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1 Introduction

Osteoarthritis is a highly debilitating pathology that affects knees primarily of
older people. With this inflammation, the cartilage degenerates, the distance
between bones is reduced and hypertrophy of the bones can occur, with the
creation of osteophytes [1]. The Dutch Institute for Public Health estimates
that worldwide almost 16% of men and 31% of women aged over 55 years have
radiographic knee osteoarthritis [2]. In 12% of cases the pathology reduces
the motion of the knee and causes pain to the patient, often requiring the
use of ambulatory aids [3]. The most used treatment for severe osteoarthritis
is surgery. However almost the 20% of the patients that undergo Total Knee
Arthroplasty (TKA) are not satisfied with their operation [4].

A pre-operative study of knee kinematic under weight-bearing conditions
can improve the outcome of the surgery [5]. The representation of the joint
kinematics in 3D space allows for understanding pain zones and ligament
tensions, determining the best implant positioning and thus correcting non-
alignments of the bone segments [5–11]. The acquisition of pre-operative Com-
puter Tomography (CT) or Magnetic Resonance Imaging (MRI) images gives
a deep insight into the morphology of the structures, but these procedures
are currently limited to static positioning and have high costs and radiation
doses given to the patient. Mono and multi-plane fluoroscopy are the most
accurate and used procedures to measure in vivo non-invasive kinematics of
the knee [5, 10]. The current clinical technique is mainly based on the opera-
tor’s ability to correctly position the shape on the images [4]. This technique
is time-expensive and error-prone, as it is based on human ability. Regard-
less of the number of fluoroscopic projections, two main automatic methods
have been implemented to recover the correct pose of the bones in 3D space:
intensity based and feature based methods.

Intensity based methods need a pre-operative CT scan in order to acquire
the density of the patient’s bone. The 2D-3D matching is then achieved com-
paring the Digitally Reconstructed Radiograph (DRR) to the acquired fluoro-
scopic image and adjusting the rotation and translation parameters in order
to minimize the differences between the two images in terms of pixel intensi-
ties [5, 12, 13]. Although very accurate, these methods require a previous CT
to determine the bone density for the DRR creation, and are computationally
expensive for the number of pixel intensity comparisons that must be made to
find the correct pose.

Feature based methods are based on the contours of the bone shape that
can be extracted from the fluoroscopic images using edge detector filters, such
as Canny or Sobel [14–16]. These methods project the silhouette of the bone
shapes and match it with the extracted edges. Usually, feature based methods
necessitate a previous morphological 3D dataset of the bone shapes, such as
MRI or CT [4, 17, 18]. Recently, some authors have addressed the problem of
needing the morphological scan and substituting it with a Statistical Shape
Model (SSM), a collection of shapes coming from atlas that can be deformed
in order to represent accurately the target shape [9, 19, 20]. In this way, costs
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are reduced and the patient is exposed to a lower radiation dose. However,
computational time becomes an issue, as the whole sequence of poses takes
some hours to be computed [21].

Our objective is to develop a new feature based algorithm based on Gaus-
sian Mixture Models (GMMs) that is able to register a 3D point-set on a single
or biplane image of the same object. We tested the algorithm with a SSM of
the femur using a set of fluoroscopic images of the knee. The goal is twofold:
we addressed the problem of accurately recovering the pose of the knee in
3D space in a completely automatic way and also of ensuring the correct pa-
rameters for the deformation of the shape. In [22, 23], the authors addressed
the problem of the registration of two point-sets with a GMM fitting. The
solution is given through an Expectation Conditional Maximization (ECM)
procedure, that simplifies the original Expectation Maximization (EM) algo-
rithm by Dempster et al. [24]. Both of these frameworks, however, assume
working with point-sets lying in the same (2D or 3D) space.

The proposed algorithm extends the state of the art to registering a 3D
shape of a femur on a set of fluoroscopic images acquired during flexion-
extension of the knee.

2 Materials and methods

The knee is imaged during a sequence of flexion-extension movements. A flu-
oroscopic tube returns a set of X-ray images. The source and the image plane
are calibrated, and their pose in the world reference frame is known. The
reconstruction of the femur kinematics is done through a series of features
projection and back-projection from the fluoroscopic image plane to the 3D
space. A 3D shape of the bone is used as a model to reconstruct the correct
pose.

2.1 Datasets

2.1.1 3D shape

The 3D shape is defined as a set of points (Xs, s = 1, . . . , S) and triangles that
can be either derived from the segmentation of a volumetric image dataset
(CT or MRI) [25] or a SSM [26]. We define the patient specific 3D shape as
3DSCT/MRI and the SSM as 3DSSSM (A). A Gaussian distribution (Xs,Σs)
is associated to each 3D point of the model. The isotropic covariance can be
expressed as Σs = σsI3.

The silhouette of the model is made up of those points that share a contour
edge, i.e. an edge shared by two facets with normals pointing in different
directions from the source. The silhouette points are then a subset of the
shape points Xm,m = 1, . . . ,M < S. The model silhouette is projected on
the image plane xm,m = 1, . . . ,M .
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Fig. 1: The X-ray source jS projects rays on the image plane. The image is processed and
the contours jyn are extracted using a Canny edge detector (black points on the image). In
the middle, the shape is formed by points Xs and triangles. The silhouette of the model,
Xm in red, is made up of those points that share a contour edge, i.e. an edge shared by two
triangles with normals (arrows) pointing in different directions from the source. The zoom
on the right shows the normals of the triangles that point in different directions.

2.1.2 2D contours

The segmentation of the contour of the shape on the images is performed using
a semi-automatic algorithm based on gradient enhancement of the image and
a spline interpolation between user picked points [20]. The selected pixels,
belonging to the segmentation, can be transformed in 3D points using the
known image calibration parameters (yn, n = 1, . . . , N).

2.2 Registration

2.2.1 Initialization

A manual initialization is necessary to define the initial pose for the shape.
Seven landmark points Li, i = 1, . . . , 7 are identified on the 3D shape 3DS. The
user is asked to select the same points on the images [27]. The backprojected
lines from the user-selected points to the corresponding source identify seven
landmarks in the 3D space. Using corresponding points registration [28], we
find the homogeneous transformation matrix T that maps the shape in the
calibrated image space.
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2.2.2 Expectation Conditional Maximization

The expectation step (E-step) involves the computation of the posterior proba-
bility pmn that every point of the projected shape on the image plane (xm,m =
1, . . . ,M) is associated to a point of the contour (yn, n = 1, . . . , N):

pmn = P (Z : yn → xm |yn; θ, σ) (1)

where Z is the association operator between a projected point xm of the
shape’s silhouette Xm with a point of the contour yn extracted from the
image (B). The set of unknown variables is composed by the registration pa-
rameters θ[6×1] = {q1, q2, q3, t1, t2, t3} where qi, i = 1, 2, 3 are the Euler angles
and ti, i = 1, 2, 3 are the translation values, and the set of 3D points variances
σ2
1 , . . . , σ

2
M :

ψ = (θ, σ2
1 , . . . , σ

2
M ) (2)

As the direct maximization of the likelihood is intractable, the minimiza-
tion of the negative log-likelihood (E(ψ)) will instead be taken as the objec-
tive [24]:

E(ψ) = −
N∑
n=1

log

M∑
m=1

P (Xm)P
(
yn |Xm(θ;σ2

m)
)

(3)

The minimization function can thus be transformed in:

E(ψ) =
1

2

N∑
n=1

M∑
m=1

pnm
σm

[(
||yn −Xm(θ)||2

)
+ 3σ2

m log(σ2
m)
]

+
ρ

2
||L(φ)||2 (4)

where ||L(φ)||2 is a regularization parameter over the transformation, and ρ
weights its contribution to the minimization.

The ECM algorithm allows a simplification of the problem dividing the
minimization in two steps (CM-step):

– minimization of eq. (3) over the registration parameters
– update of the variances using the newly estimated registration parameters

In the case of a rigid transformation, the parameter ||L(φ)||2 is equal to 0,
and the solution of the problem is given by a least-squares fitting of two 3D
point sets, as described in [28].

If the shape to be registered is a 3DSSSM , the parameters to be estimated
are the shape coefficient vectors βk, and the regularization term assumes the
form of the Mahalanobis distance, with λ2k eigenvalues of the SSM:

||L(φ)||2 =

K′∑
k=1

β2
k

λ2k
(5)

All the shape coefficients are determined with a closed form solution as de-
scribed in [23].
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The algorithm converges to a minimum if the percentage difference be-
tween the likelihood of two consecutive frames is below a predefined threshold.
Specifically:

L(t)(X |Y)− L(t−1)(X |Y)

L(t−1)(X |Y)
< ε (6)

where X and Y are respectively the GMM and the observations. The likelihood
of the current step is defined as:

L(X |Y) =

N∏
n=1

M∑
m=1

αm ·
(
σ−2m e

−||yn−xm||2

2σ2m

)
(7)

In (7), αm is the component prior of the specific model [29].

Algorithm 1 GMM-based registration

1: procedure Initialization
2: Extract contours from figure yn
3: Select landmarks on images L and find initialization matrix T

4: procedure Registration
5: procedure Rigid transformation
6: loop:
7: procedure E-step
8: Project silhouette points xm ← Xm

9: Calculate posterior probability pmn = P
(
Z(yn = xm(θ, σ2

m)) | yn
)

10: procedure CM-step (3DSCT/MRI)
11: Find virtual observations om
12: Backproject virtual observations Om

13: Compute registration parameters θ
14: σ ← update variance

15: goto loop.

16: if Shape = SSM then
17: procedure SSM adaptation
18: loop:
19: procedure E-step

20: procedure CM-step (3DSSSM )
21: Find virtual observations om
22: Backproject virtual observations Om

23: Compute shape deformation parameters β
24: σ ← update variance

25: goto loop.

26: for all images do
27: procedure Rigid transformation

2.3 Validation protocol

Twenty-four healthy knees were imaged with MRI scans and manually seg-
mented to find the 3D shape. Those shapes were used to define the SSM as
described in A [27].
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The subject dataset is the following (Table 1):

– one healthy subject S0 who underwent a CT scan (Sensation Cardiac 64,
Siemens). The CT dataset is composed of 59 slices of 512 × 512 pixels
each (0.7890625 mm/pixel). The slice thickness is 2 mm and the space
between slices is 1.7 mm. The CT dataset was used to generate the DRR
for evaluation purposes.

– Seven osteoarthritic patients (Si, i = 1, . . . , 7) eligible for TKA with differ-
ent grades of osteoarthritis. The patients underwent a preoperative CT scan
from which the 3DSCT of the femur was segmented [30]. The CT datasets
were composed of DICOM images acquired with a SIEMENS Sensation
64 CT machine. Each slice is 512x512 pixel (0.3516 mm/pixel) with a slice
thickness of 0.6 mm and a spacing between slices of 0.4 mm. All the patients
were also imaged at seven fixed flexion angles using two sequential fluoro-
scopic projections with an AXIOM Luminos dRF flat-bed (Siemens; Berlin,
Germany) [4]. The first image was taken with the projector placed hori-
zontally (lateral image), while the second was taken with the source at 10◦

below horizontal. Both projections were calibrated using custom made cali-
bration software [31]. The fixed flexion angles (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦)
were obtained using steps of different customized heights on which the
subject could step up. Three subjects (S1, S2, S3) with different grades of
osteoarthritis were selected to generate the DRRs of diseased knees.
All the patients signed an informed consent and the institutional review
board approved the study.

Subject Age Gender Osteoarthritic grade CT DRR0/10/90 Fluoroscopies0/10

S0 47 F none x 0◦ : 3◦ : 72◦

S1 67 M severe x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S2 75 M mild x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S3 82 F moderate x 0◦ : 8◦ : 80◦ 0◦ : 15◦ : 90◦

S4 65 F mild x 0◦ : 15◦ : 90◦

S5 75 M severe x 0◦ : 15◦ : 90◦

S6 71 F moderate x 0◦ : 15◦ : 90◦

S7 82 M mild x 0◦ : 15◦ : 90◦

Table 1: For each subject, the age, gender and osteoarthritic grade are indicated. All the
femurs analysed were right femurs. The DRR0/10/90 values indicate the angles for which
we generated the DRRs. We specify the starting and ending angle, with the step used. The
Fluoroscopies0/10 values indicate the angles of the fluoroscopic images.

In order to assess the model reconstruction performances all the CT datasets
were segmented using Amira® (VSG—FEI, France) and the anatomical ref-
erence frame was defined as in [32].

The DRR is built integrating the density of each voxel of the CT along
the direction of each ray as in [33]. Three different sources and image planes
were simulated for each patient, resulting in three sets for each patient: the
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(a) DRR creation

F0

F10

(b) Fluoroscopy acquisition

Fig. 2: Description of the virtual environment setup for the DRR creation and fluoroscopic
acquisitions. The source S0 was established on the medio-lateral axis, as well as the center
of D0 and F0.
For the DRR, D10 is obtained rotating the source-plane axis of 10 degrees on the horizontal
plane. D90 is obtained rotating the source-plane axis of 90 degrees, having it correspondent
to the antero-posterior axis.
For the fluoroscopies, F10 is obtained rotating the source-plane axis of 10 degrees on the
medio-lateral axis.

first image shows a lateral view of the femur (L0), the second and third images
show a view rotated on the sagittal plane of 10 (L10) and 90 degrees (L90) (see
Figure 2) [34]. For Subject S0 we rotated the femur from 0◦ to 72◦ with a step
of 3◦ generating the ground truth pose (Ti

GT0
, i = 0◦, 3◦, . . . , 72◦). The three

pathological DRRs were instead created rotating the femur from 0◦ to 80◦ with
a step of 8◦ generating the ground truth pose (Ti

GT1,2,3
, i = 0◦, 8◦, . . . , 80◦) [20].

2.3.1 Tests

The initialization is done as described in paragraph 2.2.1. The tracking consists
in finding the correct pose of the 3DS for all the images provided for a given
flexion sequence. The tests were performed with six different conditions C1,...,7:

C1 : 3DS pose initialization with D0(0◦) and D90(0◦) and tracking with D0 and
D90 for all angles with S0, . . . , S3

C2 : 3DS pose initialization with D0(0◦) and D90(0◦) and tracking with D0 for
all angles with S0, . . . , S3

C3 : 3DS pose initialization with D0(0◦) and D10(0◦) and tracking with D0 and
D10 for all angles with S0, . . . , S3

C4 : 3DS pose initialization with D0(0◦) and D10(0◦) and tracking with D0 for
all angles with S0, . . . , S3

C5 : 3DS pose initialization with F0(0◦) and F10(0◦) and tracking with F0 and
F10 for all angles with S1, . . . , S7

C6 : 3DS pose initialization with F0(0◦) and F10(0◦) and tracking with F0 for
all angles with S1, . . . , S7

For each trial, both the SSM (3DSSSM ) and the CT segmented shape
(3DSCT ) were used.
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2.3.2 Results evaluation

The homogeneous matrix Ti
θ was constructed from the optimal parameters θ

returned by the ECM algorithm. In case of conditions C1, . . . , C4, we computed

Ti
residual = Ti

GT
−1 · Ti

θ. The errors were presented as rotations (in terms of
Euler angles) and translations of Ti

residual.
For the conditions C3, . . . , C6, Edge to Surface (E2S) distance was com-

puted [21]. E2S is defined as the Euclidean distance between a point on the 3D
shape and the closest point on the associated contour pixel back projection. In
this way, E2S does not require the ground truth pose to evaluate the accuracy
of the algorithm. Kruskal-Wallis test with p < 0.05 was used to asses if the
results for C3, . . . , C6 using 3DSCT and 3DSSSM were statistically different.

3 Results

Figure 3 represents the results of an optimization of a 3DSCT in C1 condition.
As shown in the figure, the points of the projected silhouette tend to overlay
the points of the contour, in order to minimize the distance between the two
datasets.

Fig. 3: Representation of the contour points and the silhouette points projected after the
optimization of the algorithm

In order to better understand the results, the errors have been expressed
in the anatomical axes of the subject.

Figure 4 shows the values of rotation and translation of Tresidual in the
case of the healthy subject S0. As can be seen, in case of single plane tracking
or dual plane tracking with D0 and D10 the error in the medio-lateral axis
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is increasing up to 3 cm with the flexion angle. The translation errors on the
other axis, as well as the rotation errors on every axis is bounded between some
mm and 1 cm in the case of 3DSSSM . The results are more accurate using the
3DSCT . In this case, the errors are below 1 cm also in the out-of-plane axis
(medio-lateral).
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Fig. 4: Translation and rotation error of Tresidual for S0

.

Figure 5 shows the errors in terms of rotation and translation for conditions
C1, . . . , C4 and using 3DSCT and 3DSSSM . In these figures it can be seen that
the error is generally lower in the case of 3DSCT , a part from the medio-lateral
axis of S2 when the error raises up to 6 cm. In S3 an angle dependent trend
is clearly visible, similar to those shown in Figure 4.

The edge to surface index is represented in Figure 6 for the only tests
with L0 and L10 images and for subject S1, S2, S3. Results are presented as
a populations of E2S Root Mean Square (RMS) for each pose of the trials.
Results were grouped for type of images analysed (DRR or fluoroscopies).
The parenthesis above the boxplot indicate that Kruskal-Wallis test returned
differences in the distribution median.

In Figure 7 are shown the E2S results for the fluoroscopic acquired images.
Patients S1, . . . , S7 proved to be statistically different only in a few cases, with
S2 that has the highest differences.

4 Discussion

This paper describes an innovative method to obtain the pose of the femur
from single or biplane fluoroscopies to be used in knee tracking for accurate
planning of orthopaedic surgery, starting from a patient specific model (ob-
tained from volumetric dataset) or from a generic SSM. In the latter case,
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Fig. 5: Translation and rotation error of Tresidual for S1, S2, S3

.

the radiation dose for the patient can be reduced. Knowing knee kinematics
allows understanding pain zones associated with tensions of the ligaments and
contact of the bones on each other, improving the outcome of the surgery.

Our registration method is based on GMMs and solves the Maximum Like-
lihood (ML) problem using an ECM approach, which allows significantly re-
ducing the computational costs. Only a few seconds per image are enough to
ensure the convergence of the system to the correct result, while for the previ-
ous methods [20,35] several hours were needed to reach convergence. Compared
to previous works that used GMMs to register two different shapes on each
other [22, 23, 36], our approach implements a 2D/3D registration, addressing
the problem of a registration between two datasets with different dimensions.
The method works in a semi-automatic way: it requires a rough initialization
from the user and a threshold parameter to extract the contours with a Canny
edge detector, saving time and augmenting the accuracy.
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Fig. 6: Comparison of the Edge to Surface index for subjects S1, S2, S3 with DRR or
fluoroscopic images
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Fig. 7: Edge to Surface index for each subject with fluoroscopic images

The results presented in our analysis show that the difference between
the SSM and the CT extracted shape is significant only in a few cases, espe-
cially with diseased shapes. This can be due to limited morphing capability of
the statistical model given by the low number (24) of healthy knees used as
datasets [20].

Overall, the implemented registration method proved to have results com-
parable to the literature. In [21] the authors found a translation error of a
few mm (0.48-0.81 for the median accuracy, and approximately 2 mm for the
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precision), that are comparable with the results we found in our experiments
in the case of DRR tracking with S0 and C1.

The fluoroscopic images projection angle influences the tracking accuracy
of the depth dimension. The ML axis has bigger errors compared to the others
axis, because reducing the angle between the two projections from 90◦ to 10◦

decreases the pose determination accuracy [37]. The same behaviour regarding
out of plane errors, can be observed when the tracking is performed with single-
plane fluoroscopy. The error in depth increases from frame to frame, as there
are no constraints on this axis. In the case of diseased patients, the error in
depth can reach up to 6 cm (Figure 5). In fact, the indetermination given by the
single projection must be added to the non-perfect correspondence between the
extracted contours and the statistical shape. The same considerations could
be asserted relative to the rotation errors. A-part from Subject S2, which has
a very distal cut of the diaphysis (due to a tight joint intraoperatively) that
compromises the reconstruction of the correct pose, the results are in line with
those presented in [11,18], who found errors below 1 cm with a higher distance
in the out-of-plane axis.

The evaluation of the accuracy with fluoroscopic images was performed
using the E2S index to allow an evaluation of the accuracy without knowing
the correct pose of the ground truth. The results show a statistical difference
in the case of tracking with the 3DSCT (Figure 6). This is probably due to
a different Canny threshold, which influenced the correct positioning of the
shape. The same error is not visible in the case of 3DSSSM thanks to the
lower deformation of the shape. These results are comparable with the one
stated by [21] who found an error of approximately 2 mm. However, their
dataset had a proximal cut of the diaphysis, augmenting the accuracy of the
algorithm. Dealing with pathological subjects is more challenging, especially
with a reduced set of shapes that created the SSM. Results are in the order
of some mm (depending on the condition) and could be still acceptable to
evaluate the kinematics of the knee. The method proved to be robust and
efficient, especially when used with patient specific shapes. Future work will
increase the number of shapes to construct the ssm and include also the tibia
in the study, in order to have the joint angle value for a proper kinematic
analysis. For single image tracking higher constraints on the depth axis must
be implemented (e.g. a constrained motion of max 1 mm between frames).
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Appendix A Statistical Shape Model

A SSM is a set of shapes on which the location of the landmarks is corre-
spondent. From this set of shapes we can extract the mean model M̄ and the
covariance matrix, from which we can compute the eigenvectors (modes of
variation) and the eigenvalues.

D =
1

K − 1

K∑
k=1

(Mk − M̄)(Mk − M̄)T

D ·
−→
Mk = λ2k ·

−→
Mk

σ2
1 ≥ λ22 ≥ · · · ≥ λ2K−1

(8)

where K is the number of shapes, λ2k are the descending-order eigenvalues

of the covariance matrix D and
−→
Mk are the corresponding eigenvectors. To

deform a SSM we can multiply specific weights to the modes, and add them
to the mean model.

MSSM = M̄ +

K′∑
k=1

βk
−→
Mk (9)

Appendix B Expectation Conditional Maximization algorithm for
GMMs

A femur model is represented by a set of 3D points Xs, s = 1, . . . , S. A set of
fluoroscopic images Ij , j = 1, . . . , J are simultaneously acquired with different
sources jS and image planes. On each fluoroscopic image Ij , the contour of the
femur jyn is semi automatically segmented. The femur silhouette is defined by
points Xm, and their projection leads to jxm where j indicates the image on
which the points are projected. We also define a set of virtual observations jom
that have a correspondent point in the 3D space Om. The registration problem
is the estimation of the homogeneous matrix (expressed by the transformation
parameters θ) which minimizes the distance between the virtual observation
Om and the silhouette point Xm.

The variables used in this description are:

– jY is the contour extracted from each image, whose pixels are jyn, n =
1, . . . , N (also called observations)

– Xs, s = 1, . . . , S are the points of the 3D shape
– jX is the set of points of the silhouette jXm,m = 1, . . . ,M < S
– jxm,m = 1, . . . ,M are the pixel of the shape’s silhouette projected on

image j
– jom,m = 1, . . . ,M are the virtual observations on the image j
– Om,m = 1, . . . ,M are the virtual points backprojected in the 3D space
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Fig. B.1: In the figure are represented the shape with the points Xs, the extracted silhouette
on the shape Xm and their projection xm on the image plane. It also represented the source
of the x-ray beam (S) and the points extracted from the contour of the image yn, from which
we can calculate the virtual observation om and its backprojection Om. The white arrow
between the backprojected virtual observation Om and its associated silhouette point Xm is
the minimized distance at each iteration.

B.1 Gaussian Model and Likelihood

Each Xs point of the model is defined as the centroid of a 3D Gaussian dis-
tribution with mean Xs and covariance matrix Σs, identifying in this way
a Gaussian Mixture Model (GMM). Considering isotropic covariances, each
Σs, s = 1, . . . , S is defined as

Σs = σsI3 (10)

where I3 is the 3×3 identity matrix and σs is the scalar value of the covariance
that varies for each Xs point. The operator µ : R3 → R3 transforms a point Xs

in another point µ(Xs, θ) where θ is the parametrization of the transformation.
The likelihood (L) that expresses the probability that the contour is co-

incident with the silhouette projection is a function of both the registration
parameters θ and the covariances.

L(θ, σ1, . . . , σS | Y) = logP (Y; θ, σ1, . . . , σS) (11)

where P () is the probability that the set of observations Y is extracted from
the GMM with parameters (θ, σ) and the likelihood indicates the probability
that the set of observations Y is coincident with the projection of the shape’s
silhouette X .

This maximization can not be performed due to the presence of missing
data, as the assignment of each observation to one of the Gaussian of the
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GMM is unknown. The operator {Z : yn → xm}, n = 1, . . . , N assigns an
observation yn either to a silhouette model point xm or to an outlier class.
If (Z : yn → xm) then the observation yn is associated to the point xm,
otherwise, if (Z : yn → xM+1) then the observation yn is an outlier.

The likelihood is replaced by the expected complete-data log-likelihood E
conditioned by the observed data, as suggested by Dempster [24].

E(θ, σ1, . . . , σS | Y, Z) = EZ [logP (Y, Z; θ, σ1, . . . , σS) | Y] (12)

To evaluate eq (12) the probabilities of the observations must be expressed
as a set of Probability Density Functions (PDFs). pm = P (Z : yn → xm) is the
prior probability that the observation yn belongs to the cluster m with centre
µ(xm; θ) while pM+1 = P (Z : yn → xM+1) expresses the prior probability of
yn to be an outlier.

pm =

{
P (Z : yn → xm) = a

A if 1 ≤ m ≤M
P (Z : yn → xM+1) = A−Ma

A if m = M + 1
(13)

In eq (13) the variable a indicates a small circular area
(
a = πr2

)
around

the centre of the projected GMM µ(xm, θ), whereas A indicates the whole
volume of work, so that a� A. The likelihood of an observation yn given its
assignment to cluster m is drawn from a normal distribution:

P (yn |Z : yn → xm) = N (yn |µ(xm; θ), σm) =
1

σm
√

2π
e
− ||yn−xm||2

2σ2m (14)

and the same likelihood of the observation given its assignment to the outlier
class is a uniform distribution over the area A

P (yn |Z : yn → xM+1) = U(yn |A, 0) =
1

A
(15)

The marginal distribution of an observation is:

P (yn) =

M+1∑
m=1

pmP (yn |Z : yn → xm) (16)

Eq (11) then becomes

logP (Y) =

M∑
m=1

log

(
N∑
n=1

pnN (ym |µ(xn; θ), σn) +
pn+1

A

)
(17)

and eq. (12) becomes

E(θ, σ1, . . . , σS | Y,Z) =
∑
Z
P (Z |Y, θ, σ1, . . . , σS) logP (Y,Z; θ, σ1, . . . , σS)

(18)
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B.2 Expectation Maximization

The Expectation Conditional Maximization method is an iterative way to solve
the Maximum Likelihood problem of eq (12). Starting from an initial estimate
of the parameters, the method computes the posterior probabilities given the
current parameters and covariances and then maximizes the expectation in
(12) with respect to the registration parameters (given the current covariances)
and the covariances (given the newly estimated parameters).

B.2.1 Expectation step

The expectation step is defined as the computation of the posterior probabil-
ities given the current estimate of the registration parameters and the covari-
ance matrix. In this case, the posterior probability is computed between the
contour points (jyn) and the projection of the silhouette on the 2D images
(jxm). Recovering the equations (13), (14), (15) and (16) and using the Bayes’
rule the expression for the posterior probability becomes:

pqmn = P (Z : yn → xm |yn; θq, σq) =

=
P (yn |Z : yn → xm)P (Z : yn → xm)

P (yn)
=

=
σ−2m e

−||yn−xm||2

2σ2m

M∑
i=1

σ−2i e
−||yn−xi||2

2σ2
i + c

(19)

with c that is the outlier component:

c = 2r−2 (20)

B.2.2 Conditional Maximization step

The conditional maximization step aims at maximizing the likelihood de-
scribed in eq. (11) and (12). It uses the definition of virtual observation, that
is a normalized sum over all the observations weighted by their posterior prob-
ability [22]. The virtual observation O and its weight λ are obtained for each
model point xn using the posterior probabilities pqmn and the observations ym:

νn =

M∑
m=1

pmn

on =
1

νn

M∑
m=1

pmnym

(21)
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Eq. (12) can be rewritten replacing the conditional probabilities with the
normal and uniform distribution as expressed in eq (22) (for the complete
steps the reader can refer to [22])

E = −1

2

M∑
m=1

N∑
n=1

pmn
σ2
n

(||ym − µ(Xn, θ)||2 + log(σ2
n)) (22)

The minimization of eq (22) over θ keeping constant the covariances σ lead
to:

θq+1 = arg min
θ

pmn
σ2
n

||ym − µ(Xn, θ)||2 +
ρ

2
||L(µ)||2 (23)

where ||L(µ)||2 is a regularization term over the parameters. Eq (23) can be
simplified using the definitions of eq (21):

θq+1 = arg min
θ
νn||On − µ(Xn, θ)||2 +

ρ

2
||L(µ)||2 (24)

where On is the 3D point nearest to Xn on the ray backprojected from on.
A 2D/3D registration problem is now cast into a 3D/3D registration that can
be solved using already addressed solutions [22,23,28,38].

The second step of the conditional maximization is the update of the co-
variances, using the registration parameters newly computed:

σ2
n =

M∑
m=1

pmn||ym − µ(xn, θ)||2

2
M∑
m=1

pmn

(25)

In eq (25) the value µ(xn, θ) is the projection of the 3D point Xn updated
with the parameters θ.
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