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1. Introduction

Let h be a complex separable Hilbert space and B(h) the von Neumann algebra of 
all bounded operators on h. A bounded self-adjoint derivation δ on B(h) is a linear 
map with the  property δ(xy) =  xδ(y)+  δ(x)y and δ(x∗) = δ(x)∗ for all x, y ∈ B(h). 
Such a derivation is inner, that is, there is a bounded self-adjoint operator H on h 
such that δ(x) = i[H, x].

In general the range of a non-invertible linear transformation like δ is topologi-
cally small (first category) and has large codimension (see Ref. 14). However, it is 
well-known (Theorem 1 and Corollary 1 of Ref. 20) that the range of a bounded 
nonzero derivation on B(h) has trivial commutant and so, in a way, it is large.



A bounded self-adjoint derivation δ(x) = i[H, x] generates a norm-continuous 
group of automorphisms αt(x) = eitH xe−itH .

A norm-continuous semigroup (Tt)t≥0 of normal, completely positive, identity 
preserving maps on B(h), namely a Quantum Markov Semigroup (QMS), is a nat-
ural generalisation of a group of automorphisms. Thus, it is natural to ask whether 
the range of its generator also has trivial commutant. Our motivation for study-
ing this problem is the equivalence of the irreversible (H, β)-KMS condition and 
irreversible (H, β)-KMS condition in infinitesimal form proposed in Ref. 2.

In this note we prove that the commutant of the range R(L)′ of the generator L 
of a norm-continuous, non-identical (Tt are not identity maps) QMS with a faithful 
normal invariant state ρ, is trivial if the fixed point algebra F(T ) of T (see (2.1)) 
is atomic, namely it is generated by its minimal projections. This is the case, for 
instance, when F(T ) is finite-dimensional.

The plan of the paper is as follows. The main result is discussed in Sec. 2 and 
illustrated by some examples in Sec. 3. In Sec. 4 we prove, as an application, that 
the irreversible (H, β)-KMS condition, and the irreversible (H, β)-KMS condition in 
infinitesimal form are equivalent. Open problems and further extensions are briefly 
discussed in Sec. 5.

2. The Commutant of the Range of a Generator

Let T be a QMS on the von Neumann-algebra B(h) of all bounded operators on a
complex separable Hilbert space h with a faithful normal invariant state ρ. Recall 
that the set F(T ) of fixed points  of T

F(T ) = {x ∈ B(h) | Tt(x) = x ∀ t ≥ 0} (2.1)

is a von Neumann subalgebra of B(h) (see Ref. 15). Indeed, if Tt(x)= x,
then by complete positivity Tt(x∗x)≥Tt(x∗)Tt(x)= x∗x. Moreover, tr(ρ(Tt(x∗x)−
x∗x))= 0 by the invariance of ρ, thus Tt(x∗x) = x∗x because ρ is faithful. This
proves that F(T ) is a ∗-subalgebra of B(h). It is obviously σ-weakly closed and so
it is a von Neumann subalgebra of B(h).

A projection p in B(h) is subharmonic if Tt(p) ≥ p for all t ≥ 0 (see Ref. 9).
Since we consider QMS with a faithful invariant state, subharmonic projections are
also fixed points because tr(ρ(Tt(p) − p)) = 0.

We begin by considering irreducible QMS (Definition II.2 of Refs. 9 and 10).
Recall that a QMS is irreducible if the only if projections p satisfying Tt(p) ≥ p for
all t ≥ 0 are the trivial ones 0,�.

Proposition 2.1. Suppose that the QMS T is irreducible, then

(1) F(T ) = C�,

(2) ker(L∗) = Cρ,



(3) the closure of the range of L with respect to the σ-weak operator topology (i.e.
the weak ∗ topology) on B(h) is

R(L) = {y ∈ B(h) | tr(ρy) = 0}. (2.2)

In particular, R(L)′ = C�. Moreover, if the dimension of h is strictly larger
than 1, then every nonzero u ∈ h is cyclic for the range of L.

Proof. Suppose that x is a fixed point of T which is not a multiple of �. By
considering its self-adjoint and anti-self-adjoint parts (x + x∗)/2 and (x− x∗)/(2i),
we can find a self-adjoint x ∈ F(T ) which is not a multiple of �. Since F(T ) is a
∗-subalgebra of B(h), every spectral projection of x belongs to F(T ) contradicting
irreducibility. This proves 1).

In order to prove 2) first recall that, since the invariant state ρ is faithful, by
Theorem 1.1 of Ref. 16, the linear map

E(x) = w∗ − lim
t→∞

1
t

∫ t

0

Ts(x)ds

defines a normal conditional expectation onto the von Neumann subalgebra F(T )
which is trivial by 1. Consequently, for any trace class operator η ∈ ker(L∗) and
so T∗s-invariant, we have tr(ηTs(x)) = tr(ηx) for all s ≥ 0 and all x ∈ B(h). Thus
E(x) = c(x)� for some constant c(x) and, clearly,

c(x)tr(η) = tr(ηE(x))

= lim
t→∞

(
t−1

∫ t

0

tr(ηTs(x))ds

)
= tr(ηx).

Suppose that ker(L∗) contains an element η (not necessarily positive). By con-
sidering its self-adjoint and anti-self-adjoint parts we can assume, without loss of 
generality, that η is self-adjoint. Moreover, we have

tr(ηx) = c(x)tr(η) = tr(ρE(x))tr(η) = tr(ρx)tr(η)

for all x ∈ B(h). If tr(η) �= 0 this implies η = (tr(η))−1ρ and 2) follows. If tr(η) = 0,
replacing η by η + ρ and repeating this argument we find again η + ρ = (tr(η + 
ρ))−1ρ = ρ. Thus η = 0 and 2) still follows.

Now, the weak∗ closure of R(L) (i.e. the closure with respect to the σ-weak, 
σ-strong and σ-strong∗ operator topology by Theorem 2.4.7 of Ref. 6, p. 71) is 
immediately characterised by (2.2) because it is the orthogonal of ker(L∗) with
respect to the duality (η, x) = tr(ηx).

The commutant of R(L) is trivial because any operator in R(L)′ commutes with 
all operators of the form x − tr(ρx)�, thus it commutes with all operators.



h and let v be another vector orthogonalFinally, let u be a nonzero vector in 
to {L(x)u | x ∈ B(h)}. The  identity

0 = 〈v,L(x)u〉 = tr(|v〉〈u|L(x)) = tr(L∗(|u〉〈v|)x)

for all x ∈ B(h), implies that L∗(|u〉〈v|) = 0, and by 2), |u〉〈v| is a multiple of
ρ. This is clearly a contradiction if dim h > 1 because ker(L∗) consists of scalar
multiples of ρ, which is faithful.

Remark. Notice that, if dim h = 1, then by Tt(�) = �, the range of L is the trivial
subspace {0}. Indeed, in this case, the QMS is trivial even if irreducible according
to our definition.

In order to deal with situations where fixed points are one-dimensional projec-
tions, we prove the following lemma.

Lemma 2.1. Let T be a QMS and let p = |u〉〈u| be a one-dimensional projection
in F(T ). If L(|v〉〈u|) = 0 for all v ∈ h, then L = 0.

Proof. Since F(T ) is a ∗-subalgebra of B(h), if L(|v〉〈u|) = 0 for all v ∈ h then13

|v〉〈v| = |v〉〈u| · |v〉〈u|∗ also belongs to F(T ). It follows that L vanishes on all one-
dimensional projections. Thus, it vanishes on all self-adjoint operators and, as a
consequence on the whole algebra B(h).

A von Neumann algebra A is atomic if there exists a maximal family of nonzero
mutually orthogonal projections (pj)j≥1 such that

∑
j pj = �.

Proposition 2.2. Let T be a non-identical QMS on B(h) with a faithful normal
invariant state ρ and atomic fixed point algebra. Every self-adjoint element of R(L)′

can be written as ∑
j≥1

cjpj , cj ∈ R, (2.3)

where (pj)j≥1 is a family of minimal projections in F(T ). In particular, R(L)′ is
contained in the fixed point algebra F(T ).

Proof. Let (pj)j≥1 be a maximal family of minimal (nonzero) projections in F(T )
that are mutually orthogonal, namely pjpk = 0 for j �= k. Note that

∑
j≥1 pj = �.

Indeed, if this is not the case, the projection � −
∑

j≥1 pj is a nonzero fixed point
of T .

Let

L(x) = G∗x +
∑
�≥1

L∗
�xL� + xG

be a Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) representation of L (see
Theorem 30.16 of Ref. 18) with G = −iH − 1

2

∑
�≥1 L∗

�L� and H = H∗. Here, in30



case there are no Kraus operators L�, we find L(x) = i[H, x] namely G = −iH with
H self-adjoint. Since the algebra F(T ) is the commutant of {G, G∗, L�, L

∗
� | � ≥ 1}

(see Ref. 15 and also Proposition 6.2 of Ref. 12, p. 191), each pj commutes with all
the operators L�, L

∗
� , G, G∗, hence

L(pjx) = pjL(pjx), L(xpj) = L(xpj)pj

for all j and x ∈ B(h).
Let T j be the reduced QMS on B(pjh) defined by T j

t (pjxpj) = Tt(pjxpj) for all
t ≥ 0 and x ∈ B(h). Clearly, pjρpj/tr(pjρpj) is a faithful T j- invariant state. The
QMS T j on B(pjh) is irreducible because a subharmonic projection p of T j , by the
existence of a faithful invariant state, is a fixed point and hence it must be either
0 or pj by minimality.

Let y ∈ R(L)′. Assume, without loss of generality, that y is self-adjoint and
prove (2.3). For all j we have

ypjL(pjxpj) = yL(pjxpj) = L(pjxpj)y = L(pjxpj)pjy (2.4)

and thus, left and right multiplying by pj we find

(pjypj)L(pjxpj) = L(pjxpj)(pjypj).

It follows then, from 3) of Proposition 2.1, that pjypj is a scalar multiple of pj .
Moreover, right multiplying (2.4) by pj and left multiplying by pk for a k �= j we
find

(pkypj)L(pjxpj) = pkL(pjxpj)(pjypj) = 0,

namely (pkypj)L(pjxpj)u = 0 for all u. It follows that, if dim pj > 1 then pkypj = 0
and pjypk =(pkypj)∗ =0 by Proposition 2.1. If dim pj = 1 but dim pk > 1, it suffices
to exchange j and k to conclude again pjypk = (pkypj)∗ = 0.

Consider now the case where both pj and pk are one-dimensional projections,
pj = |uj〉〈uj | and pk = |uk〉〈uk|, say, with unit vectors uj and uk. Recalling Lemma
2.1, there exists a v ∈ h such that L(|v〉〈uj |) �= 0 and, by L(|uj〉〈uj |) = 0, we
can also choose v orthogonal to uj . Since uj is an eigenvector for G∗ and all the
operators L∗

� , we have L(|v〉〈uj |) = |ṽ〉〈uj | for some nonzero ṽ.
Now, if y commutes with L(|v〉〈uj |), we have |yṽ〉〈uj | = |ṽ〉〈yuj |. Thus uj is an

eigenvector of y, thus pkypj = 0 for all k �= j and y has the form (2.3).
This completes the proof.

We now show that the commutant of the range on a nonzero generator is trivial.

Theorem 2.1. Let T be a non-identical QMS on B(h) with a faithful normal
invariant state ρ, atomic fixed point algebra and let L be its nonzero generator.
The commutant R(L)′ of the range of L consists of multiples of �.

Proof. Consider a self-adjoint y ∈ R(L)′ written in the form (2.3) for some minimal
projections (pj)j≥1 in F(T ). Clearly, each pj belongs to R(L)′ because R(L)′ is a



∗-algebra; moreover each pj commutes with G, G∗, L�, L
∗
� , because it is a fixed point

for T .
We seek a proof by contradiction. Suppose that y is not a multiple of � so that

none of the pj is � or 0. For all x ∈ B(h) we have

L(pjx) = pjL(x) = L(x)pj = L(xpj),

namely L(pjx − xpj) = 0 and pjx − xpj belongs to F(T ).
Let uj, uk, for j �= k, be unit vectors with pjuj = uj and pkuk =uk and let x =

|uj〉〈uk|. The operator |uj〉〈uk| = pjx−xpj is a fixed point for T and, since F(T ) is
a ∗-algebra, so is |uj〉〈uj | = |uj〉〈uk|(|uk〉〈uj |)∗. Thus, by minimality, pj = |uj〉〈uj |
is one-dimensional.

By Lemma 2.1, there exists a vj ∈ h such that L(|vj〉〈uj |) �= 0 and, using the
same notation as in Lemma 2.1, L(|vj〉〈uj |) = |ṽj〉〈uj | for some nonzero vector
ṽj ∈ h. This (as in the proof of Proposition 2.2) commutes with pj , therefore

|pj ṽj〉〈uj | = |ṽj〉〈uj | = |ṽj〉〈puj |.

The above identity implies that ṽj = uj , hence L(|uj〉〈uj |) = |uj〉〈uj | contradicting
L(pj) = L(|uj〉〈uj |) = 0.

3. Examples

In this section we give three examples illustrating the structure of F(T ), R(L), and
its commutant. The Hilbert space h is always finite-dimensional h = Cd.

Since the sum of the dimensions of R(L) and ker(L) = F(T ) is d2; the bigger
is F(T ), the smaller is R(L). Now, since X ⊆ Y implies X ′ ⊇ Y ′ for X ,Y sets of
operators, as a consequence, the bigger is F(T ), the bigger is R(L)′.

3.1. Derivations

Let H be a self-adjoint operator and let T be the QMS defined by Tt(x)=
eitHx e−itH . The normalised trace is obviously a faithful invariant state. The gen-
erator is the derivation L(x) = i[H, x] and the fixed point algebra F(T ) is clearly
the commutant of H .

Let (ei)1≤i≤d be an orthonormal basis of h of eigenvalues of H giving a spectral
decomposition

H =
d∑

i=1

εi|ei〉〈ei|.

Clearly, [H, |ei〉〈ej |] = (εi − εj)|ei〉〈ej |, thus |ei〉〈ej | belongs to the range of L if
εi �= εj . Moreover, for any operator x =

∑
i,j xij |ei〉〈ej | such that xij = 0 whenever



εi = εj , we have

[H, x̃ ] = x with x̃ =
∑
i,j

(εi − εj)−1xij |ei〉〈ej |.

It follows that R(L) is the vector space of matrices with zero entries on diagonal
blocks determined by eigenspaces of H .

By well-known results (see e.g., Corollary 1 of Ref. 20 also for H bounded and
h infinite dimensional) the commutant R(L)′ is trivial if H is not a multiple of the
identity operator. This is also easily verified because any y in this algebra commutes
with all |ei〉〈ej | such that εi �= εj therefore both ei and ej are eigenvectors of y with
the same eigenvalue.

3.2. Squares of derivations

Let p be a nontrivial projection on a finite-dimensional h and let T be generated by
L(x) = − 1

2 [p, [p, x]]. As in the previous example, the normalised trace is obviously
a faithful invariant state and fixed point algebra F(T ) is clearly the commutant
of p.

Let (ei)1≤j≤d be an orthonormal basis of eigenvectors of p. It is easy to see as
in the previous example that the range of L contains the vector space generated
by rank-one operators |ei〉〈ej | with pei = ei and pej = 0 or resp. pei = 0 and resp.
pej = ej . Here again its commutant is trivial.

3.3. A circulant QMS

Let (ei)1≤i≤d be the canonical orthonormal basis of Cd and let S be the unitary
operator Sei = ei+1, where the sum is understood modulo d. Fix α ∈ ]0, 1[ and
consider the QMS T on d × d matrices generated by

L(x) = αS∗xS + (1 − α)SxS∗ − x. (3.1)

This is a special case of circulant QMS studied in Ref. 5 (see also Example 7.1
of Ref. 13). The normalised trace is a faithful invariant state and the fixed point
algebra F(T ) is the commutant of S which is a normal operator.

The spectral decomposition of S is well known, see Ref. 17. Let ωj = e2πij/d, with
0 ≤ j ≤ d− 1, be the dth roots of unit and let vj be the vectors (1, ωj, ω

2
j , . . . , ωd−1

j ).
Each ωd−1

j is an eigenvalue with eigenvector vj and we have

S =
d−1∑
j=0

ωd−1
j |vj〉〈vj |.

It follows that F(T ) is the d-dimensional algebra of matrices which are diagonal in
the basis (vj)0≤j≤d−1.

Clearly

L(|ej〉〈ek|) = α|ej−1〉〈ek−1| + (1 − α)|ej+1〉〈ek+1| − |ej〉〈ek|.



j

Thus the d-dimensional vector space Om (0 ≤ m ≤ d − 1) generated by rank-
one operators |ej 〉〈ek| with j − k = m modulo d is L invariant for all m and the 
action of L on each Om is given by the circulant matrix αS + (1− α)S∗ −� whose 
eigenvalues are λj = αωd−1 +(1  − α)ωj − 1. By the known spectral properties of the
circulant generator L (see Theorem 5 of Ref. 4) λ0 = 0 is an L-eigenvalue and the
matrix Sm =

∑
1≤k≤d |ek+m〉〈ek| is the only associated eigenvector in Om. Since if

0 < j ≤ d − 1 we have

|λj |2 = |1 − cos(2πij/d)|2 + (1 − 2α)2| sin(2πij/d)|2 ≥ |1 − cos(2πij/d)|2 > 0,

the kernel of L restricted to Om is the one-dimensional space generated by Sm. The
same conclusion holds for L∗ which is obtained exchanging α and 1 − α. It follows
that the range of L, the orthogonal space to ker(L∗), is given by matrices x such
that tr(xSm) = 0 for all m = 0, . . . , d − 1.

Now one can check by elementary manipulations that R(L)′ is trivial.

Remark. We could check directly that also the commutant of the range of the
generator of a generic QMS (see Refs. 1 and 7 the references therein), certain
QMSs with unbounded generators (see e.g., examples in Refs. 8 and 12, and the
two-photon absorption and emission process11) which is trivial.

4. The Irreversible (H, β)-KMS Condition

Let T = (Tt)t≥0 be a norm continuous quantum Markov semigroup (QMS) on B(h)
with faithful normal invariant state ρ and let L denote its generator.

The following definition has been proposed in Ref. 2 (see also Ref. 3).

Definition 4.1. Given a self-adjoint H and a function β : R → R+, the QMS T
satisfies the irreversible (H, β)-KMS condition if

tr(ρx e−β(H)HTt(y)eβ(H)H) = tr(ρTt(y)x) (4.1)

for all x, y ∈ B(h) and all t ≥ 0. It satisfies the irreversible (H, β)-KMS condition
in infinitesimal form if

tr(ρx e−β(H)HL(y)eβ(H)H) = tr(ρL(y)x) (4.2)

for all x, y ∈ B(h).

Here we assume, for simplicity, that H is bounded and the function β is locally 
bounded.

The irreversible (H, β)-KMS condition (4.1) clearly implies the irreversible 
(H, β)-KMS condition in infinitesimal form (4.2) by differentiation of (4.1) at  t = 0.
Moreover, as noted in Ref. 2, by a simple argument (see p. 82 of Ref. 19), if (4.2)



holds, then, by the cyclic property of the trace, we have

tr(xe−β(H)HL(y)eβ(H)Hρ) = tr(xρL(y)).

By the arbitrarity of x, we find then

e−β(H)HL(y)eβ(H)Hρ = ρL(y)

for all y, namely, left multiplying by eβ(H)H,

L(y)eβ(H)Hρ = eβ(H)HρL(y). (4.3)

If the commutant R(L)′ of the range of L consists of multiples of the identity
operator, it follows that eβ(H)Hρ is a multiple of the identity operator, namely
ρ = e−β(H)H/tr(e−β(H)H).

As a consequence of Theorem 2.1 we find the following.

Theorem 4.1. Let T be a non-identical QMS on B(h) with a faithful normal invari-
ant state ρ and atomic fixed point algebra and let L be its nonzero generator. An
invariant state ρ satisfies the irreversible (H, β)-KMS condition in infinitesimal
form (4.2) if and only if ρ = e−β(H)H/tr(e−β(H)H), namely, it satisfies the (H, β)-
KMS condition (4.1).

Thus, the irreversible (H, β)-KMS condition in infinitesimal form (4.2) turns
out to be equivalent to the irreversible (H, β)-KMS condition (4.1) for all QMS T ,
except in the case where there T acts identically on B(h).

Now, since (4.1) holds for all t if and only if it is true for t = 0 (replacing y

by Tt(y)), it follows that it is a property of the state ρ independent of the QMS
T . Therefore the irreversible (H, β)-KMS condition of Definition 4.1, in the form
(4.1), does not single out any relevant class of QMS.

5. Open Problems

The commutant of the range of a derivation i[H, ·] (with a self-adjoint H which is
not a multiple of the identity operator) is trivial by Theorem 1 and Corollary 1 of
Ref. 20. In the proof of this result the existence of a faithful normal invariant state,
implying that H has pure point spectrum, is not assumed. It would be desirable
and it might be possible to extend our result in some directions.

(1) Drop the existence of a faithful normal invariant state. In this case F(T ) might
not be an algebra.

(2) Suppose that there exists faithful normal invariant state, the assumption on the
fixed point algebra might be relaxed keeping into account that it is the range
of a conditional expectation.

(3) Consider uniformly continuous QMSs on an arbitrary von Neumann algebra
with Christensen–Evans generators.

These problems will be investigated in the future.
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