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A Variable-Kinematic Model for Variable Stiffness Plates:

Vibration and Buckling Analysis

Riccardo Vescovini∗and Lorenzo Dozio

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Via La Masa 34, 20156 Milano, Italy

Abstract

This paper presents an advanced approximate technique for the vibration and buckling analysis of

variable stiffness plates. The formulation is based on a variable-kinematic approach and is developed

in the context of a variational framework together with the method of Ritz. Any set of boundary

conditions can be accounted for, while loading conditions of pure axial compression are assumed. Results

are validated against finite element predictions and solutions available in the literature, demonstrating

the accuracy of the proposed method in terms of eigenvalues and modal shape descriptions. A novel

set of vibration and buckling results is provided for moderately thick variable stiffness plates, including

monolithic and sandwich configurations.

Keywords: variable stiffness; variable-kinematic theories; buckling; vibrations.

1 Introduction

In the past years, increasing interest has been devoted to the study of variable stiffness panels. As compared

to classical straight fiber configurations, the adoption of a continuous variation of the stiffness properties

can provide significant advantages. Indeed, the increased number of design variables extends the tailoring

capabilities offered by composites, and requirements on stiffness, buckling and vibration behaviour can be

strongly improved. One of the first investigations focusing on the potential benefits due to the stiffness

variation is found in the work of Leissa and Martin [1]. The paper illustrates the possibility of improving
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the buckling load and the fundamental frequency by as much as 38% and 21%, respectively. Solutions are

derived using thin plate theory and the method of Ritz, and stiffness variation is achieved by means of

non-uniformly spaced fibers. Another approach to obtain stiffness tailoring consists in varying the plate

thickness. DiNardo and Lagace [2] investigated this strategy, and presented a Ritz-based methodology, in

the context of thin-plate theory, to assess the bucking and post-buckling behaviour.

More often, stiffness tailoring has been achieved by considering curvilinear fiber configurations, which are

also the subject of the present investigation. Back to the pioneering works of Hyer [3, 4] and Gürdal [5–7]

and co-workers, many investigations have regarded the development of novel experimental, numerical and

analytical methods to handle panels with curvilinear fibers. A comprehensive review can be found in Ref. [8].

Concerning the free vibrations, the number of investigations is relatively restricted and, in most cases, is

based on a finite element approach. Abdalla et al. [9] proposed an optimization procedure to achieve the

maximum fundamental frequency. The analysis is performed with finite elements based on Classical Lami-

nation Theory (CLT), while lamination parameters are adopted to parametrize the design. The maximum

frequency design of conical shells is the subject of Ref. [10], where finite element computations are performed

with the commercial code Abaqus, and four node shell elements are used.

Honda and Narita [11] adopt eight-node, first-order finite elements in conjunction with genetic algorithms to

maximize the fundamental frequency of locally anisotropic plates, including short and continuous curvilinear

fibers. Natural frequencies and modes shapes are presented in the work of Akhavan and Ribeiro [12] using

third-order shear deformation theory and taking manufacturing considerations into account. Results are

presented for different combinations of boundary conditions, and are a useful benchmark for comparison

purposes. In a recent paper, Tornabene et al. [13] presented high-order solutions for singly and doubly-

curved panels with curvilinear fibers by means of the Local Generalized Differential Quadrature method.

The relatively large literature dealing with the buckling behavior of variable stiffness panels covers a num-

ber of numerical and semi-analytical investigations and, in most cases, CLT is adopted. An early work of

Ref. [7] demonstrates the improvements in the buckling load thanks to the use of curvilinear fibers, and the

implementation of the Ritz method is discussed in the context of CLT. Traditional finite element solutions,

as well as highly efficient numerical techniques based on the Ritz technique, are established in Ref. [14].

The Galerkin method is implemented in Ref. [15] to solve the partial differential equations governing the

buckling of thin variable stiffness plates. Setoodeh et al. [16] proposes the use of the reciprocal approxima-

tion for the buckling maximization of plates subjected to combined loading conditions. The method makes

use of finite element computations based on CLT.
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Semi-analytical solution strategies for the buckling analysis of variable angle tow panels, modeled using

classical lamination plate theory are presented in Refs. [17, 18] and are based on the differential quadrature

method (DQM) and the method of Ritz, respectively. The Ritz formulation is extended to the analysis of

the post-buckling response in Ref. [19], where a mixed variational principle, expressed in terms of out of

plane displacement and Airy stress function, is adopted [20, 21].

Among the few semi-analytical procedures for variable stiffness panels based on first-order theory, the works

of Coburn at al. [22, 23] are here mentioned. They rely on the method of Ritz, where the stress function and

the out of plane displacement are expanded using Legendre polynomials. The buckling of simply-supported

blade stiffened panels is the subject of the research paper of Ref. [22], whereas sandwich plates with variable

stiffness face-sheets are considered in Ref. [23]. This second study highlights the importance of the core shear

modulus, illustrating that, below a threshold value, no tangible improvements can be achieved with respect

to straight fiber configurations.

Despite the relatively large number of research studies dealing with the buckling and vibrations of variable

stiffness plates, analytical and semi-analytical techniques have been mainly restricted to CLT and first-order

theories. As a matter of fact, high-order solutions have been widely derived for straight fiber laminates using

various approaches (see, for instance, [24–26]). In this context, a powerful approach to automatically handle

a large variety of plate theories, including equivalent layer and layerwise theories of different order, is the

so-called Carrera’s Unified Formulation (CUF) [27, 28]. Within this framework, the exact solutions of the

equations governing the buckling of simply-supported cross-ply plates is discussed in Refs. [29, 30], where

the Navier and Lévy methods are applied.

Another interesting application of CUF regards its combined application with approximate techniques, an ex-

ample of which is given by radial basis functions [31–33]. In these cases, strong form equations and boundary

conditions are derived starting from the Principle of Virtual Discplacements (PVD), and the discretization is

then performed on the basis of the interpolation technique of Ref. [34]. An application to the static and free

vibration analysis of isotropic and cross-ply plates is found in Ref. [31], while buckling, bending and vibration

response of functionally graded sandwich plates is discussed in Refs. [32, 33]. Recently, the combined use of

radial basis functions and CUF has been extended to the buckling analysis of thin-walled beams [35].

Two other approximate techniques that have been successfully applied in the context of CUF are the Galerkin

and the Modified Galerkin methods. They are applied in Refs. [36, 37] to obtain an extensive set of buckling

and thermo-mechanical buckling solutions for multilayered simply-supported plates.

Still in the context of straight fiber plates, variable-kinematic formulations have been developed by solving
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the weak form equations with the method of Ritz. Examples can be found for the buckling [36, 38] and

vibration [39, 40] of composite plates.

To the best of the authors’ knowledge, high-order solutions are still quite rare in the case of curvilinear fiber

panels. The need for high-order solutions is additionally motivated by the fact that variable stiffness plates

were found to be more affected by transverse shear effects than corresponding quasi-isotropic configurations

[41]. Furthermore, large part of the works limits the analysis to simply-supported boundary conditions, while

free and clamped conditions – and combinations of them – have been rarely assessed.

The present work aims to fill these gaps by presenting a novel semi-analytical approach for the analysis of

variable stiffness panels. The theory relies on the use of CUF applied in conjunction with the method of

Ritz. The resulting variable-kinematic approach is here denoted as vk-Ritz method.

Based on previous works by the authors for straight fiber panels [30, 38, 40, 42], the semi-analytical model

has been extended to account for a continuous variation of the orientation angles in the space. The problem

is developed by adopting a displacement-based approach, where the three components of the displacement

field are expanded using Chebyshev polynomials and boundary characteristic functions. In the context of a

variational framework, the set of equations governing the discrete problem is obtained for the buckling and

free vibration analysis.

The vk-Ritz method is validated against results available in the literature, and is here adopted to present

reference solutions, using theories of various order, for the buckling and vibrating modes of sandwich and

monolithic variable stiffness panels.

2 Variable Stiffness Panels

The methodology is developed for the analysis of composite plates obtained by the stacking of plies with

non-straight fibers; both thin and moderately thick plates are considered. A sketch of the panel is reported

in Figure 1, where the reference system and the dimensions of the plate are illustrated. In particular, the

panel is characterized by length a and width b. It is obtained by the stacking of a number Nl of plies, each

one characterized by thickness hk, for a total thickness equal to h.

A Cartesian coordinate system is taken such that the x-axis is directed parallel to the longitudinal edge

of length a, and the y-axis is parallel to the transverse edge of length b. The four sides of the panel are

numbered in a counterclockwise direction, as reported in Figure 1.

The four panel edges can be subjected to any combination of clamped, simply-supported and free boundary

4



  

conditions, while the loading case, for the buckling analysis, is restricted to the pure axial compression.

Different approaches can be assumed to express the fiber angle variation: Lobatto and Lagrange polynomials

[18, 43], NURBS [44], or linear interpolation within control points [10] are few but examples. In this study,

the fiber angle is allowed to vary along the x or the y direction with a linear law, but it is never function of

both the coordinates. Therefore, stiffness variation can be achieved along one of the two directions. In case

of fiber variation along the x axis, the orientation angle at a generic point of the panel domain is expressed

as [6]:

θ(x) =
2 (T1 − T0)

a
|x| + T0 (1)

where T0 is the orientation angle at the center of the panel, i.e. x = 0, while T1 is the fiber orientation at

the panel edge, i.e. x = ±a/2. By integration of Eq. (1), the coordinates y of the fiber passing through the

origin are obtained as:

y =
a

2 (T0 − T1)

⎧⎨
⎩ln

∣∣∣∣∣cos
[
2 (T1 − T0)

a
x + T0

]∣∣∣∣∣− ln
∣∣cos (T0)

∣∣
⎫⎬
⎭ if x > 0 (2)

y =
a

2 (T1 − T0)

⎧⎨
⎩ln

∣∣∣∣∣cos
[
2 (T0 − T1)

a
x + T0

]∣∣∣∣∣− ln
∣∣cos (T0)

∣∣
⎫⎬
⎭ if x < 0 (3)

Similar equations are easily derived for the case of fiber orientations varying along the direction y. To

illustrate the path of a generic fiber passing through the center of the plate, a sketch is presented in Figure 2.

The fiber orientation angles are positive in the counterclockwise direction, according to the notation of

Figure 2. As outlined by Akhavan and Ribeiro [12], two strategies can be implemented to place the other

fibers starting from the reference path, namely the parallel and the shifted method. The former consists in

placing the fibers such that each point lies at constant distance from the reference fiber, the latter consists

in translating the reference fiber along, in this case, the y axis. In this study, it is assumed that the shifted

method is adopted for the fiber placement.

Following the classical notation for variable stiffness panels [45], the layer <T0|T1> denotes a fiber path

with orientation angle varying from T0, at the center of the panel, to T1 at the panel edge, as illustrated in

Figure 2. To clearly distinguish between fiber variation along the x and y direction, a subscript is added, so

that [<T0|T1>x] is a ply with fiber variation along x, and [<T0|T1>y] is a ply with fiber variation along y.

Regarding the vibration analysis, no assumptions are introduced on the stacking sequence of the laminate.

In this case, any kind of elastic coupling is accounted for, including those due to membrane or flexural

anisotropy, as well as those arising from unsymmetric stacking sequences.

For the buckling analysis, the class of laminates is restricted to the case of symmetric and balanced laminates.
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In any case, this assumption is not too restrictive as typical aeronautical panels are commonly designed under

the constraint of symmetric stacking and null in-plane anisotropy.

3 Variable-Kinematic Formulation

The variable-kinematic model is developed by adopting a variational approach. The problem is stated

starting from the Lagrangian of the system, which reads:

L = T − U (4)

where U is the strain energy an T is the kinetic energy. In particular, the strain energy associated to the

plate of Figure 1 is written as:

U =
1
2

Nl∑
k=1

∫
Ω

∫ zk+1

zk

(
εkT

p σk
p + εkT

n σk
n + εkT

pnl
σk

p0

)
dz dΩ (5)

where Ω denotes the domain [−a/2 a/2] × [−b/2 b/2]. The first two contributions are due to the internal

work of in-plane and normal stress components, while the third contribution accounts for the initial state of

stress, hereinafter denoted as pre-buckling state.

In the expression of Eq. (5), the components of the deformation and stress tensors are split into the in-plane

and normal contributions, according to the definitions:

εk
p =

{
εk
xx εk

yy γk
xy

}T

σk
p =

{
σk

xx σk
yy τk

xy

}T

(6)

εk
n =

{
γk

xz γk
yz εk

zz

}T

σk
n =

{
τk
xz τk

yz σk
zz

}T

(7)

and the vector accounting for the initial stress state is defined as:

σk
p0 =

{
σk

0xx σk
0yy τk

0xy

}T

(8)

The three components of Eq. (8) define the pre-buckling state of the plate and are determined from an initial

linear analysis, whose details are discussed later. The work-conjugated term to Eq. (8) is the nonlinear part

of the Green-Lagrange strain tensor, which is expressed as:

εk
pnl

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

[(
uk2

,x + vk2

,x

)
ϕ + wk2

,x

]
1
2

[(
uk2

,y + vk2

,y

)
ϕ + wk2

,y

]
(
uk

,xuk
,y + vk

,xvk
,y

)
ϕ + wk

,xwk
,y

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9)
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where the scalar ϕ is null if von Kármán approximation is adopted, and is equal to one otherwise; the terms

uk, vk and wk are the components of the displacement field. In the notation here adopted, the comma

followed by an index denotes differentiation with respect to that index. The expression of the kinetic energy

reads:

T =
1
2

Nl∑
k=1

∫
Ω

∫ zk+1

zk

ρku̇kT
u̇k dz dΩ (10)

where the dot denotes the time derivative, ρk is the k-th ply density, and the displacement vector uk is:

uk =
{

uk vk wk
}T

(11)

The formulation is developed in the context of a displacement-based approach, so the ply constitutive

equation and the strain-displacement relations are introduced to express the strain energy U as function of

the displacement components.

Referring to the vector-like organization of the stress and strain components of Eqs. (6) and (7), the ply

constitutive law, expressed in the global reference system, reads:

σk
p = C̃

k

pp (x, y) εk
p + C̃

k

pn (x, y) εk
n

σk
n = C̃

k

np (x, y) εk
p + C̃

k

nn (x, y) εk
n

(12)

where the matrices C̃ik are functions of the position due to the steering of fibers.

In a similar fashion, the strain-displacement relations are expressed as:

εk
p = Dpuk

εk
n = Dnuk +

∂

∂z
uk

(13)

where the differential operators Dp and Dn are defined as:

Dp =

⎡
⎢⎢⎢⎢⎣

(·),x 0 0

0 (·),y 0

(·),y (·),x 0

⎤
⎥⎥⎥⎥⎦ Dn =

⎡
⎢⎢⎢⎢⎣

0 0 (·),x

0 0 (·),y

0 0 0

⎤
⎥⎥⎥⎥⎦ (14)

The total potential energy is re-written by substituting Eqs. (12)-(14) into Eq. (5). The expression so

obtained is:

U =
1
2

Nl∑
k=1

∫
Ω

∫ zk+1

zk

{(
Dpuk

)T
[
C̃

k

ppDpuk + C̃
k

pn

(
Dnuk + uk

,z

)]
+

+
(
Dnuk + uk

,z

)T
[
C̃

k

npDpuk + C̃
k

nn

(
Dnuk + uk

,z

)]
+ εkT

pnl
σk

p0

}
dz dΩ

(15)
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The last term of Eq. (15), which is due to the pre-buckling state, can be conveniently re-written as:

εkT

pnl
σk

p0 =
(
Dnluk

)T

Σk
p0Dnluk (16)

with:

Dnl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(·),x 0 0

(·),y 0 0

0 (·),x 0

0 (·),y 0

0 0 (·),x

0 0 (·),y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

Σk
p0 =

⎡
⎢⎢⎢⎢⎣

ϕσk
p0 0 0

0 ϕσk
p0 0

0 0 σk
p0

⎤
⎥⎥⎥⎥⎦ σk

p0 =

⎡
⎢⎣σ0xx τ0xy

τ0xy σ0yy

⎤
⎥⎦ (18)

It is worth observing that, in the present study, the pre-buckling stress is described by considering only the

in-plane components σ0xx, σ0yy and τ0xy. For many practical situations, including the case of a symmetric

and balanced laminate loaded in compression, the other stress components are effectively null. However, no

restriction exists in extending the presented approach to consider a more complex pre-buckling state.

After substitution of Eq. (16) into Eq. (15), the displacement-based expression of the total potential energy

is obtained as:

U =
1
2

Nl∑
k=1

∫
Ω

∫ zk+1

zk

{(
Dpuk

)T
[
C̃

k

ppDpuk + C̃
k

pn

(
Dnuk + uk

,z

)]
+

+
(
Dnuk + uk

,z

)T
[
C̃

k

npDpuk + C̃
k

nn

(
Dnuk + uk

,z

)]
+

+
(
Dnluk

)T

Σk
p0Dnluk

}
dz dΩ

(19)

3.1 Displacement field approximation

By adopting Carrera’s unified formulation and using its well-known notation (see, for instance, Ref. [27, 28]),

the displacement field is approximated, by separation of variables, as:

uk (ξ, η, ζ) = Fτ (ζ)uk
τ (ξ, η) (20)

where the nondimensional coordinates ξ and η are introduced by the transformation of coordinates:

ξ =
2x

a
η =

2y

b
(21)
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The repeated index τ of Eq. (20) implies the summatory according to the Einsten’s convention. The term Fτ

denotes the thickness function and depends on the kind of theory adopted, as well as its order. In particular,

a set of equivalent layer theories, denoted as EDn, is obtained by assuming Fτ as a set of polynomial functions

defined by:

Fτ = ζτ with τ = 0, 1, . . . , N (22)

where ζ is the nondimensional thicknesswise coordinate defined in [-1 1].

A set of layerwise theories, denoted as LDn, can be derived by assuming, for each ply composing the lay-up,

the following set of functions:

Ft =
1 + ζk

2
; Fb =

1 − ζk

2
; Fr = Pr (ζk) − Pr−2 (ζk) with r = 2, . . . , N (23)

where Pr are Legendre polynomials of order r.

According to the approach proposed by Dozio and Carrera [40], the generalized displacement components

uk
τ are approximated with a Ritz-like expansion as:

uk
τ (ξ, η) =

⎡
⎢⎢⎢⎢⎣

Nuτi 0 0

0 Nvτi 0

0 0 Nwτi

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ck
uτi

ck
vτi

ck
wτi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Nτick
τi (24)

The admissible functions Nlτi are those relative to the component l of the displacement, and are chosen

according to the boundary conditions. Assuming the separation of the variables, they are represented as:

Nlτi (ξ, η) = Φlτm (ξ) Ψlτn (η) with m,n = 1, . . . , P (25)

and, in turn, the functions Φ and Ψ are obtained as:

Ψuτn (η) = guτ (ξ) pn (η) Φuτm (ξ) = fuτ (ξ) pm (η) (26)

where f and g are boundary compliant functions whose definition can be found in Ref. [40], and the terms

pl are Chebyshev polynomials given by:

pl = cos
[
(l − 1) arccos (ξ)

]
(27)

The expression of the strain energy, under the approximation of the Ritz method, is obtained after substi-

tuting Eqs. (20)-(27) into Eq. (19) as:

U =
1
2

Nl∑
k=1

N∑
τ,s=1

M∑
i,j=1

ckT

τi

(
Kk

τsij + Gk
τsij

)
ck

sj (28)
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where Kk
τsij and Gk

τsij are the so-called Ritz fundamental nuclei [40] of the stiffness and geometric stiffness

matrices, respectively, whose expression is obtained as:

Kk
τsij =

∫ 1

−1

∫ 1

−1

(
DpNτi

)T(
Ek

τsC̃
k

ppDpNsj + Ek
τsC̃

k

pnDnNsj + Ek
δτsC̃

k

pnNsj

)
+

+ (DnNτi)
T

(
Ek

τsC̃
k

npDpNsj + Ek
τsC̃

k

nnDnNsj + Ek
δτsC̃

k

nnNsj

)
+

+NT
τi

(
Ek

δτsC̃
k

npDpNsj + Ek
δτsC̃

k

nnDnNsj + Ek
δτδsC̃

k

nnNsj

)
ab

4
dξ dη

(29)

Gk
τsij =

∫ 1

−1

∫ 1

−1

(DnlNτi)
T Σk

p0DnlNsjE
k
τs

ab

4
dξ dη (30)

Similarly, the maximum kinetic energy associated to an harmonic motion of the plate is:

T =
ω2

2

Nl∑
k=1

N∑
τ,s=1

M∑
i,j=1

ckT

τi Mk
τsijc

k
sj (31)

where the mass matrix nucleus reads:

Mk
τsij =

∫ 1

−1

∫ 1

−1

Eτsρ
kNT

tiNsj
ab

4
dξ dη (32)

and ω is the circular frequency. The full expressions of the 3×3 nuclei of Eqs. (29), (30) and (32) are provided

in the Appendix.

The governing equations are obtained by expanding the nuclei over the indexes τ , s, i and j, and are

assembled according to the procedure outlined in Ref. [40]. By imposing the first variation of the functional

of Eq. (4) to vanish, the governing equations are obtained as:

(
−ω2M + K + G

)
c = 0 (33)

which is the eigenvalue problem corresponding to the vibration analysis of a plate in presence of a pre-load.

The natural vibration problem of the unloaded plate is derived from Eq. (33) by considering null loading

stiffness G, and so: (
−ω2M + K

)
c = 0 (34)

The buckling problem can be recovered from Eq. (33) by introducing the unknown multiplier of the pre-

buckling condition λ. The eigenvalue problem is then:

(K + λG) c = 0 (35)

From the solution of Eqs. (34) and (35), the modal and the buckling shapes are obtained as the eigenvectors

of the problem, while the eigenvalues correspond to the square of the angular frequency and the buckling
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multiplier, respectively. It is worth noting that the buckling problem is, in general, non-positive definite,

and the buckling condition is that one corresponding to the smallest positive eigenvalue.

3.2 Pre-buckling Analysis

Under specific assumptions regarding the boundary conditions and the fiber steering law, the pre-buckling

condition can be obtained in a closed-form manner with no need to solve the linear static problem numerically.

A discussion regarding the linear response of variable stiffness panels is found in Ref. [6, 45].

In this paper, it is assumed that the panel is loaded with an imposed edge displacement equal to Δu, uniform

along the transverse edges, while the longitudinal edges are free to translate, but forced to remain straight.

The assumption of straight edges is representative of the typical deformation pattern of the skin of stringer-

stiffened panels, where the in-plane bending stiffness of the stringers forces the skin edges to remain straight

[46, 47]. A picture illustrating the loading condition and the pre-buckling deformation pattern is given in

Figure 3.

Depending on whether the orientation angle varies along the x- or y-axis (Case A and Case B, respectively),

two distinct, exact, pre-buckling solutions can be determined as outlined in the following.

Case A - Orientation angle variable along x

This pre-buckling configuration corresponds to a panel with stiffness variation along the axis x, therefore

not allowing for load redistribution along the width when a displacement is imposed along the x-direction.

Referring to the approach proposed by Gürdal and Olmedo [6], the in-plane force resultants are obtained as:

Nx = N0

Ny =
A12(x)
A11(x)

N0 − A22(x)A11(x) − A12(x)2

A11(x)
c

d
N0

Nxy = 0

(36)

where N0 denotes the constant in-plane compressive force per unit length associated to the imposed dis-

placement Δu. The in-plane stiffness terms Aik are defined as:

A11 =
Nl∑

k=1

(
C̃k

11 − C̃k2

13

C̃k
33

)
hk A12 =

Nl∑
k=1

(
C̃k

12 − C̃k
13C̃

k
23

C̃k
33

)
hk A22 =

Nl∑
k=1

(
C̃k

22 − C̃k
23C̃

k
23

C̃k
33

)
hk (37)
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and the scalar terms c and d are given by the expressions:

c =
∫ a/2

0

A12(x)
A11(x)

dx

d =
∫ a/2

0

A22(x)A11(x) − A12(x)2

A11(x)
dx

(38)

The results of Eq. (36) illustrate that the axial force resultant is constant over the entire panel domain, and

the shear load is identically null. The stiffness variation along x and the in-plane boundary condition of

straight longitudinal edges determine the onset of a non null transverse force per unit length Ny, and whose

resultant is zero.

The relation between the imposed axial displacement and the force resultant N0 can be derived as:

Δu =
∫ a/2

−a/2

d + cA12(x)
A11(x)d

dxN0 (39)

Case B - Orientation angle variable along y

Case B deals with variable stiffness panels characterized by a steering of the fibers along the y-direction. From

the compressive buckling point of view, this is the most interesting configuration. Indeed, the possibility

of tailoring the fiber angle in the transverse direction can be exploited to achieve load redistribution at the

panel edges, with consequent improvements on the buckling load.

In this case, the closed-form solution for the pre-buckling stress resultants is:

Nx =

[
A11(y) − A12(y)2

A22(y)

]
Δu

a

Ny = 0

Nxy = 0

(40)

As opposed to Case A, not only the shear resultant Nxy is null, but also the transverse in-plane forces are

null, meaning that no reacting forces are needed to enforce the condition of straight edges.

In this case, the panel stiffness is not constant in the transverse direction and, accordingly, the profile of the

axial force Nx varies along the y-coordinate, as seen from the first of Eq. (40). It is then useful to introduce

the average value of the axial force per unit length carried by the panel as:

Nx,avg =
1
b

∫ b/2

−b/2

Nx(y) dy (41)
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3.3 Ply stresses

Once the in-plane stress resultant are available from Eq. (36) or Eq. (40), the ply stresses are determined

referring to the ply constitutive law and assuming vanishing stress σ0zz:

σk
0xx =

(
C̃k

11 − C̃k2

13

C̃k
33

)
ε0xx +

(
C̃k

12 − C̃k
23C̃

k
13

C̃k
33

)
ε0yy

σk
0yy =

(
C̃k

12 − C̃k
13C̃

k
23

C̃k
33

)
ε0xx +

(
C̃k

22 − C̃k2

23

C̃k
33

)
ε0yy

σk
0xy =

(
C̃k

16 − C̃k
13C̃

k
36

C̃k
33

)
ε0xx +

(
C̃k

26 − C̃k2

23 C̃k
36

C̃k
33

)
ε0yy

(42)

where the shear deformations γ0xy are identically null due to the assumption of balanced laminate. The

longitudinal and transverse deformations, which are equal for each ply of the laminate, are:

ε0xx =
1

A11A22 − A2
12

(
A22Nx − A12Ny

)
ε0yy =

1
A11A22 − A2

12

(−A12Nx + A11Ny

) (43)

The ply stresses, as determined from Eq. (42), are substituted into Eq. (30) and the expression of the

geometric stiffness nucleus is determined.

4 Results

The results obtained with the vk-Ritz method are presented with regard to the vibration and buckling analy-

sis of a number of variable stiffness panels. To check the accuracy of the predictions, the results are compared

with those available in the literature and with Abaqus finite element analyses. To this aim, high-fidelity S4R

shell elements are used.

A set of novel results is proposed for various combinations of boundary conditions and using theories of

different orders, including equivalent layer and layerwise approaches. The panels under investigation are not

restricted to the case of monolithic constructions, but include also sandwich panels with variable stiffness

face-sheets. Due to the lack of refined solutions for variable stiffness plates, these results are an interesting

reference for future studies in this field.

For monolithic plates and sandwich face-sheets, two aerospace CFRP materials are assumed. More specifi-

cally, Material 1 is assumed in the context of vibration analyses, while Material 2 is considered for buckling

analyses. The elastic properties of these two materials are summarized in Table 1.
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For Material 1, the orthotropy ratio E11/E22 is equal to 24 and, for Material 2, it is 14. As discussed in

the next, thick variable stiffness panels can undergo local, undesired, buckling modes much more frequently

than straight fiber configurations. For this reason, materials with higher values of orthotropy ratio, which

in fact would tend to promote local buckling modes, are not accounted for.

Regarding the cores of the sandwich constructions, two distinct materials are considered, so that the effect

of varying the core stiffness can be assessed. Both the configurations are 5052 alloy hexagonal aluminum

honeycombs [48], with a typical cell size of 1/8 in., and differing each other by the foil thickness.

The first configuration is a high density core, henceforth denoted as Core H, with a foil thickness equal to

0.003 in. The second configuration, denoted as Core L, has a thickness of 0.001 in. and, consequently, lower

density.

The mechanical properties of the two cores are determined following the approach proposed by Burton and

Noor [49], where the aluminum foil properties are taken as E=72 GPa and ν=0.3. Note that the transverse

shear stiffness G13 here considered is the upper bound prediction obtained with the approach proposed in

Ref. [49]. The elastic properties of the two cores are summarized in Table 2. It can be observed that the

transverse shear properties of the configuration Core H are, approximately, three times higher if compared

to the properties of the Core L.

4.1 Vibration analysis

A preliminary study is carried out to find the number of shape functions guaranteeing the convergence of

the results. To this aim, a simply-supported square plate with width-to-thickness ratio of 50 is considered.

The plate is made of Material 1 and ED4 plate theory is adopted. With the aim of highlighting the effect

of varying the stiffness on the convergence properties of the solution, two lay-ups are considered. The

first plate is a straight fiber cross-ply configuration with stacking sequence [0 90]s. The second plate is a

variable stiffness laminate with lay-up [±<0|90>x]s. This second configuration is intentionally characterized

by high degree of fiber curvature in order to exacerbate the effects due to the fiber steering. The results are

summarized in Table 3, where the first four nondimensional frequencies are reported by varying the number

of shape functions from P=4 up to 14. Note that an equal number of functions along the two orthogonal

directions x and y is assumed in all the cases. The percent values in the parenthesis denote the difference

with respect to the frequency obtained in the previous run, using a smaller number of functions.

It is observed that, as expected, the results converge monotonically in both cases. Moreover, the first

configuration displays faster convergence properties and, by taking P=10, the maximum difference with
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respect to the previous frequency value is 0.02%. For the variable stiffness plate, a value of P=10 is associated

to a maximum percent difference of 0.85% with respect to the results obtained considering P=8. When the

number of functions is increased to P=12, the maximum difference reduces to 0.28% and, forP=14, the

difference is 0.20%.

A good compromise between accuracy of the predictions and size of the problem is obtained by choosing a

number of functions such that the maximum difference is below 0.50%. According to this threshold value,

the number of function is taken equal to P=12.

Comparison with literature and finite elements

Free vibrations are investigated by presenting the comparison with the results of Refs. [12, 13]. The panel

is made of Material 1 and has dimensions a and b equal to 1000 mm × 1000 mm. The laminate is obtained

by the stacking of three plies at [<0|45>x, <-45|-60>x, <0|45>x]. The stacking sequence is symmetric but

unbalanced, therefore the laminate exhibits bending/twisting elastic coupling. The total thickness h is taken

equal to 10 mm and 100 mm, so that the effect of different width-to-thickness ratios can be assessed.

The comparison between theories of various order is summarized in Table 4 for a panel subjected to simply-

supported conditions at the four edges. The table reports also the frequencies obtained by Ribeiro et al. [8]

using a third-order finite element formulation – here taken as reference to compute the percent differences

reported in the parenthesis – and those of Tornabene and co-workers [13], obtained with a fourth-order

theory and LGDQ method.

For the thin plate configuration, i.e. b/h=100, the differences between the results obtained with EDn and

LDn theories are almost null. As expected, no improvement in the quality of the results is achieved by

increasing the order of the theory, as the response of a thin plates is accurately captured by low-order EDn

theories. Good agreement is observed with the results of Refs. [12, 13].

Different considerations can be drawn for the panel with b/h=10, where the adoption of the ED2 theory

leads to errors higher than 4.0%. On the other hand, ED3 and ED4 guarantee close matching with the

results of Ref. [12, 13], with slightly smaller frequency values. It is interesting to highlight that LD1 results

are characterized by a maximum percent difference close to 2%, and the corresponding frequencies are higher

if compared with ED3 and ED4 theory. As a matter of fact, the enforcement of a linear behaviour along the

thickness has a detrimental effect on the results, despite the approach is layerwise.

On the other hand, LD2 and LD3 theories lead to frequency values that are slightly smaller in comparison

to those obtained with ED4 theory and to the frequencies presented in Ref. [12] using a third-order shear
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deformation theory.

Additional results are summarized in Table 5 considering, in this case, clamped boundary conditions along

the four edges. Again, close matching is observed for all the theories when b/h=100. For the thicker con-

figuration with b/h=10, it can be seen that ED2 theory is responsible for relatively large errors. At least,

ED3 theory is needed to guarantee a good level of accuracy of the results. Even in this case, the frequencies

obtained with LD1 theory are higher in comparison to ED3 and ED4.

Further results are provided for the natural frequencies and vibrating modes of sandwich plates with variable

stiffness face-sheets. In particular, the lay-up and the material of the face-sheets are the same of the previous

examples, while the low density honeycomb of Table 2 is taken as core material. The ratio between the face-

sheet thickness hf and the total thickness h is fixed to 0.10. The first four nondimensional frequencies are

presented in Table 6 for different width-to-thickness ratio b/h and a/b, while the first four vibrating modes

are plotted in Figure 4 for a square plate with b/h=100 and various boundary conditions.

Despite the presence of the core, plates with b/h=100 can be accurately described using ED2 theory. Con-

trarily, ED4 theory is needed to avoid large errors when b/h is reduced to 50. In these conditions, the

adoption of a layerwise theory does not offer any substantial advantages in comparison to ED4 theory. The

opposite can be said for thicker plates with b/h=10, where the maximum differences between ED4 and LD2

can be as high as 3%.

4.2 Buckling analysis

The second part of the work deals with the buckling analysis of variable stiffness sandwich panels. In this

context, the face-sheets are made of Material 2, while the effect of the core stiffness is assessed by considering

the two materials of Table 2.

As in the case of vibration analysis, the convergence of the method is checked by progressively increasing the

number of shape functions, and evaluating the percent differences with the results obtained in the previous

run. To highlight how convergence is affected by the non-uniformity of the panel stiffness, two configurations

are considered. The first panel is cross-ply, straight-fiber laminate, with stacking sequence [0 90]s; the second

plate has variable stiffness and lay-up [±<90|0>y]s. It is worth highlighting that this second configuration

does not account for any manufacturing constraint regarding the fiber curvature, but is artificially considered

to achieve drastic stiffness variation.

Simply-supported boundary conditions are assumed, and the ratio b/h is fixed to 50. The results of the

convergence analysis, obtained by considering ED4 theory, are presented in Table 7. It is interesting to
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highlight the faster convergence in the case of the straight fiber configuration. In particular, the buckling

load of the cross-ply laminate reaches convergence for P equal to 8, while this is not the case for the second

configuration.

Considering the same threshold value of 0.50% used before for the free vibration analysis, the number of

functions is fixed to P=12. It is reminded that realistic variable stiffness configurations are generally char-

acterized by milder stiffness variation in comparison to the lay-up of Table 7 . Therefore, their convergence

properties can be reasonably expected to be something in between the two cases of Table 7.

A set of results is derived for sandwich configurations characterized by various geometric ratios, lay-ups and

boundary conditions. Due to the lack of available benchmark results for variable stiffness sandwich panels,

all the buckling loads are compared with Abaqus finite element predictions.

A preliminary analysis was conducted to ensure that the plate undergoes global instability. Indeed, the

failure modes of thick variable stiffness panels – as opposed to straight fiber configurations – tend to be dom-

inated by core crushing mechanisms and highly localized modes. This behaviour, which is exacerbated by

fiber steering configurations leading to noticeable load redistribution towards the edges, is not desirable from

a design point of view. Furthermore, the present vk-Ritz approach can hardly predict local modes efficiently,

as the shape functions are defined at global level. Therefore, a careful selection of the ply orientations is

needed to ensure that the buckling modes are of global type.

For the first sandwich configuration, the stacking sequence is taken equal to [±<45|30>y]s. In addition to

guaranteeing a global instability mechanism, this is an attractive configuration as it is characterized by im-

proved buckling loads with respect to the straight fiber ±45 configuration. The steering of the fiber from 45

to 30 degrees determines a beneficial pre-buckling load redistribution and leads to higher bifurcation loads.

Nondimensional buckling loads are reported in Table 8 for thin and moderately thick square plates, and four

different boundary conditions are considered. Furthermore, the ratio between the face-sheet and the total

plate thickness is varied from 0.05 to 0.10.

In general, good agreement between LD1, LD2 and Abaqus buckling loads can be observed for all the results

of Table 8. Regarding EDn theories, the accuracy of the results is restricted to a subset of cases, as discussed

here below. In particular, ED2 theory leads to an over-prediction of the buckling load that can be as high as

5%, even in the case of thin sandwich plates with b/h=100. Fourth order ED4 theory seems adequate for the

analysis of plates with b/h=100, but is responsible for a maximum error of 3% when the width-to-thickness

ratio is increased to 50. Contrarily, accurate predictions are obtained by adopting a layerwise LD1 and LD2

approach, although no substantial improvements are obtained when the order of the layerwise description
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is increased from 1 to 2. All the cases reported in Table 8 clearly illustrate that fully clamped boundary

conditions are those responsible for the highest differences between plate theories. On the opposite, simply-

supported plates are less sensitive.

In addition, it is observed that the difference between ED2 and higher order results increases with the ratio

hF/h.

The results of Tables 9 and 10 provide an assessment of the effect of different core stiffness and face-sheet

lay-up. The nondimensional parameters b/h and hF/h are fixed to 50 and 0.10, respectively.

The results of Table 9 are presented for the straight fiber lay-up [±45]2, and for two variable stiffness config-

urations with fiber variation along the direction y. The first lay-up is [<45|30>y]s and is characterized by a

mild fiber steering; the second, [<75|15>y]s, displays an aggressive steering which has the effect of promoting

a drastic pre-buckling stress redistribution towards the edges and, consequently, higher buckling loads. A

plot of the buckling modes is provided in Figure 5 with regard to the configuration with lay-up [<45|30>y]s

and Core H. Similar shapes, although not reported here, are obtained for all the configurations of Table 9.

Additional results are proposed in Table 10 by considering face-sheets with fiber steering along the x-

direction, thus corresponding to Case A pre-buckling condition. In this case, load redistribution towards the

edges cannot be achieved, but a beneficial transverse tensile internal force allows improved buckling response

with respect to the straight fiber configuration. As seen from the results of Tables 9 and 10, fully clamped

and simply-supported plates are the most and less sensitive boundary conditions to the plate theory adopted,

respectively.

It is interesting to note that, despite the ratio b/h is not particularly small, ED2 leads to unacceptable errors

in all the cases here presented. Referring to the fully clamped panel, the errors range from 2% to 22%.

Both in Tables 9 and 10, ED4 theory provides accurate predictions only for Core H material. In this case,

the maximum difference with respect to FEM results remains below 1%. However, the error increases up

to 4% when the core stiffness is reduced, and Core L is assumed. Therefore, it is concluded that the use of

EDn theories, despite the clear advantages from a computational point of view, is not an appropriate choice

when dealing with sandwich variable stiffness panels. For relatively stiff cores, ED4 could be used but, to a

more general extent, a layerwise theory is the most appropriate strategy.

Finally, it is remarked that the accuracy of the results seems independent on the amount of fiber curvature,

and similar percent differences are obtained for corresponding configurations with different lay-up.
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5 Conclusions

The paper has proposed a variable-kinematic approach based on the combined use of CUF and the Ritz

method for the vibration and buckling analysis of variable stiffness plates.

The present vk-Ritz formulation offers the major advantage of making it possible the analysis of any combina-

tion of boundary conditions. Furthermore, high-order and layerwise theories are embedded in the formulation

thanks to the unified approach. Therefore, refined vibration and buckling results can be obtained for panels

characterized by small width-to-thickness ratios and, in the case of sandwich configurations, by relatively low

core stiffnesses. These capabilities have been exploited to derive a number of results that provide a useful

benchmark for future investigations on these structures.

The vibration analysis has been discussed with regard to monolithic configurations, illustrating close agree-

ment between results obtained with the present formulation and those available in the literature.

With regard to buckling analysis, the investigation was confined to sandwich configurations, for which a

small number of results is available in the literature. As opposed to straight fiber configurations, the anal-

ysis of thick plates should be carefully carried out, as many configurations may suffer from undesired local

instabilities. The results clearly illustrate that ED2 theory lead to highly inaccurate predictions in most of

the cases. Therefore, a careful selection of the plate theory is recommended. For typical aerospace materials,

ED4 theory can be adequate provided the core is moderately stiff. On the other hand, a layerwise theory is

necessary when dealing with low density cores, characterized by small transverse shear stiffness.

Future work will be directed towards the introduction of efficient techniques to capture local modes that

may characterize the response of sandwich panels.

References

[1] A.W. Leissa and A.F. Martin. Vibration and buckling of rectangular composite plates with variable

fiber spacing. Composite Structures, 14(4):339–357, 1990.

[2] M.T. DiNardo and P. Lagace. Buckling and postbuckling of laminated composite plates with ply

dropoffs. AIAA Journal, 27(10):1392–1398, 1989.

[3] M.W. Hyer and R.F. Charette. Use of curvilinear fiber format in composite structure design. In 30th

AIAA Structures, Structural Dynamics, and Materials Conference, 89-1404-CP, Mobile, AL, 3–5 April

1989.

19



  

[4] M.W. Hyer and R.F. Charette. Use of curvilinear fiber format in composite structure design. AIAA

Journal, 29(6):1011–1015, 1991.
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panels for maximum buckling load. Composite Structures, 87(1):109–117, 2009.

[17] G. Raju, Z. Wu, B.C. Kim, and P.M. Weaver. Prebuckling and buckling analysis of variable angle tow

plates with general boundary conditions. Composite Structures, 94(9):2961–2970, 2012.

[18] Z. Wu, P.M. Weaver, G. Raju, and B.C. Kim. Buckling analysis and optimisation of variable angle tow

composite plates. Thin-Walled Structures, 60:163–172, 2012.

[19] Z. Wu, G. Raju, and P.M. Weaver. Postbuckling analysis of variable angle tow composite plates.

International Journal of Solids and Structures, 50(10):1770–1780, 2013.

[20] C. Bisagni and R. Vescovini. Fast tool for buckling analysis and optimization of stiffened panels. Journal

of Aircraft, 46(6):2041–2053, 2009.

[21] C. Bisagni and R. Vescovini. Analytical formulation for local buckling and post-buckling analysis of

stiffened laminated panels. Thin-Walled Structures, 47(3):318–334, 2009.

[22] B.H. Coburn, Z. Wu, and P.M. Weaver. Buckling analysis of stiffened variable angle tow panels. Com-

posite Structures, 111:259–270, 2014.

[23] B.H. Coburn and P.M. Weaver. Buckling analysis, design and optimisation of variable stiffness sandwich

panels. In 20th International Conference on Composite Materials, Copenhagen, July 19–24 2015.

[24] J.N. Reddy and N.D. Phan. Stability and vibration of isotropic, orthotropic and laminated plates

according to a higher-order shear deformation theory. Journal of Sound and Vibration, 98(2):157–170,

1985.

[25] J.N. Reddy. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press,

Boca Raton, 2004.

[26] A.J.M. Ferreira, C.M.C Roque, A.M.A Neves, R.M.N Jorge, C.M Mota Soares, and J.N. Reddy. Buckling

analysis of isotropic and laminated plates by radial basis functions according to a higher-order shear

deformation theory. Thin-Walled Structures, 49(7):804–811, 2011.

21



  

[27] E. Carrera. A class of two-dimensional theories for anisotropic multilayered plates analysis. Atti Ac-

cademia delle Scienze di Torino. Memorie Scienze Fisiche, 19:1–39, 1995.

[28] E. Carrera. Theories and finite elements for multilayered, anisotropic, composite plates and shells.

Archives of Computational Methods in Engineering, 9(2):87–140, 2002.

[29] M. D’Ottavio and E. Carrera. Variable-kinematics approach for linearized buckling analysis of laminated

plates and shells. AIAA Journal, 48(9):1987–1996, 2010.

[30] R. Vescovini and L. Dozio. Exact refined buckling solutions for laminated plates under uniaxial and

biaxial loads. Composite Structures, 127:356–368, 2015.

[31] A.J.M. Ferreira, C.M.C. Roque, E. Carrera, and M. Cinefra. Analysis of thick isotropic and cross-ply

laminated plates by radial basis functions and a unified formulation. Journal of Sound and Vibration,

330(4):771–787, 2011.

[32] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, R.M.N. Jorge, and C.M.M. Soares. Buckling

analysis of sandwich plates with functionally graded skins using a new quasi-3d hyperbolic sine shear

deformation theory and collocation with radial basis functions. ZAMM-Journal of Applied Mathematics

and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 92(9):749–766, 2012.

[33] A.M.A. Neves, A.J.M. Ferreira, E. Carrera, M. Cinefra, C.M.C. Roque, R.M.N. Jorge, and C.M.M.

Soares. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates

using a quasi-3d higher-order shear deformation theory and a meshless technique. Composites Part B:

Engineering, 44(1):1657–674, 2013.

[34] A.J.M. Ferreira. A formulation of the multiquadric radial basis function method for the analysis of

laminated composite plates. Composite Structures, 59(3):385–392, 2003.

[35] A. Pagani, E. Carrera, and A.J.M. Ferreira. Higher-order theories and radial basis functions applied to

free vibration analysis of thin-walled beams. Mechanics of Advanced Materials and Structures, 2014.

[36] F.A. Fazzolari and E. Carrera. Advanced variable kinematics ritz and galerkin formulations for accu-

rate buckling and vibration analysis of anisotropic laminated composite plates. Composite Structures,

94(1):50–67, 2011.

22



  

[37] F.A. Fazzolari and E. Carrera. Thermo-mechanical buckling analysis of anisotropic multilayered com-

posite and sandwich plates by using refined variable-kinematics theories. Journal of Thermal Stresses,

36(4):321–350, 2013.

[38] L. Dozio and R. Vescovini. Refined buckling analysis of composite plates under various boundary

conditions. In 18th International Conference on Composite Structures (ICCS18), Lisbon, June 15–18

2015.

[39] E. Carrera, F.A. Fazzolari, and L. Demasi. Vibration analysis of anisotropic simply supported plates by

using variable kinematic and rayleigh-ritz method. Journal of Vibration and Acoustics, 133(6):061017–

1–061017–16, 2011.

[40] L. Dozio and E. Carrera. Ritz analysis of vibrating rectangular and skew multilayered plates based on

advanced variable-kinematic models. Composite Structures, 94(6):2118–2128, 2012.

[41] R.M.J. Groh, P.M. Weaver, S. White, G. Raju, and Z. Wu. A 2D equivalent single-layer formulation

for the effect of transverse shear on laminated plates with curvilinear fibres. Composite Structures,

100:464–478, 2013.

[42] L. Dozio. Exact vibration solutions for cross-ply laminated plates with two opposite edges simply

supported using refined theories of variable order. Journal of Sound and Vibration, 333(8):2347–2359,

2014.
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Table 1: Material properties.

E11 E22 = E33 G12 G13 = G23 ν12 = ν13 = ν23 ρ

(MPa) (MPa) (MPa) (MPa) (kg/m3)

Material 1 [12] 173000 7200 3760 3760 0.29 1540

Material 2 [50] 150000 9080 5290 5290 0.32 1500
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Table 2: Aluminum honey-comb properties.

E11 E22 E33 G12 G13 G23 ν12 ν23 ν13 ρ

(MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (kg/m3)

Core H 12 12 4608 7 1108 664 0.99 7.74E-4 7.76E-4 192

Core L 0.44 0.44 1536 0.27 369 222 0.99 8.64E-5 8.64E-5 72
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Table 3: Preliminary convergence study. Nondimensional frequencies ω = ω
a2

h

√
ρ

E2
for SSSS square panel

of Material 1, b/h=50 and ED4 theory.

Mode 1 Mode 2 Mode 3 Mode 4

Lay-up P

[0 90]s 4 14.9132 32.5111 64.6213 72.1250

6 14.9092 (0.03%) 27.4667 (18.37%) 52.2277 (23.73%) 53.8552 (33.92%)

8 14.9092 (0.00%) 27.3893 (0.28%) 52.0283 (0.38%) 53.0845 (1.45%)

10 14.9092 (0.00%) 27.3889 (0.00%) 52.0275 (0.00%) 53.0734 (0.02%)

12 14.9092 (0.00%) 27.3889 (0.00%) 52.0275 (0.00%) 53.0733 (0.00%)

14 14.9092 (0.00%) 27.3889 (0.00%) 52.0275 (0.00%) 53.0733 (0.00%)

[±<0|90>x]s 4 15.0289 31.8338 39.3170 61.3495

6 14.9388 (0.60%) 29.8993 (6.47%) 35.3807 (11.13%) 51.1092 (20.04%)

8 14.7653 (1.18%) 29.1777 (2.47%) 34.5653 (2.36%) 49.5730 (3.10%)

10 14.7223 (0.29%) 28.9304 (0.85%) 34.4787 (0.25%) 49.4232 (0.30%)

12 14.7093 (0.09%) 28.8895 (0.14%) 34.4741 (0.01%) 49.2867 (0.28%)

14 14.7030 (0.04%) 28.8471 (0.15%) 34.4683 (0.02%) 49.1892 (0.20%)
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Table 4: Nondimensional frequencies ω = ω
a2

h

√
ρ

E2
for SSSS square panel of Material 1 and lay-up

[<0|45>x,<-45|-60>x,<0|45>x].

Method Mode

1 2 3 4

b/h=100

p-version Ref. [12] 16.5794 27.2818 44.4149 49.7264

LGDQ Ref. [13] 16.5198 27.2333 44.4729 49.7333

ED2 16.5234 (-0.34%) 27.2558 (-0.10%) 44.4554 (0.09%) 49.6648 (-0.12%)

ED3 16.5140 (-0.39%) 27.2369 (-0.16%) 44.4185 (0.01%) 49.6057 (-0.24%)

ED4 16.5140 (-0.39%) 27.2368 (-0.16%) 44.4183 (0.01%) 49.6056 (-0.24%)

LD1 16.5326 (-0.28%) 27.2924 (0.04%) 44.5381 (0.28%) 49.6693 (-0.11%)

LD2 16.5097 (-0.42%) 27.2268 (-0.20%) 44.4032 (-0.03%) 49.6009 (-0.25%)

LD3 16.5073 (-0.43%) 27.2212 (-0.22%) 44.3940 (-0.05%) 49.5976 (-0.26%)

b/h=10

p-version Ref. [12] 13.5724 21.6825 32.3781 33.8731

LGDQ Ref. [13] 13.1984 21.3644 32.2639 33.9147

ED2 13.8819 (2.28%) 22.3681 (3.16%) 33.7378 (4.20%) 35.2302 (4.01%)

ED3 13.5109 (-0.45%) 21.6430 (-0.18%) 32.3415 (-0.11%) 33.8929 (0.06%)

ED4 13.5092 (-0.47%) 21.6388 (-0.20%) 32.3346 (-0.13%) 33.8820 (0.03%)

LD1 13.6429 (0.52%) 21.7867 (0.48%) 33.0235 (1.99%) 34.0464 (0.51%)

LD2 13.4563 (-0.86%) 21.5043 (-0.82%) 32.2795 (-0.30%) 33.6341 (-0.71%)

LD3 13.4248 (-1.09%) 21.4215 (-1.20%) 32.2222 (-0.48%) 33.4725 (-1.18%)
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Table 5: Nondimensional frequencies ω = ω
a2

h

√
ρ

E2
for CCCC square panel of Material 1 and lay-up

[<0|45>x,<-45|-60>x,<0|45>x].

Method Mode

1 2 3 4

b/h=100

p-version Ref. [12] 26.7961 37.9943 56.6905 69.0836

LGDQ Ref. [13] 26.8169 38.0153 56.7368 69.1492

ED2 26.8551 (0.22%) 38.0957 (0.27%) 56.8668 (0.31%) 69.2721 (0.27%)

ED3 26.8207 (0.09%) 38.0476 (0.14%) 56.7876 (0.17%) 69.0869 (0.00%)

ED4 26.8206 (0.09%) 38.0475 (0.14%) 56.7874 (0.17%) 69.0868 (0.00%)

LD1 26.8660 (0.26%) 38.1408 (0.39%) 56.9571 (0.47%) 69.2377 (0.22%)

LD2 26.8195 (0.09%) 38.0431 (0.13%) 56.7760 (0.15%) 69.0844 (0.00%)

LD3 26.8185 (0.08%) 38.0397 (0.12%) 56.7675 (0.14%) 69.0809 (0.00%)

b/h=10

p-version Ref. [12] 17.8361 26.4167 35.8115 38.8788

LGDQ Ref. [13] 17.7153 26.2884 35.2717 38.6484

ED2 18.3970 (3.14%) 27.3532 (3.55%) 36.9474 (3.17%) 40.5168 (4.21%)

ED3 17.7105 (-0.70%) 26.3003 (-0.44%) 35.2853 (-1.47%) 38.6864 (-0.49%)

ED4 17.7060 (-0.73%) 26.2896 (-0.48%) 35.2693 (-1.51%) 38.6631 (-0.55%)

LD1 18.0218 (1.04%) 26.5922 (0.66%) 36.0833 (0.76%) 38.9697 (0.23%)

LD2 17.6720 (-0.92%) 26.1759 (-0.91%) 35.2267 (-1.63%) 38.4079 (-1.21%)

LD3 17.6327 (-1.14%) 26.0790 (-1.28%) 35.1348 (-1.89%) 38.2083 (-1.72%)
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Table 6: Nondimensional frequencies ω = ω
a2

h

√
ρface

E2
for CFFF sandwich panel with face-sheet of Material 1 and lay-up

[<0|45>x,<-45|-60>x,<0|45>x], and Core L with hf/h=0.10.

a/b Theory Mode Mode Mode

1 2 3 4 1 2 3 4 1 2 3 4

b/h=100 b/h=50 b/h=10

1 ED2 4.1429 9.7631 24.2744 32.5761 4.1002 9.5788 23.7127 31.8724 3.6821 7.9407 11.9758 18.1479

ED4 4.1142 9.6468 23.9209 32.1586 4.0417 9.3462 22.9283 30.6815 3.3610 6.8627 11.9512 14.9936

LD1 4.1081 9.6257 23.8531 32.0692 4.0301 9.3048 22.7834 30.4486 3.3105 6.7041 11.9451 14.5445

LD2 4.1081 9.6257 23.8528 32.0689 4.0300 9.3047 22.7828 30.4476 3.3093 6.7013 11.9423 14.5318

Abaqus 4.0924 9.6315 23.9126 32.0361 4.0120 9.3128 22.8421 30.4028 3.3477 6.9041 11.5623 15.0779

2 ED2 3.8657 16.3793 30.0566 53.6760 3.8265 16.1481 29.8060 52.9823 3.5643 14.1935 15.4039 26.0942

ED4 3.8409 16.2393 29.9095 53.2596 3.7824 15.8836 29.4262 52.0042 3.3970 12.8589 15.3777 23.0854

LD1 3.8359 16.2143 29.8781 53.1747 3.7742 15.8373 29.3491 51.8139 3.3704 12.6473 15.3699 22.6068

LD2 3.8359 16.2141 29.8780 53.1743 3.7741 15.8371 29.3488 51.8131 3.3699 12.6455 15.3671 22.5996

Abaqus 3.8250 16.2171 29.8703 53.3410 3.7612 15.8460 29.3271 51.9736 3.3728 12.9171 14.8626 23.1550

3 ED2 3.6465 22.3713 30.5915 62.8547 3.6067 22.1080 30.3972 62.2630 3.3612 16.2699 19.9127 27.9935

ED4 3.6229 22.2130 30.4748 62.5038 3.5645 21.8159 30.1325 61.5151 3.2297 16.2496 18.3947 25.9012

LD1 3.6179 22.1846 30.4496 62.4346 3.5566 21.7648 30.0790 61.3738 3.2101 16.2427 18.1480 25.5419

LD2 3.6178 22.1845 30.4494 62.4343 3.5566 21.7646 30.0788 61.3730 3.2096 16.2391 18.1462 25.5377

Abaqus 3.6000 22.1270 30.5229 62.5005 3.5373 21.7200 30.1303 61.4477 3.1980 15.6472 18.4272 25.9416
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Table 7: Convergence study. Nondimensional buckling force per unit length Nx =
Nx,avga

2

E1h3
for Case B,

SSSS square panel of Material 2, b/h=50 and ED4 theory.

[0 90]s [±<90|0>y ]s

P

4 1.0163 2.2447

6 1.0158 (0.05%) 2.2252 (0.88%)

8 1.0158 (0.00%) 2.1230 (4.81%)

10 1.0158 (0.00%) 2.0980 (1.19%)

12 1.0158 (0.00%) 2.0925 (0.26%)

14 1.0158 (0.00%) 2.0898 (0.13%)
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Table 8: Nondimensional buckling force Nx =
Nx,avga

2

E1h3
for Case B square sandwich panels with face-sheet

of Material 2 and lay-up [<45|30>y]2 and Core L.

b/h Theory Boundary conditions Boundary conditions

SSSS CSCS CSCF CCCC SSSS CSCS CSCF CCCC

hf/h=0.05 hf/h=0.10

100 ED2 0.5546 0.8599 0.4186 1.1049 0.9941 1.5401 0.7498 1.9768

ED4 0.5491 0.8457 0.4104 1.0789 0.9798 1.4971 0.7241 1.8978

LD1 0.5474 0.8416 0.4084 1.0720 0.9754 1.4857 0.7186 1.8771

LD2 0.5474 0.8416 0.4084 1.0720 0.9754 1.4857 0.7186 1.8771

Abaqus 0.5473 0.8427 0.4087 1.0711 0.9753 1.4873 0.7191 1.8743

50 ED2 0.5467 0.8332 0.4010 1.0583 0.9788 1.4880 0.7159 1.8870

ED4 0.5319 0.7923 0.3820 0.9858 0.9301 1.3502 0.6516 1.6519

LD1 0.5281 0.7827 0.3778 0.9699 0.9174 1.3192 0.6388 1.6006

LD2 0.5281 0.7827 0.3778 0.9698 0.9173 1.3191 0.6388 1.6004

Abaqus 0.5288 0.7859 0.3793 0.9708 0.9189 1.3233 0.6407 1.5978

25 ED2 0.5176 0.7438 0.3557 0.9142 0.9227 1.3155 0.6288 1.6121

ED4 0.4729 0.6388 0.3124 0.7458 0.7739 0.9810 0.4881 1.1043

LD1 0.4633 0.6181 0.3038 0.7157 0.7422 0.9230 0.4650 1.0237

LD2 0.4633 0.6179 0.3037 0.7152 0.7418 0.9225 0.4648 1.0227

Abaqus 0.4661 0.6245 0.3073 0.7186 0.7465 0.9271 0.4683 1.0176
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Table 9: Nondimensional buckling force Nx =
Nx,avga

2

E1h3
for Case B square sandwich panels with face-sheet

of Material 2, b/h=50 and hf/h=0.10.

Face-sheet Theory Boundary conditions Boundary conditions

SSSS CSCS CSCF CCCC SSSS CSCS CSCF CCCC

Core H Core L

[±45]2 ED2 0.8521 1.1759 0.5689 1.6100 0.8402 1.1510 0.5564 1.5653

ED4 0.8384 1.1439 0.5557 1.5367 0.7946 1.0436 0.5154 1.3345

LD1 0.8354 1.1374 0.5532 1.5228 0.7827 1.0189 0.5068 1.2855

LD2 0.8351 1.1370 0.5530 1.5222 0.7827 1.0189 0.5068 1.2854

Abaqus 0.8370 1.1419 0.5550 1.5270 0.7847 1.0229 0.5084 1.2852

[±<45|30>y ]2 ED2 0.9946 1.5228 0.7310 1.9428 0.9788 1.4880 0.7159 1.8870

ED4 0.9797 1.4829 0.7123 1.8697 0.9301 1.3502 0.6516 1.6519

LD1 0.9764 1.4748 0.7086 1.8556 0.9174 1.3192 0.6388 1.6006

LD2 0.9760 1.4743 0.7085 1.8549 0.9173 1.3191 0.6388 1.6004

Abaqus 0.9775 1.4799 0.7110 1.8574 0.9189 1.3233 0.6407 1.5978

[±<75|15>y ]2 ED2 1.3649 1.7539 0.5919 2.5079 1.3794 1.7584 0.5734 2.5198

ED4 1.3424 1.7078 0.5752 2.3981 1.3093 1.6000 0.5119 2.1534

LD1 1.3375 1.6983 0.5719 2.3775 1.2904 1.5625 0.4998 2.0714

LD2 1.3367 1.6974 0.5718 2.3761 1.2903 1.5624 0.4998 2.0711

Abaqus 1.3445 1.7118 0.5752 2.3863 1.2978 1.5733 0.5026 2.0669
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Table 10: Nondimensional buckling force Nx =
Nxa2

E1h3
for Case A square sandwich panels with face-sheet of

Material 2, b/h=50 and hf/h=0.10.

Face-sheet Theory Boundary conditions Boundary conditions

SSSS CSCS CSCF CCCC SSSS CSCS CSCF CCCC

Core H Core L

[±45]2 ED2 0.8521 1.1759 0.5689 1.6100 0.8402 1.1510 0.5564 1.5653

ED4 0.8384 1.1439 0.5557 1.5367 0.7946 1.0436 0.5154 1.3345

LD1 0.8354 1.1374 0.5532 1.5228 0.7827 1.0189 0.5068 1.2855

LD2 0.8351 1.1370 0.5530 1.5222 0.7827 1.0189 0.5068 1.2854

Abaqus 0.8370 1.1419 0.5550 1.5270 0.7847 1.0229 0.5084 1.2852

[±<0|30>x]2 ED2 0.7024 1.5558 1.3269 1.6976 0.6879 1.5111 1.2953 1.6426

ED4 0.6928 1.5121 1.2910 1.6478 0.6566 1.3458 1.1556 1.4618

LD1 0.6907 1.5033 1.2839 1.6379 0.6490 1.3122 1.1276 1.4246

LD2 0.6904 1.5029 1.2837 1.6373 0.6489 1.3122 1.1276 1.4245

Abaqus 0.6919 1.5098 1.2884 1.6434 0.6505 1.3168 1.1306 1.4279

[±<0|60>x]2 ED2 0.9030 1.3387 0.8347 1.5973 0.8741 1.2805 0.8115 1.5162

ED4 0.8887 1.3038 0.8165 1.5480 0.8270 1.1673 0.7502 1.3648

LD1 0.8856 1.2969 0.8129 1.5385 0.8153 1.1432 0.7374 1.3325

LD2 0.8852 1.2964 0.8126 1.5377 0.8152 1.1431 0.7373 1.3324

Abaqus 0.8876 1.3032 0.8159 1.5421 0.8176 1.1485 0.7400 1.3337
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Figure 1: Multilayered plate dimensions and reference system.
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Figure 2: Fiber passing through the origin and linearly varying orientation along x.
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Figure 3: Undeformed (gray) and deformed (black) configurations in the pre-buckling state.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

Figure 4: First four vibration modes of CFFF sandwich panels with b/h=100 and a/b=1. Contour of the

out of plane displacement.
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(a) SSSS (b) CSCS (c) CSCF (d) CCCC

Figure 5: Buckling modes of square sandwich panels with face-sheet ±[<45|30>]s for different boundary

conditions. Contour of the out of plane displacement.
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6 APPENDIX

Define the terms:

Xef
αmβm =

de

dξe
[Φατm]

df

dξf

[
Φβsm

]
m,m = 1, 2, . . . , P (44)

Y ef
αmβm =

de

dηe
[Ψατm]

df

dηf

[
Ψβsm

]
n, n = 1, 2, . . . , P (45)

Stiffness matrix nucleus

Kk
τsij(1, 1) =

∫
S

[
Ek

τs

b

a
C̃k

11X11
umumY 00

unun + Ek
τsC̃k

16

(
X10

umumY 01
unun + X01

umumY 10
unun

)
+ Ek

τs

a

b
C̃k

66X00
umumY 11

unun

+Ek
τzsz

ab

4
C̃k

55X00
umumY 00

unun

]
dS

Kk
τsij(1, 2) =

∫
S

[
Ek

τs

b

a
C̃k

16X11
umvmY 00

unvn + Ek
τs(C̃

k
12X10

umvmY 01
unvn + C̃k

66X01
umvmY 10

unvn) + Ek
τs

a

b
C̃k

26X00
umvmY 11

unvn

+Ek
τzsz

ab

4
C̃k

45X00
umvmY 00

unvn

]
dS

Kk
τsij(1, 3) =

∫
S

[
Ek

τsz

b

2
C̃k

13X10
umwmY 00

unwn + Ek
τzs

b

2
C̃k

55X01
umwmY 00

unwn + Ek
τsz

a

2
C̃k

36X00
umwmY 10

unwn + Ek
τzs

a

2
C̃k

45X00
umwmY 01

unwn

]
dS

Kk
τsij(2, 1) =

∫
S

[
Ek

τs

b

a
C̃k

16X11
vmumY 00

vnun + Ek
τs(C̃

k
12X01

vmumY 10
vnun + C̃k
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vnun) + Ek
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a

b
C̃k

26X00
vmumY 11

vnun

+Ek
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4
C̃k
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vmumY 00

vnun

]
dS

Kk
τsij(2, 2) =

∫
S

[
Ek

τs

b

a
C̃k

66X11
vmvmY 00

vnvn + Ek
τs(C̃

k
26X10

vmvmY 01
vnvn + C̃k

26X01
vmvmY 10

vnvn) + Ek
τs

a

b
C̃k

22X00
vmvmY 11

vnvn

+Ek
τzsz

ab

4
C̃k

44X00
vmvmY 00

vnvn

]
dS

Kk
τsij(2, 3) =

∫
S

[
Ek

τsz

b

2
C̃k

36X10
vmwmY 00

vnwn + Ek
τzs

b

2
C̃k

45X01
vmwmY 00

vnwn + Ek
τsz

a

2
C̃k

23X00
vmwmY 10

vnwn + Ek
τzs

a

2
C̃k

44X00
vmwmY 01

vnwn

]
dS

Kk
τsij(3, 1) =

∫
S

[
Ek

τsz

b

2
C̃k

55X10
wmumY 00

wnun + Ek
τzs

b

2
C̃k

13X01
wmumY 00

wnun + Ek
τsz

a

2
C̃k

45X00
wmumY 10

wnun + Ek
τzs

a

2
C̃k

36X00
wmumY 01

wnun

]
dS

Kk
τsij(3, 2) =

∫
S

[
Ek

τsz

b

2
C̃k

45X10
wmvmY 00

wnvn + Ek
τzs

b

2
C̃k

36X01
wmvmY 00

wnvn + Ek
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a

2
C̃k

44X00
wmvmY 10

wnvn + Ek
τzs

a

2
C̃k

23X00
wmvmY 01

wnvn

]
dS

Kk
τsij(3, 3) =

∫
S

[
Ek

τs

b

a
C̃k

55X11
wmwmY 00

wnwn + Ek
τs(C̃

k
45X10

wmwmY 01
wnwn + C̃k

45X01
wmwmY 10

wnwn) + Ek
τs

a

b
C̃k

44X00
wmwmY 11

wnwn

+Ek
τzsz

ab

4
C̃k

33X00
wmwmY 00

wnwn

]
dS
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Mass matrix nucleus

Mk
τsij(1, 1) = Ek

τsρ
ab

4

∫
S

X00
mumuY 00

unun dS

Mk
τsij(2, 2) = Ek

τsρ
ab

4

∫
S

X00
mvmvY 00

vnvn dS

Mk
τsij(3, 3) = Ek

τsρ
ab

4

∫
S

X00
mwmwY 00

wnwn dS

Geometric matrix nucleus

Gk
τsij(1, 1) = Ek

τs

∫
S

[
ϕ

a

b
σk
0yyX00

umumY 11
unun + ϕ(σk

0xyX10
umumY 01

unun + σk
0xyX01

umumY 10
unun) +

b

a
ϕσk

0xxX11
umumY 00

unun

]
dS

Gk
τsij(2, 2) = Ek

τs

∫
S

[
ϕ

a

b
σk
0yyX00

vmvmY 11
vnvn + ϕ(σk

0xyX10
vmvmY 01

vnvn + σk
0xyX01

vmvmY 10
vnvn) +

b

a
ϕσk

0xxX11
vmvmY 00

vnvn

]
dS

Gk
τsij(3, 3) = Ek

τs

∫
S

[
a

b
σk
0yyX00

wmwmY 11
wnwn + (σk

0xyX10
wmwmY 01

wnwn + σk
0xyX01

wmwmY 10
wnwn) +

b

a
σk
0xxX11

wmwmY 00
wnwn

]
dS
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