interface can be created [24]. The sliding
interface coupling procedure generates a seamless joint
between the two involved surfaces, thus no particular nu-
merical technique is required to solve the equations across
the interface. In this aspect, slidingInterface differs
from AMI (Arbitrary Mesh Interface technique [25, 26], al-
ready available in the standard distribution of the code),
because in AMI fluid-dynamic coupling is achieved by in-
terpolation of cell fluxes among two topologically separated
mesh regions facing each other. The merging procedure
of slidingInterface can be reversed without any loss of
information to detach the interface, provided that all infor-
mation about the coupling process has been appropriately
stored. This part of the algorithm has been implemented by
the authors and it has been already presented in previous
works [6, 22, 27], according to the theory of Jasak [28].

master

slave

stick-out faces [
(master side)

* (slave side)

Figure 4: Point projection of slave patch (red) onto master. Solid
dots are master points (which are retained), hollow circles are slave
points added due to direct hits or intersections.

A further extension of the original theory [28] is proposed
here, in order to allow slidingInterface to work with non-
conformal interfaces presenting sharp corners (e.g. 90°)
and to improve its robustness with complex geometries. In
particular, the algorithm for the detection of the stickout
faces over two arbitrary-shaped non conformal interfaces
has been completely redesigned, to overcome some inher-
ent shortcomings of the original implementation and to as-
sign faces to the appropriate mesh region.

A stickout face shares one or more edges with the non-
conformal interface; because of this, it is involved in the
coupling procedure, as points are inserted or deleted on
its edges (see Fig. 4). In the original formulation, detection
of stickout faces is performed on a cell-face basis: starting
from a face belonging to master (or slave) interface, the al-
gorithm detects the owner cell and classifies the stick-out
faces as those sharing an edge with that face. As a con-
sequence, this procedure does have tight constraints about
the shape of the interfaces to couple:

stick-out faces

- the surface must be as smooth as possible (ideally
speaking, planar);

- on both sides, all cells adjacent to the surface must be
hexahedra or pyramids;

- an edge cannot belong to more than four faces.

In the original implementation, if the above requirements
are not fulfilled (e.g. when there is an unstructured meshes
on one side), the coupling algorithm might fail, since there
can be stick-out faces other than those belonging to the
master owner cell (see Fig. 5). To overcome this problem,
a new procedure based on a point-face seeking has been
developed for detection of stick-out faces.

|-
interfa p%

Figure 5: Stick-out faces of an unstructured mesh. They include
also faces that does not belong to owner cells.

stick-out faces

1

The algorithm consists of the following steps:

- a master (slave) face is selected;

- for all the points of the master (slave) face, all faces shar-
ing a point with the selected master (or slave) face and
are classified as stick-out faces.

The resulting novel algorithm for detection of stick-out faces
now has only one tight requirement: no points can be
shared by the master and the slave side. For this rea-
son, a pre-processing application (splitSharedPoints) to
split possibly shared points has been developed by the au-
thors, to fix meshes generated by mesh generators (either
commercial or open-source) that do no fulfill the above con-
straint. The new algorithm for detecting stick-out faces has
proven to be indispensable when complex non-conformal
interfaces need to be stitched.

An example of use of the algorithm is shown in Fig. 6:
the cylinder and the spark plug region of the TCC engine
are merged through non-conformal interfaces: in this way, a
perfectly structured mesh (cylinder region) can be merged
with a highly refined tetrahedral grid (spark plug), in order
to have a very high quality mesh.

A

s

£
N
<]

o
7
I

<IN
AT TS
o

SOOI
O
A

PR
KERX

%
e

22
‘P

X
0
/]

\

)7
A
7 e
o rrse
AVAY N SS] ¥
\SSAEE

RVAVA A e

5
Ava|

e
Ny
ZNE N
0 SFWA“&{VA'A

A
e

:Aﬁ VA% “

N <
WAASIAINA
g;?&%‘ﬁl‘u‘% Del

Sk
AL SO0

NS

<

i

e

static non-conformal interface

Figure 6: Example of a complex non-conformal interface achieved
by a sliding interface.

Attach/detach of boundaries

Attach/detach mesh modifier is applied to simulate the
valve closure event and it consists in a reversible inter-
face between two conformal mesh regions. It is used to
temporarily join or split different parts of the mesh start-
ing from a prescribed and arbitrary set of internal faces
(detachFaces), that will be used by the dynamic mesh
solver to be transformed into boundary walls. In ICE sim-
ulation, the attachDetach C++ class separates the in-
take/exhaust ports from the combustion chamber at the
valve closure (Fig. 7).

2 .‘

o -y

Figure 7: Attach/detach of boundaries: at valve closure, an internal
faceSet is converted into two walls dividing the domain into differ-
ent regions (a); boundaries are converted again into internal faces
when the valve is open (b).

The original version of the class, as released in the stan-
dard release of OpenFOAM®, calculates the face matching
between the two sides by implying that the point ordering is
the same; since this seldom happens in complex meshes
(like in IC engines), the original class has been extended
to calculate the face matching on the basis of point projec-
tion. The followed strategy results to be very similar to the
one employed for the sliding interface algorithm [6, 22, 27].
Despite the new version of algorithm results to be a slightly
slower, it has proven to be more robust and it succeeded in
all test cases performed so far.

Variable topology-driven time-stepping

Topological changes, being triggered in dependency of the
current mesh status, pose some limits on the maximum
time step size needed to guarantee topological consistency.
Using too a large temporal integration step may cause the
mesh handling algorithm to skip the point when a topologi-
cal changes would be triggered, hence leading to a wrong
mesh configuration. A typical example is when the piston
upward displacement in a single time step is larger than
the threshold value for dynamic layer removal. To avoid
problematic situations and to ensure dynamic mesh consis-
tency, adaptive topology-driven time stepping has been im-
plemented. The expected displacements for all the moving
components (piston, valves) Az’ are computed before they
are actually executed. As an example, for a piston moving
by a velocity u,, during the compression phase:

AZr/)iston =wuy - At (1)

If the predicted displacement is larger than the average
height of the cell layer to remove:
AZ;/)iston > Aerz::;lexr)

then the time step is recalculated as:
Atiim = Azigyer/Up 3)

In Eq. (2), Azpye is the layer removal threshold and Atiim
the maximum allowed time step. The multi-stepping on
topology modifiers implies a proper handling of the contri-
butions of the single step to the grid velocity vector on the
conservation equations for scalar quantities, as it will be ex-
plained further.

Compressible solver for dynamic mesh

A newly developed compressible dynamic solver used for
the simulation is coldTopoEngineFoam, which is an exten-
sion of the already existing transient solver for compress-
ible flows on dynamic meshes, with some modifications to
deal with multiple topological changes and improve conver-
gency. The fundamental equations governing compressible
flow inside a moving domain [29] are written as:

9 pdV+/ plu—up)-ndS=0 (4)
ot Jv S(8)
0
= pudV + pu(u—up) -ndS = fdv
ot Jv S(8) V()
()
0
= p(h+ K)dV + p(h+ K) (u —up) -ndS
ot Jy) s

(6)

—/ @—/ aVh-ndS = qdV
vy Ot S(t) v (t)

where u and p are the fluid velocity and density, h is the sen-
sible enthalpy, K is the kinetic energy and u; are the veloc-
ities the control volume boundaries move with. Despite the

formulation with moving boundaries looks very similar to the
formulation with a non-moving domain, solution of Eq. (4),
(5) and (6) requires particular care because of the term in-
cluding the relative advection velocity © — uy. In fact, when
they are discretized in a FV framework, advection veloci-
ties are substituted by cell face fluxes ¢; similarly, boundary
velocities u;, are replaced by cell face fluxes originated by
points motion, ¢;. Next paragraphs will focus on methods
for calculating ¢, in case of motion with or without topolog-
ical changes, and on a revised version of the solver algo-
rithm for the computation of compressible flows with topo-
logical changes.

Enforcement of continuity without
topological changes

As shown in [29], a cell mass source can appear in the mass
conservation equation as cell faces move, even if mesh
fluxes are inserted in the discretized equations:

. pAV
Am =T 7
=y (7)
To avoid this spurious source term (7), one must guarantee
that the Space Conservation Law (SCL) is fulfilled [30, 31].
SCL can be regarded as a continuity equation in case of a
zero fluid velocity:

g/dV—/m,~'ndS:() (8)
dt)y, 5

Discretization of Eq. (8) depends on the chosen temporal
integration scheme and it allows for calculating the mesh
motion flux (¢a) on the basis of the swept volume V; in the
simplest case of Euler implicit integration, the mesh motion
flux can be calculated as:

pum = (wp-m) Sy = Vg 9)

where V; = §V /At is the volume swept by a cell face in a
single time step. In case of a higher order scheme, a differ-
ent discrete equation for ¢, must be used. In OpenFOAM®,
the calculation of ¢»s according to the time discretization
scheme is done by the virtual function fvc: :meshPhi () by
the run-time selection of temporal discretization scheme.
For a cell face with a generic shape, the swept volume is
calculated as follows: first, the face is decomposed into sev-
eral triangles, one for each edge, that have as common ver-
tex the face centroid; then, the swept volume is calculated
for each triangle, as the difference between its new point
coordinates T and the old ones T°:

Vi=f(T—-T°) (10)

Since a face is stored as a list of point IDs, and not as a
list of point coordinates, Eq. (10) does hold as long as ev-
ery point maintains its own ID during the mesh change (i.e.,
in the case of point motion without topological changes).
When topological changes are triggered, points are renum-
bered and there is no correspondence between old and new
point IDs, so the correlation between 7" and T is no longer
valid. In this case, a different procedure has to be applied,
as outlined in the following paragraph.

Enforcement of continuity with topological
changes

Handling of mesh fluxes in case of topological changes is
done in different ways, depending on whether a cell face
is directly affected by a topology change (i.e. it is added
or deleted), or it is modified by point addition/removal, or it
simply changes its shape and not its definition. In the first
case, if a face is added during a topology modification (Fig.
8-a), its mesh flux must be zero. This is easily ensured by
explicitly setting the value of ¢, on newly created faces.
On the other hand, if a face is removed (Fig. 8-b), its mesh
flux does no longer exists. Continuity is thus enforced by
solving a modified Poisson equation, as it will be explained
later.

11 11

(a) (b) (c) (d)

Figure 8: Different cases of topological changes. a) Face insertion;
b) Face removal; c) Face does not topologically change, but its
vertices get renumbered; d) Face is transformed and a new vertex
is inserted.

new face __—— =/

new point

old face

ghost point

Figure 9: Handling of faces with inserted points. The new point is
projected onto the counterpart edge originating a ‘ghost’ point, and
the edge is split. Now both faces can be decomposed in the same
number of triangles. In case the new face has less point than the
old one, the ghost point is added on the new face instead.

If points are renumbered as a consequence of a topolog-
ical change, but the faces they belong to do not undergo
any substantial modification (Fig. 8-c), Eq. (10) can still be
applied. However, face triangle decomposition 7° must be

rewritten using the new point IDs, that are deduced using a
point-to-point map generated during the topological change.
Finally, if a face mantains its definition (i.e. it still exists after
the topological change), but points are added or removed
(as in Fig. 8-d), one must ensure that the new face is de-
composed in the same number of triangles as the old one.
This is achieved by adding vertexes on either the new or
the old face, depending on whether the new face has less
or more points than the original, as shown in Fig. 9. These
‘ghost’ points are inserted by splitting an existing edge, so
that the global shape of the face remains unchanged. The
coordinates of the ghost point is the result of a projection of
the corresponding vertex on the old (or new) face.

Finally, before solving the governing equations (4) and (5)
on the updated mesh, one must ensure that old values of w,
p and p still satisfy continuity when remapped onto the new
grid [16, 32]. In fact, the old velocity field u;, = u(x™,t")
might not be compliant with the continuity equation (Eq. (4))
once resampled onto the new mesh. Therefore, a modified
form of Poisson equation (Eq. (11)) is solved for a pressure
corrector peorr:

V2pcorr + Ait AV [P(mn+l,tn)u(mn+l,tn)] -0 (11)

where w(z"™,¢") and p(x""',t") denote the velocity
and density fields computed at the previous timestep but
remapped onto the new mesh. The differential equation
(11) must be completed with appropriate boundary condi-
tions. On solid walls they have to be of Neumann type
(Opcorr/On = 0), whereas on permeable walls a Dirichlet
boundary condition is applied (pcorr = 0). The pressure cor-
rection problem assumes therefore the following form:

v2pcorr + i V- [p(wn+l,tn)u(mn+1,tn)] =0
At (12)

o _ .
Peorr _ on solid boundaries

on

During intake and exhaust strokes there is at least one open
boundary, thus Eq. (12) usually poses no concerns upon
the existence and uniqueness of its solution. On the other
hand, a difficulty arises when both valves are closed: in
this case, Eq. (12) is solved separately for each subdomain
(cylinder, intake, exhaust). The cylinder region, however, is
delimited exclusively by solid walls, thus no Dirichlet-type
boundary conditions are applied and the elliptic problem
has no unique solution. To overcome this intrinsic difficulty,
a reference value of peorr is imposed at an arbitrary location
of the domain:

V2 poor + Ait V- [p(" ") u(@" ")) =0

Opcorr
on

Peorr = 0

=0 on solid walls (13)

Once solved for peorr, its gradient is then used to update the
velocity:

n n 1
Up41 = Uy — Z Ipvpcorr (14)

Egs. (11) and (14) are solved iteratively any time the
mesh changes, until convergence on pressure is reached.
Tests made on a simplified geometry have shown that
the (relative) continuity error can be kept below 10~®
[27]. Pressure correction applied after topological changes
(either layerAdditionRemoval, Or slidingInterface oOr
attachDetach) leads to an improvement in the solver per-
formance, as it is discussed in the following paragraph.

Enhanced pressure-energy coupling

In OpenFOAM®, the base transient solver for compressible
viscous flows is based on a merged PISO-SIMPLE algo-
rithm (PIMPLE), which is represented in Fig. 10-a. The
outer loop is analogous to the pressure-correction algorithm
of the steady SIMPLE solver, whereas the inner loop solves
iteratively the equation of pressure. At the beginning of
each timestep, the mesh is updated according to the pis-
ton and valve motion. As the mesh is updated, face fluxes
are recalculated including the effect of the mesh motion, as
described in the previous paragraph; finally, a remapping
of the newly calculated quantities is performed, the velocity
correction equation (11) is solved and the iteration for the
solution of the governing equations can start.

" update mesh
avarce F,mpme o
in time
correct u w/ Vpg,,,

solve for k, &

solve for u solve for h

solve for p

inner loop

correct u

(a) Old algorithm

advance update mesh
in time F compute ¢y solve for h
correct u w/ Vpg,,

inner loop

solve for p
solve for k, & correct u

(b) New algorithm

Figure 10: Original formulation (a) and the novel implementation (b)
of the formulation of the PIMPLE algorithm. Also the equation for
flux correction (performed after the update of the mesh) is different
between the two versions.

According to the original formulation of the PIMPLE algo-
rithm (Fig. 10-a), the inner loop is rarely executed more
than once (in transient-SIMPLE mode), since the outer loop
is deemed sufficient to achieve pressure-velocity coupling.

The user can however choose to perform only one outer
iteration: in this case two inner iterations are mandatory.
This is the PISO algorithm, which is limited by the Courant-
Friedrichs-Lewy criterion (CFL < 1) [33]. Under-relaxation
must be applied on solved quantities to avoid numerical
overshoots during the outer iteration. Values of relaxation
factors range usually from 0.7 (for velocity) to 0.3 (for pres-
sure). As shown in Fig. 10-b, the PIMPLE solver has been
modified to achieve a stronger coupling between pressure
and energy: energy equation is now solved together with
mass conservation into the inner loop to help global con-
vergence (pressure and temperature are strongly linked in
compressible flows). For the same reason, several itera-
tions of the inner loop are performed for each outer itera-
tion. Moreover, the solution of turbulence-related quantities
(k and ¢, k and w, etc.) is done every outer iteration, to
account for strong changes in velocity field that might occur
inside the outer loop, especially during the first timesteps or
at the opening and closure of the valves. Despite solving
the two additional equations of turbulence for each outer
loop increases the computational effort of the single outer
iteration, it favors for a faster convergence of the solution.
In Fig. 11 a sample convergence history within a single
timestep at 90° CA is reported for the three-dimensional
simulation of the TCC engine. The graph shows the initial
values of the normalized residual on pressure equation ver-
sus the number of outer iterations for a single timestep. The
new algorithm reaches a specified tolerance (say 10™%) in
nearly half the number of outer iterations with respect to the
previous scheme. As a consequence, the wallclock time for

FETTTT MR

1 vyl

L

norm. residual
_ —_
o o
ul

L1y

0 10 20 30 40 50

outer iterations [-]

Figure 11: Numerical convergence of different implementations of
the PIMPLE loop: comparison of pressure residuals between the
old (- - -) and the new (—) algorithm versus the number of outer
iterations within a single timestep.

the timestep results to be significantly lower. It is important
to note that the walltime saving is not linear with the num-
ber of outer iterations: the outer iteration of the new solver
is more expensive, since it includes at least two inner iter-
ations. For the timestep studied in Fig. 11, the speedup is
about 40%. Thanks to the stronger coupling between en-
ergy and pressure, high under-relaxation factors (up to 0.9)
can be set, thus limiting the apparent overhead due to an
increased number of inner iterations. Despite the modified
solver is presented together with a specified mesh motion
strategy, its formulation is fully general and compatible with
any mesh motion strategy adopted.

e fesaa Y = S e
e immmani,
A) f

!

av

Tk

translating
~——cells

p [Pa]

TK]

3

— — — Theory.
Calculated
2r 4

25

15 R

1r i

05 R

0 n .
-200 -150 -100 -50 0 50
Crank-angle [deg]

800

— — — Theory
Calculated

700
600

0 i i i i
-200 -150 -100 -5 100 150 200

0 0 50
Crank-angle [deg]

Figure 12: Left) Mesh setup for the basic test cases; six layers of cells attached to the bottom boundary move rigidly with it; Right) code validation:
comparison between theoretical and simulated pressure and temperature during a single compression cycle. Top: pressure vs. crank-angle;

bottom: absolute temperature vs. crank-angle.

Validation and testing

Conservation of physical properties: single
cylinder test case

The basic validation of conservativeness of the new solver
with respect to momentum, mass and energy has been
done on a simple test-case represented by adiabatic com-
pression within a closed volume with topological changes
(dynamic mesh layering); the geometry is represented in
Fig. 12. Cylinder diameter is 84 mm the height is 100 mm.
The volume has been discretized by a fully structured hexa-
hedral mesh with 225000 elements and the lower face has
been imposed an harmonic motion with an amplitude of 90
mm and a frequency of 33.33 Hz; the geometric compres-
sion ratio is 10. Six layers of cells have been selected to
move rigidly with the lower boundary, as shown in Fig. 12;
layerAdditionRemoval is applied on the layer of cells just
above, which is stretched during piston motion; these cells
are removed during compression when their thickness is
lower than a threshold value defined by the user (0.5 mm
in the example); conversely, single layers of cells are added
during expansion, as the cell thickness is higher of a cer-
tain threshold. Ambient temperature and pressure were
set as initial conditions, since the flow field in the cylinder
was initially at rest; walls were adiabatic. The simulation
was carried out by using a standard k — ¢ RANS turbulence
model, since the aim was to verify the solver performance
(in terms of convergence and mass conservation across
the cell region where addition or removal of cell layers oc-
curred), rather than providing an accurate description of the
flow field. Average values of pressure and temperature in-
side the cylinder were compared against the theoretical law
of adiabatic compression for a perfect gas:

pV* = const (15)

where k = ¢, /¢, is the ratio of specific heats. Results are
reported in Fig. 12: as it can be easily seen, there is al-
most no difference between the expected theoretical values
and the ones obtained from the simulation; relative error is

lower than 0.3% for pressure and lower than 0.5% for tem-
perature. Total mass inside the cylinder is conserved with
an error lower than 1078,

The TCC engine: case description,
simulation setup and preliminary results

The Transparent Combustion Chamber optical engine con-
figuration simulated in this section was set up at the Uni-
versity of Michigan [21] in order to gather a database of
experimental data to be used to validate CFD models. The
test configuration is characterized by a single-cylinder setup
with a pancake-shaped head and two vertical valves, oper-
ated by a camshaft. Valve lift profiles are reported in Fig.
13. The engine is operating at motored conditions and in-
take and exhaust ducts are connected with plenums in order
to damp pressure oscillations. All relevant engine data are
reported in Tab. 1 [34].

Table 1: Geometrical features and valve timing for the TCC engine
[21].

Bore 92 mm
Stroke 86 mm
Connecting rod length 234.95 mm
TDC clearance height 9.50 mm

Geometric compression ratio 10
Engine speed 800 rpm

The engine has optical access to the combustion cham-
ber to allow for flow field measurements using non-intrusive
techniques. In particular, Abraham et al. [34], used PIV to
measure the instantaneous flow field inside the combustion
chamber using a laser sheet to illuminate the seeded flow
orthogonal to the X- axis and located on the cylinder mid
section. In addition to detailed PIV, pressure transducers
were installed at the valve ports to measure pressure pulses

10 ‘ ‘

Bl N N o]
E) '\ !
é ') Y SRR W A v
= v
é-’ 4 -t feon Xl R Vol
g v
2 Froomia R
\ ‘
0 \ \
0 100 200 300 400 500 600 700

CA-deg

Figure 13: Valve lift diagram for the Transparent Combustion Cham-
ber (TCC) engine. — exhaust valve; - - - intake valve.

due to the gas exchange process. The ambient conditions
during the experimental tests were also monitored and their
mean values are reported in Tab. 2 [35]. Flow field imaging
from PIV was available inside the combustion chamber ev-
ery 5° CA for 60 consecutive cycles. Datasets are divided in
two groups: ‘low’ and ‘high’ resolution measurements. The
former has a spatial resolution of 2.93 mm; the latter, near
the spark plug, has a spatial resolution of 0.80 mm. Both
series of samples were taken simultaneously.

Table 2: Relevant ambient conditions during experimental mea-
surements (average values)

Cylinder surface temperature 449 °C
Air temperature at intake port 456 °C
Pressure at intake plenum inlet 95.0 kPa
Intake port pressure 94.6 kPa
Exhaust port pressure 101.5 kPa
Pressure at exhaust plenum outlet | 101.4 kPa

To compare measured velocities with simulation results, ex-
perimental data sets have been ensemble-averaged by the
authors to extract mean and RMS velocities. The point co-
ordinates upon which PIV data are located have been used
to construct a Delaunay triangulation; this allowed to gener-
ate a series of VTK files [36] that can be directly compared
with the simulation results, as shown in Fig. 14 for CA = 55°
ATDC. Fig. 14 shows also the approximate locations of PIV
measurement windows for both ‘high’ and ‘low’ resolution
data, that are plotted on the same image to have a more
accurate snapshot of local velocity.

Automatic decomposition with topological
changes and load balancing

In OpenFOAM® parallelism is implemented by the so-called
domain decomposition technique: the whole mesh is di-
vided into several sub-domains, each assigned to a sepa-
rate process. Communication between sub-domains, that
is carried out by specific boundary conditions based on
the MPI protocol, ensures physical consistency disregard-
ing the specific equations and models implemented in the
solver. Insertion of topology modifiers in a decomposed

10

o
®

60

LN
o

Hi-res PIV
(maximum window)

N
o

\H\HMHHHHMHHHMH <

@

Low-res PIV
(maximum window)

Figure 14: Location of the PIV measurement windows

mesh is straightforward, provided that sufficient care is
taken about the decomposition strategy, to comply with
some restrictions to make the topology modifiers work in
parallel [6, 22]. Since topology modifiers change the ad-
dressing and definition of faces in the local mesh, topology
must be synchronized over inter-processor boundaries. Al-
ternatively, another way to proceed is to ensure during de-
composition that pair of patches defining the topology mod-
ifiers are contained in one single sub-domain and that no
inter-processor boundaries can lie on the interface itself. An
extensive work has been done to allow automatic decompo-
sition of the domains, including:

- extensions of the capabilities of the meshTools class,
to automatically extract cellSets and faceSets from
closed volumes and surfaces provided in the stereo-
lithography (STL) format, in order to easily identify
cellSets and faceSets needed by the topological
modifiers in a complex mesh;

- the algorithm for automatic domain decomposition in
the application decomposePar has been extended to
handle multiple topology modifiers in the mesh, by con-
sidering the inter-dependencies between them. Since
the implemented technique is based on cell address-
ing rather than on the mesh topology, the load balance
between processors results to be improved.

Simulation strategy, mesh structure and
preliminary results

The computational domain simulated includes the in-
cylinder region, ports, runners, and plenums. The mesh
topology is shown in Fig. 15 and 16. As described in the
previous paragraphs, the dynamic mesh algorithm poses
strong constraints on the mesh morphology, that has to be
fully structured in the regions where layer addition/removal
is applied, namely the in-cylinder region and the valve
seats. Mesh topology of the inlet and outlet ducts is largely
made of hexahedra, that represent a very good solution for

processor n. [-]
6

0 7

Figure 15: Left: mesh topology and definition of the sets rigidly moving during the simulation. Piston cells (yellow), exhaust (red) and intake
(blue) valve cells are sliding through internal non-conformal mesh interfaces. Right: the implemented algorithm for domain decomposition is able
to decompose the mesh on multiple processors preserving a good load balancing despite the constraints due to the presence of topological

changes.

strongly oriented flows. Keeping a structured mesh near the
valve stems is however quite complex, so hexahedra have
been replaced by tetrahedra up to a few centimeters above
the valve seat. In the unstructured tetrahedral region, near-
wall mesh is composed by thin prisms generated by extru-
sion of the surface triangular mesh, to allow the use of wall
functions for turbulent flow quantities. Both the valve seat
and the cylinder regions are fully structured: details of the
internal mesh is reported on Fig. 15. A non-conformal in-
terface (slidingInterface) has been used to connect the
spark plug region with the cylinder region. Significant ef-
forts have been made to reduce the overall number of cells,
without degrading the quality: a limited number of cells fa-
vors faster simulations, which is a very important aspect if
several engine cycles must be simulated to gather statistical
information on the resolved turbulence.

Figure 16: Computational domain for VLES of the TCC engine [21].

As shown in Fig. 15, the grid is oriented as the flow near
the valve seats, in order to reduce the non-orthogonality

11

error and to not limit the numerical schemes for the dis-
cretization of the laplacian operator [16, 17]. Unstructured
tets have been used for regions near the upper part of
the valve stem; plenum chambers have been mainly dis-
cretized with hexahedral cells, with the exception of the
upper part, where another unstructured region has been
used for simplicity. However, flow velocities are expected
to be small near the plenum inlet/outlet and to have little
influence on the cylinder flow. The resulting mesh is there-
fore hybrid. The overall number of cells is almost 1 million
at Top Dead Center (TDC). The total number will increase
while the piston will move towards the Bottom Dead Cen-
ter (BDC) reaching a figure of about 1.8 million cells, since
layers will be added on the top of the piston. The compress-
ible solver and the mesh motion strategy just described
have been used together with the Dynamic Length Reso-
lution Model (DLRM) [?], a two-equation hybrid RANS/LES
eddy viscosity model. As described in [?], the main idea
behind DLRM is to retain the robust and accurate formu-
lation of the RANS model in the near wall regions and in
the free-stream region where the mesh resolution is not
sufficiently high for the direct solution of the main turbu-
lent scales and to resolve turbulent scales in the remain-
ing cells. The solver coldTopoEngineFoam for time-resolved
and pseudo-transient simulations of compressible turbulent
flows with topological changes was used; the solver, devel-
oped by the authors, is based on the theory already de-
scribed in the previous paragraphs. Second-order central
differencing schemes in space for advection and diffusion
were blended with linear-upwind schemes to stabilize so-
lutions while maintaining second-order behavior [37]. The
schemes applied result to be fully conservative and since
the coefficients are always positive they are unconditionally
bounded; also, they satisfy the transportiveness require-
ment for large values of local (cell) Peclet numbers. Time-
marching was implicit, with the time derivative being dis-
cretized by a second-order backward approximation. The
simulation time started from 450° ATDCE; the initial value
of the cylinder pressure was set to the ambient value. At
the time the paper is written, less than two full engine cy-
cles of the TCC engine with DLRM turbulence model ran;
for this reason, it is impossible to perform any statistical

T [X]
320

Tho [kg/m3]
103

—1.02

(@)

(b)

(©

Figure 17: Instantaneous flow fields calculated at the first cycle for CA = 450° ATDCE. Initial conditions in the simulation were set with flow at rest;
(a) velocity, (b) temperature, (c) density. Dashed and dash-dot lines represent respectively the low and high-resolution PIV measurement windows

[21].

T [K]
320

(@)

(b)

rho [kg/m3]
1.03

—1.02

—1.01

(©

Figure 18: Instantaneous flow fields calculated at the first cycle for CA = 540° ATDCE. Initial conditions in the simulation were set with flow at rest;
(a) velocity, (b) temperature, (c) density. Dashed and dash-dot lines represent respectively the low and high-resolution PIV measurement windows

[21].

analysis and comparison of the engine flow with the ex-
perimental data available. On the other hand, coherently
to the original purpose of this paper, that was to present
a novel mesh motion technique and a compressible solver,
only some significant flow features will be highlighted, de-
ferring the complete statistical analysis to a future work.
In particular, some early results are reported to prove the
consistency, the stability and the convergence of the solu-
tion and in order to prove that the proposed method for dy-
namic mesh handling ensure mass and energy conserva-
tion through the non-conformal moving interfaces and that
it is robust and computationally efficient. In Fig. 17 and 18,
the instantaneous velocity, temperature and density fields at
450° and 540° ATDCE are reported. As already mentioned,
fields are not temporally averaged, since less than two cy-
cles ran at the time this paper is written, and the number of
samples would have been too small for any flow statistics
to be meaningful. Hence, any comparison between time-
resolved computed fields and time-averaged experimental
fields has been omitted for it could have possibly led to mis-
leading conclusions. At the same time, it can be noted that
all fields are smooth across the non-conformal interfaces
and no scattering is present: this indicates that continu-
ity and energy are properly enforced across the topological
changes.

Conclusions and future work

A mesh motion technique based on moving non-conformal
interfaces has been presented, together with an improved
implementation of an unsteady solver for compressible
flows. Solver features include a different formulation of the

12

equation for pressure correction and a stronger coupling be-
tween momentum and energy, that ensure an improved per-
formance if compared to the traditional formulation. The
presented solver structure is general for all the dynamic
solvers for compressible reacting flows (independently by
the mesh motion strategy adopted) and represents the base
of the current and future applications developed by the au-
thors. The standard implementation of slidingInterface
has been deeply modified to allow for restore the original
(split) mesh configuration after the initial coupling, without
any loss of quality and it can be used to simulate partially
overlapping interfaces with relative motion. The merging al-
gorithm has been strengthened to correctly handle unstruc-
tured meshes, non-manifold patches and shared points be-
tween the sides of the non-conformal interface; thanks to
these features, it is possible to stitch mesh regions in com-
plex cases, such as unstructured grids, sharp corners, pro-
gressive refinement boxes. The layerAdditionRemoval
class has been improved in its parallel operation, in or-
der to deal with complex domain decompositions and avoid
clashes with unstructured regions or mesh boundaries. An
adaptive time-stepping procedure has been implemented
in the dynamicFvMeshClass to ensure the mesh validity at
any time and avoid geometrical inconsistencies (e.g. neg-
ative volume cells). The attachDetach class has been re-
vised too, by implementing a geometric point matching al-
gorithm that makes it more robust when included in com-
plex meshes. Thanks to the completely redesigned class
structure, the handling of mesh motion results significantly
simplified: the construction, activation and interaction of the
mesh modifiers with the FV mesh is handled by the new
topoManager class; the structure of a topoManager object

is dynamic and makes the use of topology modifiers trans-
parent to the developer, as new point motion strategies
based on topological changes are written. The Transparent
Combustion Engine (TCC) [21] has been used to show an
example of operation of the mesh motion with topological
changes and of the solver performance. When applied to
LES of compressible flows with moving mesh, the method
looks particularly interesting, since it allows SGS filter op-
eration to be fully independent by the mesh changes: as
a consequence, it will be possible to study the effective-
ness of the turbulence model when applied to moving grids.
Moreover, it is shown how the approach is able to preserve
the initial mesh quality during the all engine cycle, since
grids at different time steps differs only for layers of fully
orthogonal hexahedral cells. There is a wide range of ap-
plications where this methodology can be applied: the sim-
ulation of two-stroke engines and four stroke engines with
canted valves, as well for the simulation of injector nozzles,
the non-uniform corrosion of solid propellants for aerospace
applications and on rotating machines. The present imple-
mentation is completely based on the mesh definition of the
OpenFOAM® version released by ESI-OpenCFD®.

Contact Information

Andrea Montorfano, PhD

Dipartimento di Energia, Politecnico di Milano
via Lambruschini 4a, 20156 Milano, ITALY
E-mail: andrea.montorfano@polimi.it

Federico Piscaglia, PhD

Dipartimento di Energia, Politecnico di Milano
via Lambruschini 4a, 20156 Milano, ITALY
E-mail: federico.piscaglia@polimi.it

Acknowledgments

All the simulations presented in this paper were running
on Blues, high-performance computing cluster operated by
the Laboratory Computing Resource Center (LCRC) at Ar-
gonne National Laboratory (ANL). Authors gratefully ac-
knowledge ANL for the computing resources made avail-
able within the PETSc-Foam project.

References

[1] A. Montorfano, F. Piscaglia, and A. Onorati, “A LES
Study on the Evolution of Turbulent Structures in
Moving Engine Geometries by an Open-Source CFD
Code,” SAE Technical Paper 2014-01-1147, 2014.

[2] F. Piscaglia, A. Montorfano, and A. Onorati, “De-
velopment of a Non-Reflecting Boundary Condition
for Multidimensional Nonlinear Duct Acoustic Com-
putation,” Journal of Sound and Vibration, vol. 332,
no. 4, pp. 922-935, 2013, http://dx.doi.org/10.1016/j.
jsv.2012.09.030.

[3] F. Piscaglia, A. Montorfano, and A. Onorati, “Improving
the Simulation of the Acoustic Performance of Com-
plex Silencers for ICE by a Multi-Dimensional Non-

13

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

Linear Approach,” SAE Int. J. Engines, vol. 2, no. 5,
pp. 633-648, 2012.

F. Piscaglia, A. Montorfano, A. Onorati, and F. Bru-
siani, “Boundary Conditions and SGS Models for LES
of Wall-Bounded Separated Flows: An Application to
Engine-Like Geometries,” Oil Gas Sci. Technol. - Rev.
IFP Energies nouvelles, vol. 69, no. 1, pp. 11-27,
2014, http://dx.doi.org/10.2516/0gst/2013143.

F. Piscaglia, A. Montorfano, and A. Onorati, “To-
wards the LES Simulation of IC Engines with Parallel
Topologically Changing Meshes,” SAE Int. J. Engines,
vol. 6, no. 2, pp. 926—940, 2013, http://dx.doi.org/10.
4271/2013-01-1096.

F. Piscaglia, A. Montorfano, and A. Onorati, “Develop-
ment of Fully-Automatic Parallel Algorithms for Mesh
Handling in the OpenFOAM-2.2.x Technology,” SAE
Technical Paper 2013-24-0027, 2013, http://dx.doi.org/
10.4271/2013-24-0027.

P. Sagaut, Large-Eddy Simulation for Incompressible
Flows: an Introduction, ser. Scientific computation.
Springer-Verlag, 2006.

M. Brewer, L. Diachin, P. Knupp, T. Leurent, and
D. Melander, “The mesquite mesh quality improvement
toolkit,” in 12th International Meshing Roundtable,
Sandia National Laboratories report SAND 2003-
3030P, Sept. 2003.

A. D. Gosman, “State of the art of multi-dimensional
modeling of engine reacting flows,” Oil and Gas Sci-
ence and Technology, vol. 54, no. 2, 1999.

N. Sinha, P. Cavallo, R. Lee, A. Hosangadi, D. C. Ken-
zakowski, S. Dash, H. Affes, and D. Chu, “Novel cfd
techniques for in-cylinder flows on tetrahedral grids,”
SAE Paper n. 980138, 1998.

P. Senecal, K. Richards, E. Pomraning, and T. e. a.
Yang, “A new parallel cut-cell cartesian cfd code for
rapid grid generation applied to in-cylinder diesel en-
gine simulations,” SAE Technical Paper 2007-01-0159,
2007.

H. Si, J. Fuhrmann, and K. Gartner, “Boundary con-
forming delaunay mesh generation,” Comput. Math.
Phys., vol. 50, pp. 38-53, 2010.

K. Stapf, S. Menon, D. Schmidt, M. Rieb, and M. Sens,
“Charge motion and mixture formation analysis of a
disi engine based on an adaptive parallel mesh ap-
proach,” SAE Technical Paper 2014-01-1136, 2014.

S. Menon and D. P. Schmidt, “Conservative inter-
polation on unstructured polyhedral meshes: An
extension of the supermesh approach to cell-centered
finite-volume variables,” Computer Methods in Applied
Mechanics and Engineering, vol. 200, no. 4144, pp.
2797 — 2804, 2011. http://www.sciencedirect.com/
science/article/pii/S0045782511001666

http://dx.doi.org/10.1016/j.jsv.2012.09.030.
http://dx.doi.org/10.1016/j.jsv.2012.09.030.
http://dx.doi.org/10.2516/ogst/2013143
http://dx.doi.org/10.4271/2013-01-1096
http://dx.doi.org/10.4271/2013-01-1096
http://dx.doi.org/10.4271/2013-24-0027
http://dx.doi.org/10.4271/2013-24-0027
http://www.sciencedirect.com/science/article/pii/S0045782511001666
http://www.sciencedirect.com/science/article/pii/S0045782511001666

[15] T. Lucchini, M. Fiocco, R. Torelli, and G. D’Errico, “Au-
tomatic Mesh Generation for Full-Cycle CFD Modeling
of IC Engines: Application to the TCC Test Case,” SAE
Technical Paper 2014-01-1131, 2014.

[16] H. Jasak, “Error analysis and estimation in the finite
volume method with applications to fluid flows,” Ph.D.
dissertation, Imperial College, University of London,
1996.

[17] F. Juretic and A. D. Gosman, “Error analysis of the
finite-volume method with respect to mesh type,” Nu-
merical heat transfer, part B: fundamentals, vol. 57, pp.
414439, 2010.

[18] ICEM CFD v15 User Manual, ANSYS Inc.
[19] The OpenFOAMP® Foundation. www.openfoam.com

[20] The Extend-Project, Community-driven Releases of
OpenFOAM®. http://www.extend-project.de/

[21] Engine Combustion Network, “TCC-Il CFD Input
Dataset,” 2013. http://www.sandia.gov/ecn/engines/
engineFlows/TCCEngine.php

[22] F. Piscaglia, A. Montorfano, and A. Onorati, “De-
velopment of Fully-Automatic Parallel Algorithms for
Mesh Handling in the OpenFOAM-2.2.x Technology,’
in International Multidimensional Engine Modeling
User’s Group Meeting 2013, The Detroit Downtown
Courtyard by Marriott Hotel, Detroit, MI (USA), April
14th 2013, https://imem.cray.com/2013/Meeting-2013/
12-Piscaglia-Milano.pdf.

[23] A. Amsden, P. O’Rourke, and T. Butler, KIVA-IIl: A
Computer Program for Chemically Reactive Flows with
Sprays. LA 11560-MS, Los Alamos National Labora-
tory, 1989.

[24] E. L. Blades and D. L. Marcum, “A sliding interface
method for unsteady unstructured flow simulations,”
International Journal for Numerical Methods in Fluids,
vol. 53, no. 3, pp. 507-529, 2007. http://dx.doi.org/10.
1002/fld.1296

[25] P. Farrell and J. Maddison, “Conservative interpolation
between volume meshes by local galerkin projec-
tion,” Computer Methods in Applied Mechanics and
Engineering, vol. 200, no. 14, pp. 89 — 100, 2011.
http://dx.doi.org/10.1016/j.cma.2010.07.015

[26] P. Farrell, M. Piggott, C. Pain, G. Gorman, and C. Wil-
son, “Conservative interpolation between unstructured
meshes via supermesh construction,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 198,
no. 33-36, pp. 2632—-2642, 2009.

[27] F. Piscaglia, A. Montorfano, and A. Onorati, “A Mov-
ing Mesh Strategy to Perform Adaptive Large Eddy
Simulation of IC Engines in OpenFOAM,” in In-
ternational Multidimensional Engine Modeling User’s
Group Meeting 2014, The Detroit Downtown Court-
yard by Marriott Hotel, Detroit, MI (USA), April
7th 2014, https://imem.cray.com/2014/Meeting-2014/
9-Piscaglia-Milano-IMEM2014.pdf.

14

[28] H. Jasak and Z. Tukovic, “Automatic Mesh Motion for
the Unstructured Finite Volume Method,” Transactions
of FAMENA, vol. 30, no. 2, pp. 1-18, 2007.

[29] J. H. Ferziger and M. Peri¢, Computational Methods
for Fluid Dynamics, 3rd ed. Springer, 2002.

[30] P. Thomas, “Geometric conservation law and its ap-
plication to flow computations on moving grids.” AIAA
fournal, vol. 17, no. 10, pp. 1030-1037, 1979, cited
By (since 1996)511. http://www.scopus.com/inward/
record.url?eid=2-s2.0-0018529022&partner|D=40&
md5=e481b20ff53d71ba29cccb6cabb09bas

[31] H. Guillard and C. Farhat, “On the significance of the
grometric conservation law for flow ccomputation on
moving meshes,” Computer Methods in Applied Me-
chanics and Engineering, vol. 190, pp. 1467—1482,
2000.

[32] M. Brenk, H. Bungartz, M. Mehl, I. Muntean, T. Neckel,
and T. Weinzierl, “Numerical simulation of particle
transport in a drift ratchet,” SIAM Journal on Scientific
Computing, vol. 30, no. 6, pp. 2777-2798, 2008.
http://dx.doi.org/10.1137/070692212

[33] H. K. Versteeg and W. Malalasekera, An Introduction to
Computational Fluid Dynamics. Prentice Hall College
Div, 2nd edition, 2007.

[34] P. Abraham, D. Reuss, and V. Sick, “High-speed
particle image velocimetry study of in-cylinder flows
with improved dynamic range,” SAE technical Paper
2013-01-0542, 2013. 10.4271/2013-01-0542

[35] P. Abraham, K. Liu, D. Haworth, D. Reuss, and V. Sick,
“Evaluating large-eddy simulation (LES) and high-
speed particle image velocimetry (PIV) with phase-
invariant proper orthogonal decomposition (POD),” Oil
Gas Sci. Technol. Rev. IFP Energies nouvelles,
vol. 69, pp. 41-59, 2014. 10.2516/0gst/2013126

[36] VTK: the visualization toolkit.
/lwww.vtk.org/

Kitware Inc. http:

[37]1 H. Weller, “Controlling the computational modes
of the arbitrarily structured C grid,” Monthly Weather
Review, vol. 140, pp. 3220-3234, 2012. http://journals.
ametsoc.org/doi/pdf/10.1175/MWR-D-11-00221.1

www.openfoam.com
http://www.extend-project.de/
http://www.sandia.gov/ecn/engines/engineFlows/TCCEngine.php
http://www.sandia.gov/ecn/engines/engineFlows/TCCEngine.php
https://imem.cray.com/2013/Meeting-2013/12-Piscaglia-Milano.pdf
https://imem.cray.com/2013/Meeting-2013/12-Piscaglia-Milano.pdf
http://dx.doi.org/10.1002/fld.1296
http://dx.doi.org/10.1002/fld.1296
http://dx.doi.org/10.1016/j.cma.2010.07.015
https://imem.cray.com/2014/Meeting-2014/9-Piscaglia-Milano-IMEM2014.pdf
https://imem.cray.com/2014/Meeting-2014/9-Piscaglia-Milano-IMEM2014.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018529022&partnerID=40&md5=e481b20ff53d71ba29cccb6ca5b09ba4
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018529022&partnerID=40&md5=e481b20ff53d71ba29cccb6ca5b09ba4
http://www.scopus.com/inward/record.url?eid=2-s2.0-0018529022&partnerID=40&md5=e481b20ff53d71ba29cccb6ca5b09ba4
http://dx.doi.org/10.1137/070692212
10.4271/2013-01-0542
10.2516/ogst/2013126
http://www.vtk.org/
http://www.vtk.org/
http://journals.ametsoc.org/doi/pdf/10.1175/MWR-D-11-00221.1
http://journals.ametsoc.org/doi/pdf/10.1175/MWR-D-11-00221.1

	FronteCongresso
	MONTA_OA_02-15senzafront
	Abstract
	Introduction
	Dynamic mesh strategy
	Organization of the mesh class
	Layer addition/removal
	Sliding interface
	Attach/detach of boundaries
	Variable topology-driven time-stepping

	Compressible solver for dynamic mesh
	Enforcement of continuity without topological changes
	Enforcement of continuity with topological changes
	Enhanced pressure-energy coupling

	Validation and testing
	Conservation of physical properties: single cylinder test case
	The TCC engine: case description, simulation setup and preliminary results
	Automatic decomposition with topological changes and load balancing
	Simulation strategy, mesh structure and preliminary results

	Conclusions and future work
	Contact Information
	Acknowledgments

