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Abstract
This article describes a macroscopic mathematical modeling approach to capture the interplay between solid tumor evolution and
cell damage during radiotherapy. Volume regression profiles of 15 patients with uterine cervical cancer were reconstructed from
serial cone-beam computed tomography data sets, acquired for image-guided radiotherapy, and used for model parameter
learning by means of a genetic-based optimization. Patients, diagnosed with either squamous cell carcinoma or adenocarcinoma,
underwent different treatment modalities (image-guided radiotherapy and image-guided chemo-radiotherapy). The mean volume
at the beginning of radiotherapy and the end of radiotherapy was on average 23.7 cm3 (range: 12.7-44.4 cm3) and 8.6 cm3 (range:
3.6-17.1 cm3), respectively. Two different tumor dynamics were taken into account in the model: the viable (active) and the
necrotic cancer cells. However, according to the results of a preliminary volume regression analysis, we assumed a short dead cell
resolving time and the model was simplified to the active tumor volume. Model learning was performed both on the complete
patient cohort (cohort-based model learning) and on each single patient (patient-specific model learning). The fitting results (mean
error: *16% and *6% for the cohort-based model and patient-specific model, respectively) highlighted the model ability to
quantitatively reproduce tumor regression. Volume prediction errors of about 18% on average were obtained using cohort-based
model computed on all but 1 patient at a time (leave-one-out technique). Finally, a sensitivity analysis was performed and the data
uncertainty effects evaluated by simulating an average volume perturbation of about 1.5 cm3 obtaining an error increase within
0.2%. In conclusion, we showed that simple time-continuous models can represent tumor regression curves both on a patient
cohort and patient-specific basis; this discloses the opportunity in the future to exploit such models to predict how changes in the
treatment schedule (number of fractions, doses, intervals among fractions) might affect the tumor regression on an individual
basis.
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Introduction

In the fight against cancer, radiotherapy represents a highly

effective localized treatment, in which image-guidance

(image-guided radiotherapy [IGRT]) plays a key role.1,2 Mor-

phologic images, as computed tomography (CT), cone-beam

CT (CBCT), and magnetic resonance (MR), featuring diagnos-

tic quality are acquired daily, in order (1) to check the occur-

rence of anatomical changes, (2) to adjust patient setup, and (3)

to evaluate the need for treatment replanning and adaptive

approaches (plan of the day).3-5 Functional imaging is applied

as well to visualize tumor features (eg, glucose consumption,

hypoxia, and repopulation), assess tumor staging, and predict

the response to treatment.6,7 According to the excellent review

by Jadon et al,5 image guidance allows the evaluation of tumor

volume along the radiotherapy course. Such extensive infor-

mation can be in principle fruitfully exploited in the mathemat-

ical modeling of tumor response to therapy and toxicity effects

on healthy tissues, thus allowing the simulation of a customized

therapeutic plan.7-9 Modeling, ranging from simple tumor

control probability (TCP) functions to multiscale mechanis-

tic/phenomenological approaches of cell proliferation and

invasion, has the potential to become a powerful tool to support

clinical decision. In the framework of IGRT, the role of image

processing and analysis is to link theoretical growth/therapy

response models to macroscopic tumor changes, thus repre-

senting phenomenological features that cannot be observed

directly.

Mathematical models have attempted to simulate the biolo-

gical mechanism underlying the spatiotemporal growth of

tumors and response to radiation and drugs. Time-discrete

models at cell and tissue scales using the principle of cellular

automata have been developed and applied to study a variety of

radiobiological problems.9-12 In general, while sophisticated

models may be able to represent biological phenomena more

realistically, they can be hardly applied in the clinics, since the

morphological and the functional information derived from

medical images is difficult to include. Conversely, simpler

time-continuous models at the tissue scale representing tumor

growth, under conditions of mechanical pressure, nutrient

shortage, and even therapeutic irradiation, can be directly com-

pared to macroscopic measurements from clinical

images.8,13,14 Spatial effects are not taken into account and the

tumor is assumed to include identical cells. Such simplification

allows the model to be customized to patient subclasses or even

for single patients. For example, exponential, logistic, or Gom-

pertzian growth curves have been used to describe tumor repo-

pulation during fractioned radiotherapy both in early15 and

more recent works.14,16,17 Most of such studies focused on

simulated experiments and the potential of translation to clin-

ical practice was not verified. Outcomes of the more recent

articles turned out to grant sufficient descriptive power of

tumor growth prior to therapy, finding a high correlation

between tumor proliferation and radiosensitivity.14 However,

further investigation seems mandatory to study the interplay

between the response to radiation and the tumor repopulation

along the course of a radiotherapy treatment in vivo.

In this article, we focused on macroscale, time-continuous

mathematical approaches to represent the tumor cell killing

effect due to radiation therapy and the concurrent repopulation,

by integrating the linear-quadratic (LQ) and the Gompertzian/

logistic tumor growth models. Volume regression profiles of

patients with uterine cervical cancer were reconstructed from

serial CBCT data sets, acquired for IGRT, and exploited for

model parameter learning by means of a genetic-based optimi-

zation. Patients, diagnosed with either squamous cell carci-

noma (SSC) or adenocarcinoma (ADC), underwent different

treatment modalities (IGRT and chemo-radiotherapy). The

effect of concomitant chemotherapy (ChT) was not explicitly

included, it was considered as an adjuvant factor expected to

increase cell sensitivity to ionizing irradiation. Model learning

was performed both on the complete patient cohort (cohort-

based model [cM] learning) and on each single patient

(patient-specific model [pM] leaning).

Materials and Methods

Sixteen patients, diagnosed with locally advanced cervical can-

cer and subdivided into 3 groups (PSI, PSII and PSIII) accord-

ingly to tumor histology and treatment, were initially included in

this study. Patient 11 (PSII) was eventually discarded due to the

onset of intestinal toxicity. Six patients (PSI, mean age: 83 years)

affected by SCC underwent radiation therapy. Because of poten-

tial high toxicity risk (advanced age), ChT was not administered

to this patient subgroup. PSII and PSIII received RT-ChT (Cis-

platinum, Paclitaxel, given on a weekly basis for 5-6 cycles) and

differed by histology, namely ADC and SCC, respectively. In

all, 4 (mean age: 46 years) and 5 patients (mean age: 52 years)

were included in PSII and PSIII, respectively (Table 1).
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Simulation CT (used for planning) and CBCT imaging,

being the latter acquired for patient set-up correction at each

treatment fraction, were processed to reconstruct tumor

volumes. The tumor extents were evaluated at the time of treat-

ment planning, according to the guidelines and were found in

the range of about 3 to 4 cm (equivalent diameter) correspond-

ing to a mean volume of 23.7 cm3 (range: 12.6-44.4 cm3). Up to

50.4 Gy were delivered to all 15 patients in approximately 25

fractions, along a period of 40 to 60 days (Table 1). As far as

the CT imaging (voxel size: 0.93 mm � 0.93 mm � 3 mm) is

concerned, the standard procedure involved the positioning of

two 2-mm silver seeds, useful as fiducial markers, into the

cervical tumor at the time of the simulation procedure.

Patients were scanned in supine position with a Combifix

(CIVCO Medical Solutions, Kalona, Iowa) immobilization

device, with a mean bladder volume of 400 cm3 (range 145-

630 cm3). There was an interval of about 10 to 20 days from the

CT acquisition to the beginning of treatment in order to elabo-

rate the plan and pretreatment dosimetry. At each treatment

fraction, patient set-up was verified by means of a kV CBCT

system (voxel size: 0.87 mm� 0.87 mm� 3 mm) integrated in

the treatment machine and corrections were performed accord-

ing to the institutional (European Institute of Oncology, Milan,

Italy) set-up verification and action level protocols. A subset of

the acquired CBCT scans (Figure 1) was processed by an

expert radiation oncologist through manual delineation, to

extract the gross tumor volume (GTV).

Tumors during radiotherapy consist of viable and dead cells,

which have not been removed yet, characterized by 2 different

dynamics.18 Viable cells (living clonogens) undergo a

Table 1. Patient Data: Tumor Type (Squamous Cell Carcinoma, Adenocarcinoma), Therapy (Radiotherapy Only, Radiotherapy þ
Chemotherapy), Total Dose, Number of Fractions, Dose Per Fraction, Number of Segmented CBCT Studies, Initial and Final Tumor
Size, R2 Value, and Time Constant (Day 1) of the Exponential Fitting.

Patient Tumor
Staging
(FIGO) Therapy Dose, Gy Fractions Gy/fr CBCT

Initial and Final
GTV Volume

Size, cm3

R2 and Time
Constant of the Exponential

Regression

1 SCC T1bN0M0 RT 50 25 2 8 24.1-3.59 0.70-0.06
2 SCC T1bN0M0 RT 50 25 2 6 17.4-8.61 0.43-0.01
3 SCC T1bN0M0 RT 45 25 1.8 7 28.4-5.67 0.85-0.08
4 SCC T2aN1M0 RT 50.4 28 1.8 8 18.8-4.36 0.76-0.04
5 SCC T2aN1M1 RT 50.4 28 1.8 9/28a 30.6-5.74 0.85-0.04
6 SCC T1bN0M0 RT 45 25 1.8 5 12.6-6.11 0.66-0.02
7 ADC T2bN0M0 RT þ ChT 50 25 2 7 24.6-4.71 0.72-0.03
8 ADC T1bN1M0 RT þ ChT 50 25 2 8 16.8-8.93 0.42-0.01
9 ADC T1bN1M0 RT þ ChT 50 25 2 6 14.3-4.68 0.91-0.03
10 ADC T1bN1M0 RT þ ChT 50 25 2 7 32.7-15.6 0.95-0.02
12 SCC T1bN0M0 RT þ ChT 50.4 28 1.8 7 44.4-11.3 0.92-0.03
13 SCC T1bN0M0 RT þ ChT 46 23 2 7 21.3-14.9 0.91-0.01
14 SCC T2bN1M0 RT þ ChT 50 25 2 7 26.6-17.1 0.77-0.01
15 SCC T1bN0M0 RT þ ChT 50 25 2 8 17.3-7.16 0.94-0.02
16 SCC T1bN1M1 RT þ ChT 50.4 28 1.8 8 22.6-10.6 0.98-0.01

Abbreviations: ADC, adenocarcinoma; CBCT, cone-beam computed tomography; ChT, chemotherapy; FIGO, International Federation of Gynecology and
Obstetrics; GTV, gross tumor volume.
aPatient 5 data set includes 28 volumes: 9 were used for parameter learning, while the complete set was meant for testing purposes only.

Figure 1. Patient 5: gross tumor volume (GTV; contoured) evolution outlined on cone-beam computed tomography (CBCT) images where t
(days) is the time distance from the first radiotherapy fraction.
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spontaneous growth that is counteracted by the cell-killing

action due to radiation. As a consequence, the necrotic portion

of the viable cells increases the population of dead cells, which

are cleared, through a time-dependent mechanism (dead-cell

resolving), from the tissue.19,20 The variation over time t of the

viable cell density uv and the dead cell density ud can be mod-

eled in the following differential equation system as a function

of the growth and the radiosensitivity parameter set (p), along

with the fractionation schedule, as:

duv
dt
¼ dG uv; tð Þ

dt
� H uv; S pð Þ; dif g; tð Þ ð1aÞ

dud
dt
¼ � log2

T1=2
ud þ H uv; S pð Þ; dif g; tð Þ ð1bÞ

where uv tð Þ þ ud tð Þ represents the current overall number of

tumor cells. In Equation 1a, the derivative of the proliferation

functionG contributes to increase the viable population, whereas

the differential contribute H of the therapy induces a reduction

of uv. H depends on the cell density uv, the survival fraction of

viable cells S pð Þ, and the fractionation regimen of the radiation

therapy through the set of doses di (Gy). In the second equation,

T1=2 corresponds to the dead cell resolving half-time, which

controls the exponential decay of the density ud .

Uterine cervical tumors are typically solid and quite com-

pact. Assuming the tumor is homogeneously irradiated and a

linear radial evolution, the cell density can be thereby

equivalently substituted with a tissue-scale geometric vari-

able like the tumor volume.21 Taking into account the Gom-

pertzian growth, the cell proliferation function G can be

turned into G
^

representing the evolution in time of the viable

volume Vv,

G
^

¼ Vv ¼ ke log Vv 0ð Þ
kð Þe �rtð Þð Þ ð2Þ

where r, k, and Vv 0ð Þ are the growth rate, the growth saturation

factor of the volume (tissue capacity at cellular scale), and the

volume at initial time, respectively. Equivalently, the cell den-

sity ud in Equation 1b can replaced with the volume Vd . The

GTV segmented on the images corresponds to the sum

ðV ¼ Vv þ VdÞ of the 2 volume contributes.

After a single radiation dose di, Si is traditionally repre-

sented as a function of the parameters a (Gy�1) and b (Gy�2)

of the LQ model as:

Si ¼ e� adiþbd2ið Þ ð3Þ

Accounting for N radiation fractions, Equation 1a can be

rewritten as:

dVv

dt
¼ rVv log

k

Vv

� �
� Vv

XN
i

h Si; tð Þ ð4Þ

where h Si; tð Þ ¼ d t � tið Þ 1� e� adiþbd2ið Þ
� �

represents the

tumor cell mortality rate due to instantaneous (Dirac d

function) radiation effect at time ti for the dose di. Fundamen-

tally, the contribution of each dose fraction can be mathemati-

cally assumed equivalent to the d function and appears as a

signal term in the differential problem, which contributes to

modulate tumor regression. The ordinary differential equation

(ODE) system can be solved by subdividing the time interval

into a series of N subintervals, such that ds always fall on the

starting point of an interval. Given the instantaneous radiation

effect at time ti, the ODE is solved from the time ti of i-th

fraction to the time tiþ1 of the next fraction. Time tiþ1 is then

used as the initial time for solving over the next subinterval. In

fact, cell death due to irradiation occurs on a temporal window

that is dependent upon many subject- and tumor-specific fac-

tors. It was shown that radiotherapy is not limited to direct

DNA damage but encompasses several indirect complications

at cell and tissue scales, ranging from indirect cellular apopto-

sis of nonirradiated cells22 and soft tissue fibrosis23 to vascular

damages with even major vessel rupture.24 All these indirect

effects of radiation are not instantaneous and can be delayed on

short, mid, and even long temporal windows. A short-time

effect was here considered by replacing in Equation 4 the dif-

ferential component (d function), corresponding to the radia-

tion response, with an explicit exponential decay over time of

the unitless effective dose Di ¼ adi þ bd2i . This constitutes a

technical novelty, with respect to prior similar modeling

approaches8,14 that in principle can allow dealing with nonuni-

form fractionation schedules. However, the introduction of this

exponential term reduces the percentage of surviving cells per

dose assuming the same tumor radiosensitivity ðaÞ. Such

occurrence should be taken into account in the result analysis

since it is likely to lead to a slight underestimation of a with

respect to the literature values. Considering 2 following irra-

diation time steps ti; tiþ1f g, the complete differential model can

be then expressed as:

dVv

dt
¼ rVv log

k

Vv

� �
� Vv 1� e�Die

� t�tið Þ� �
ð5aÞ

dVd

dt
¼ Vv 1� e�Die

� t�tið Þ� �
� log2

T1=2
Vd ð5bÞ

The double exponential decay ðe�Die
� t�tið Þ Þ makes the irra-

diation effects negligible (<10%) after 2 days considering aver-

age tumor and treatment features (a ¼ 0.3 Gy�1, di ¼ 2 Gy).

Therefore the summation introduced in Equation 4 was dis-

carded in Equations 5a and 5b.

Four main modeling assumptions were hereafter detailed,

regarding the relation between viable and dead-cell volumes,

the parameter bounds used in the model learning, volume data

normalization, and the nominal dose with respect to the effec-

tive dose delivered to the tumor. It was extensively reported

that the therapeutic treatment of uterine cervical cancer through

radiotherapy leads to a significant tumor regression on a daily

basis, with significant volume shrinkage and even to a com-

plete reabsorption.8,25,26 Notably, Bondar et al.3 reported a

mean tumor reduction of about 60% after 45 Gy. The tumor
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regression profiles in our study were mostly in agreement with

such clinical observations as we measured an average daily

shrinkage of about 5% per day in the first 5 treatment fractions

and an overall tumor reduction of about 62% after about 45 Gy,

on average. This evidence was the basis for arguing that such a

fast tumor regression can be attributed to the quick dead-cell

removal. Assuming that the necrotic volume is negligible with

respect to the actual viable volume, during the treatment

course, we can disregard from the model the dead-cell

dynamics. In order to verify experimentally this simplification

(V * Vv), the complete model (cM) underwent the parameter

learning on the GTV regression curve of patient 5 for whom we

had all the segmentations along the entire treatment course.

Nonetheless, from the mathematical point of view, the learning

of the 4 parameters (r, k, a, and T1=2) from the 2-equation

differential system (5a) and (5b) with the constraint

ðV ¼ Vv þ VdÞ is not a well-posed problem as the ratio

Vd=Vv is unknown. Setting T1=2 to a discrete sample of values

and performing for each value a dedicated learning of the other

3 parameters allows to improve the problem conditioning.

Without lack of generality, the upper bound for T1=2 was set

to 30 days according to a previous report.8

In the model learning, the parameters were bounded by

considering the initial volume values, the shape of the tumor

regression curves, and the previous literature. As far as the

volume carrying capacity k is concerned, given that no patients

were surgically treated before radiotherapy, it was assumed

that the initial volume was close to the maximum carrying

capacity. This was confirmed by virtue of that the maximum

volume increase over the first CBCT was about 15%, on aver-

age across patients. The setting of 50 < k (%) < 200 aimed at

tolerating both a carrying capacity increase up to 100% and a

decrease up to 50%.

The range of r was set between 0.01 and 1, which allowed

the model to deal with both very slow (theoretically *600 days

to achieve the nominal carrying capacity of 100%) and very

fast growth rates (theoretically *10 days to achieve the nom-

inal carrying capacity of 100%). Early data reported in the

literature, about doubling time of the uterine cervical cancer

(exponential growth), ranged from 3.1 to 5.6 days.27 Although

it is not straight-forward to correlate the growth rate of a Gom-

pertzian function to the double-time of a simpler exponential

growth, the r range was adequate to cope with such doubling

time variability. The radiosensitivity parameter range (0 < a < 1

Gy�1) was largely sufficient to include the various values

reported in the literature.28 The a=b ratio was setup to 10

Gy, taking into account the moderate rate of cell proliferation

and well responsive tumors as in the case of uterine cervical

cancer.29 In fact, in the case of prostate cancer, which is a very

slowly proliferating tumor, late responding tissue a=b can be as

low as 1 Gy. At the other end of the range, a=b may be as high

as 20 Gy in the case of advanced head and neck cancer, which

is an early responding tissue with an extremely aggressive rate

of cell proliferation. This operative choice was supported by

the fact that most of the patients underwent a regular 5-day/wk

treatment schedule. The volume V was normalized with respect

to the first CBCT value as follows: V tð Þ ¼ 100ðVabs tð Þ=
Vabs t ¼ 0ð ÞÞ, where Vabs is the absolute measured volume

value. The normalization allowed us to compute averaged

parameters able to fit the complete data cohort indepen-

dently of the initial volume size. Finally, the nominal dose

was assumed to be delivered homogeneously to the overall

GTV volume, since the planning target volume (PTV) takes

into account both invisible tumor lesion and possible organ

shape deformations.

Two different variants of Equation 4 were considered in the

learning phase, by assuming either a Gompertzian (6a) or a

logistic growth curve (6b):

dVv

dt
¼ rVv log

k

Vv

� �
� Vv 1� e�Die

� t�tið Þ� �
ð6aÞ

dVv

dt
¼ rVv 1� Vv

k

� �
� Vv 1� e�Die

� t�tið Þ� �
ð6bÞ

The single dynamic model was trained both on each patient

individually (pM) and on the complete patient cohort (cM). The

ODE resolution was performed by setting Vv t ¼ 0ð Þ equal to

the initial CBCT volume for each patient. In order to investi-

gate the suitability of the general model (active and necrotic

volumes), we tested it using the complete volume data set of

patient 5 (Table 2).

A custom genetic-based optimization procedure

(Figure 2), implemented in Matlab (Matworks), was devel-

oped to train the models. Basically, a model parameter set

(the proliferation rate r, the tumor cell carrying capacity k,

and the radiation-specific parameter a) was iteratively esti-

mated by exploiting competition in between a population of

candidate parameter settings. The fitness measure was

defined as follows: let ei;j ¼ Vi;j � �Vi;j

� �
be the difference

between the predicted and measured tumor data for the

j-th measurement of the i-th patient; being Ni the number

of reconstructed tumor volumes for patient i and P the num-

ber of patients in the PS, the fitness E, associated to 1

parameter set, was calculated in terms of the root mean

squared (RMS) error ei, averaged across patients, as:

Table 2. Model Variants Considered in the Analysis.a

Model

Training Set Dynamic Proliferation

Single Patient All Patients Vv Vv þ Vd Gompertzian Logistic

cMg � � �
cMl � � �
pMg � � �
pMl � � �
gMg �a � �

Abbreviations: cMg, cohort-based model learning using Gompertzian growth
function; cMl, cohort-based model learning using logistic growth function; gMg,
general model using Gompertzian growth function; pMg, patient-specific model
learning using Gompertzian growth function; pMl, patient-specific model learn-
ing using logistic growth function.
aThe gMg was trained on patient 5 complete data set only.
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ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

j e2i;j
Ni

s
E ¼ 1

P

XP
i

Pi ð7Þ

At time instant t ¼ 0, the algorithm started with the random

generation of 150 different parameter sets in the population.

For each parameter set, the differential Equation 4 was solved

at each irradiation instant. When a measured tumor data ð�Vi;jÞ
was available, the corresponding Vi;j was computed and, by

cumulating all the ei;j, Equation 7 was used to determine the

fitness for the current parameter set. According to the fitness

results, a subset of the population was selected to be the can-

didate for reproduction through cross-over (recombination rate:

0.4) and mutation (mutation rate: 0.35) generating a new pop-

ulation at the next iteration step. The model training was iter-

ated until the variance of the parameter set was lower than a

threshold quantity e (cfr Figure 2). In order to avoid premature

convergence to local minima, the number of iterations was

enforced to be greater than 200. The final model reliability was

assessed in terms of fitting error E (Equation 7). Statistical

comparison between patient subgroups (PSI, PSII, and PSIII)

was performed upon parameter values (patient-specific model

learning using Gompertzian growth function [pMg]) and fitting

results (cM learning using Gompertzian growth function [cMg]

and pMg) using the nonparametric Mann-Whitney test with a

significance threshold P ¼ .05.

In order to evaluate the extrapolation capabilities of the cM

model, that is, its ability to predict tumor response and

regrowth for a patient not included in the data set used for

model learning, we implemented an approach based on the

leave-one-out (LOO) technique. Without loss of generality, the

prediction quality was assessed for cMg. The model was

trained using the volume regression data of 14 patients while

1 patient data set was excluded. The relative extrapolation error

for a given patient i was computed as:

e
^

i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

j V
^

i;j � �Vi;j

� �2
Ni

vuut
ð8Þ

where V
^

i;j is the volume predicted by the model. The extrapo-

lation error, obtained by averaging the prediction errors over

the patients in the data set, was compared to the fitting error

computed from the model, which was trained over the whole

patient data set.

In order to estimate pM extrapolation capability, the para-

meter set, computed on patient 5 (pMg5), was tested on: (1)

patient 5 complete data set, (2) the other 5 patients belonging to

PSI, and (3) patients in PSII and PSIII. The pMg2 was also

tested on the 3 PS for comparison. The stability of the predic-

tion outcomes in relation to small variations in the model para-

meter was also evaluated for the model cMg by means of a

linear sensitivity analysis (LSA).

A different procedure was performed on cMg and pMg per-

formed on the complete data set of patient 5 (pMg5*) to eval-

uate the effect of the data uncertainty on model parameters and

prediction error consisting of 3 steps:

1. a Gaussian error (m ¼ 0, s ¼ 5) was added to the normal-

ized volumes to simulate a 5% uncertainty of the volume

measurements;

2. a new parameter set (r0, k 0, and a0) was estimated using the

perturbed data;

Figure 2. Chart of the genetic-based model parameter optimization.
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3. (r0, k 0, and a0) were applied to the measured volumes and

the error variation was computed.

Results

Parameter learning (r, k, and a) of the complete model,

defined by Equations 5a and 5b, was performed on the

overall volume data set (N ¼ 28) of patient 5. The para-

meter T1=2 was set to 5 constant values ranging from 0.5 to

30 days, and the learning was repeated for each of such

values. Notably, the model ability to fit the volume data

decreased significantly with the increase of T1=2 (Figure 3),

with errors ranging from about 8% ðT1=2 ¼ 0:5Þ up to more

than 40% (T1=2 ¼ 30; Table 3).

Remarkably, the error trend at T1=2 ¼ 0:5 was very close to

the value achieved by means of pMg5* using the single

dynamic approach (*7%). In Figure 4, the predictions

achieved with 2 different T1=2 values were displayed for com-

parison. The necrotic volume percentage (on average) resulted

about 6% of the total volume at T1=2 ¼ 0:5, whereas at

T1=2 ¼ 10 such quantity increased up to about 90%. Such

results indicated that the model fitting quality was acceptable

only with very small values of T1=2 corresponding to a very fast

dead-cell removal. Because of the general tumor shrinkage

across the patient cohort, the model was simplified by taking

into account the dynamics of the active volume only.

Despite their different formulation, the 2 models (cMg and

cMl), trained on the whole patient cohort, showed similar

performances (mean error: *16%), suggesting that

Gompertzian and logistic functions are both able to mimic

the tumor spontaneous growth dynamic (Table 4).

As expected, the fitting performance of pM was better than

that of the patient-cohort model (Table 5). Again, pMg and

patient-specific model learning using logistic growth function

(pMl) models were in good agreement with no significant dif-

ference (P > .1). The intergroup statistical analysis of the fitting

errors did not provide significant differences (P > .1), using

pMg and pMl as well. Therefore, it was not possible to assert

any correlation among the model performances and the tumor

histology or treatment. Wide-ranging variations in the para-

meters were, however, obtained across patients.

Figure 3. Fitting error tendency for general model (gM) as a function
of T1=2.

Table 3. The cMg Comprehensive Result Chart: T1=2, Errors,
and Parameter Values.

T1=2, Days E % r k a

0.5 8.05 0.06 80.00 0.11
1 9.02 0.07 80.41 0.14
5 12.67 0.11 80.00 0.50
10 17.25 0.05 80.00 0.50
30 41.24 0.05 80.00 0.50

Abbreviation: cMg, cohort-based model learning using Gompertzian growth
function.

Figure 4. Fitting results achieved using general model using Gom-
pertzian growth function (gMg) are shown for T1=2 ¼ 0:5 (A) and
T1=2 ¼ 10 (B). Diamond and squared marks represent the measured
and predicted volumes, respectively. Necrotic (Vd) and viable (Vv)
volume evolution are displayed in dashed and dash-dot lines, respec-
tively. Circular dots at the baseline correspond to the irradiation days.
Time t ¼ 0 corresponds to the first radiotherapy fraction.

Table 4. The cMg and cMl Performances and Optimal Parameters.

cMg cMl

E, % Parameters E, % Parameters

r k a r k a
15.96 0.09 62.35 0.03 15.83 0.09 60.58 0.03

Abbreviations: cMg, cohort-based model learning using Gompertzian growth
function; cMl, cohort-based model learning using logistic growth function.
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A few patients presented a peculiar tumor evolution with

respect to the average exponential-like regression. For exam-

ple, patient 2 who presents a different regression dynamic: after

an initial significant shrinkage (Figure 5), the tumor reaches an

almost constant size (*50% of the initial volume). In such a

patient, the carrying capacity was estimated to be significantly

lower (k *62 and *58 for pMg and for pMl, respectively)

than the others. This could be ascribed to an overcome of the

sustainable size, the consequent lack of nutrients might have

caused an accelerated (r ¼ 1) reduction of the volume toward

the carrying capacity value. Interestingly, the corresponding a
value was quite small (0.13 for pMg and 0.06 for pMl): this

could be due to a lack of adequate vascularization with conse-

quent hypooxygenation and radiosensitivity reduction, in

agreement to what suggested by the r and k results. The relative

errors spanned across the range 2% to 10% both for pMg and

pMl (Table 5). The highest error level was reported for patient

1, likely due to the sudden regrowth, at the beginning of the

treatment (Figure 5, panel a), that the model was not able to

reproduce. Patient 9 led to a k > 150 both for pMg and pMl; this

might be due to its initial limited extent (about 14 cm3 corre-

sponding to a 1.5 cm equivalent radius). Patients 16 (initial CT

volume: 21 cm3) and 15 (initial CT volume: 19 cm3) resulted in

great k values, as well. In contrast, patient 13 resulted in 100%
< k < 105% despite its small initial size (13 cm3). The patients

with the largest initial tumor sizes (patients 5, 10, and 12; V *
50 cm3) resulted in 80% < k < 90%.

Significant intergroup statistical difference was found only

for the a parameter. PSI turned out to be the most radiosensible

patient set (mean a * 0.2 Gy�1) with a difference (P < .02)

with respect to the other 2 patient sets. Interestingly, such a

greater radiosensitivity was correlated only to the elderly

patients in PSI while they underwent radiotherapy without

adjuvant ChT.

Extrapolation results, obtained through the LOO technique,

showed on average only a small increase of the prediction error

with respect to the corresponding fitting error (Figure 6). As far

as the pM is concerned, the parameter combination computed

on the partial data set of the patient 5 (pMg5, E*7%) was able

to predict the complete tumor regression with a similar ability

(E*9%). pMg5 performance decreased in the attempt of pre-

dicting the other 5 patients belonging to PSI (E*19%) as

shown in Figure 7. However, the relative error value was com-

parable to the one achieved by cMg in the LOO procedure (cfr

Figure 6). Finally, the performance achieved on PSII and PSII

patients was unexpectedly even more promising (E*16% on

average). This restates that the patient subdivision into 3 PS was

not meaningful, in agreement with the results of former statisti-

cal tests. pMg2 extrapolation ability was tested on the other 14

patients (excluding patient 2) as well, and a much higher mean

prediction error was obtained (E*26%).

Considering the cohort-based model (cMg), a perturbation

in a and r values up to 20% produced a very small error

increase, namely Eðr; k; a0Þ � Eðr; k; aÞj j < 0:2% and

Eðr0; k; aÞ � Eðr; k; aÞj j < 0:03%, respectively. The effect of

k variation, although more relevant, reflected in a maximum

error increase of about 1% (Figure 8), indicating that the model

is more sensitive to k value.

cMg(~V ) and pMg5*(~V ) were trained on the related noisy

volumes ~V ¼ V þ N 0:0; 5:0ð Þ data sets. ~V was affected by an

average 5% uncertainty level computed as

ð~V tð Þ � V tð ÞÞ=V t ¼ 0ð Þ with respect to the average initial vol-

ume (about 1.5 cm3). If we assume a tumor spheroid shape, this

value implies about 0.1 mm error on the equivalent diameter of

Table 5. The pMg and pMl Performance and estimated parameters.

pMg pMl

ei

Parameters

ei

Parameters

r k a r k a

Pz1 7.84 0.24 50.78 0.25 7.21 0.29 50.00 0.20
Pz2 5.02 1.00 61.76 0.13 4.72 1.00 58.23 0.06
Pz3 3.39 0.15 97.05 0.29 3.90 0.38 101.76 0.40
Pz4 5.78 0.17 97.64 0.26 5.01 0.09 87.05 0.05
Pz5 7.28 0.09 83.52 0.15 6.42 0.25 95.88 0.25
Pz6 6.84 0.13 104.11 0.12 6.35 0.12 101.76 0.09
Pz7 5.88 0.16 98.23 0.20 5.88 0.25 96.47 0.20
Pz8 6.47 0.29 87.05 0.11 6.53 0.33 87.05 0.11
Pz9 8.79 0.02 157.64 0.04 8.26 0.02 162.35 0.04
Pz10 3.24 0.06 78.82 0.04 4.08 0.11 98.23 0.06
Pz12 7.11 0.06 90.00 0.07 6.62 0.12 97.64 0.09
Pz13 4.89 0.13 102.94 0.04 5.95 0.25 104.11 0.06
Pz14 2.53 0.68 100.00 0.22 2.45 0.93 100.00 0.26
Pz15 7.53 0.02 117.05 0.03 7.23 0.02 124.70 0.03
Pz16 6.88 0.02 121.76 0.03 4.06 0.02 191.76 0.04
Mean (SD) 6.3 (1.82) 0.25 (0.27) 100.5 (25.1) 0.18 (0.09) 5.97 (1.56) 0.31 (0.30) 108.5 (35.2) 0.16 (0.11)

Abbreviations: pMg, patient-specific model learning using Gompertzian growth function; pMl, patient-specific model learning using logistic growth function; SD,
standard deviation.
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a 30-cm3 tumor and up to 2 mm on a 6.3-cm3 volume (corre-

sponding to the initial and final patient 5 tumor sizes, respec-

tively) and to an average value of the error

eps ¼ ð~V tð Þ � V tð ÞÞ=V tð Þ close to 20%. The resulting k and

a variations were lower than 5% for both cMg and pMg5*,

whereas r decreased of about 8% for pMg5* and increased

of about 30% for cMg. This last variation, however, was very

small when compared to the mean absolute value (0.09) of r.

The corresponding difference of the fitting errors was lower

than 0.1% and 0.2% for cMg and pMg5*, respectively.

Discussion

The models proposed in this work achieved promising fitting

performances (E*16% and E*6% for cM and pM, respec-

tively). Comparable results were obtained by means of the

Gompertzian and logistic proliferation models. cMg prediction

ability, assessed by means of the LOO procedure, was only

slightly lower (E*18%) than the original fitting performance

(E*16%). As expected, the pMg learning approach was able to

better fit each specific patient volume regression. Interestingly,

pMg5 also showed an extrapolation ability comparable to cMg

(19% and 16% on PSI and PSII þ PSIII, respectively). How-

ever, patient 5, whose reduced data set was exploited to train

pMg5, showed a rather exponential-like regression (R2 ¼ .85,

crf. Table 1). The model trained on patient 2 data set (R2¼ .43)

led to significantly different results (E*26%) in predicting the

tumor regression of the other patients. No significant differ-

ences were found across the 3 PS in terms of fitting errors. The

parameters, optimized on each single patient (pM), were not

statistically different with respect to the tumor histology and

delivered treatment. The only exception was represented by the

radiosensitivity parameter in PSII and PSIII, which was lower

on average with respect to that of PSI (P < .02). This is appar-

ently in contrast with the fact that chemoagents were adminis-

tered to both PSII and PSIII, but in agreement with the

measured regression rates (cfr Table 1, last column).

Notably, the model was shown to be robust to both para-

meter and volume data perturbation. In particular, we found a

very small fitting error increase (0.2%) with respect to a simu-

lated tumor volume size variation of about 20%, making the

model suitable to be applied on noisy CBCT data.

Tumor growth and therapy response were represented by

using continuous equations (ODE) and limiting the model

description to the tissue level and macro-scale growth mechan-

isms. Mathematically more sophisticated generalizations of

various kinds (eg, multiple cell status to discriminate between

necrotic and hypoxic tumor fraction, effect of vascularized

tumors) can enhance the realism of the model. Nonetheless,

the corresponding increase in the parameter number and the

difficulty of constraining them, using imaging data, makes

more complex models less practical for clinical use.

The underlying assumption of a fast dead-cell dynamic,

allowing the use of the single-dynamic model, was mostly

supported by the major tumor shrinkage we measured on a

daily basis. The applicability of the single-dynamic model to

different fitting or prediction problems should always be ver-

ified on the specific data set under analysis. Although the

double-dynamic is biologically more consistent than the single

dynamics, the parameter learning problem is not well-posed.

Without properly conditioning the Vd=Vv ratio, the relation

v ¼ Vv þ Vd is insufficient to constraint the resolution of the

ODE system, leading to uncertainty of the solution for the

parameters (r, k, a, and T1=2). Gathering functional and histo-

logical information along the course of treatment would be the

practical approach to address the question, while its feasibility

is still a critical aspect in IGRT (eg, cost, invasiveness, and

time). Perspective studies could be considered, for example,

exploiting positron emission tomography functional images

capturing tumor activity or, in the particular case of cervix

cancer, assessing the tumor perfusion by means of Doppler

sonography.30,31

The volume normalization allowed us to apply the same

model to all the patients (cMg/cMl) computing a unique sensi-

tivity parameter a independently on the initial tumor size.

However, a (as well as r, k) is likely to vary significantly on

a patient-specific basis since the active layer is composed by

Figure 5. Fitting results for patient-specific model learning using
Gompertzian growth function (pMg) trained on patients 1 (A) and 2
(B). Diamond and squared marks represent the measured and pre-
dicted volumes, respectively. Circular dots at the baseline correspond
to the irradiation days.
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several cell lines featuring different radiosensitivity.32 The

solid and compact nature of cervical cancer may also cause

the onset of hypoxic regions. It was extensively reported that

the oxygen distribution in a tumor has a significant effect on

radioresponsivity and prognosis.31,33,34 Some works addressed

the problem by modeling spheroids featuring multiple necrotic

cores.35 Another possible approach is to include further infor-

mation on the well-known hypoxic fraction (HF) which could

be estimated noninvasively by means of magnetic resonance

imaging (MRI) acquisitions36 and to relate it to the oxygen

enhancement ratio (OER) accounting for the increased

effectiveness of the radiation in presence of higher oxygen

concentration. Moreover, the tumor features evolve during the

treatment period, for example as a consequence of vascular

modifications.37 The a parameter assessed by our simplified

model corresponds to an average value across the overall treat-

ment period. The modeling of the radiosensitivity dependency

upon hypoxia was beyond the purpose of the present study,

however it could be introduced by considering a pO2 tð Þð Þ,
where pO2 tð Þ represents the oxygenation level trough time.

Two main sources of uncertainty should be considered in

this work, namely the tumor delineation errors in the CBCT

images and the difference between the nominal and the real

doses delivered to the patient. We acknowledge that CBCT is a

suboptimal imaging modality, but a systematic analysis of the

quantification of the CBCT tumor delineation variability was

out of the scope of this article. Tumor volume was manually

delineated on the simulation (planning) CT and then on every

CBCT by the same operator. Inter- and intraobserver variabil-

ity is a well known pitfall in modern radiotherapy of numerous

tumors38 and regards all procedures like diagnostic imaging,

target contouring, and image-based target verification during

treatment course. Indeed, CBCT image interpretation repre-

sents an issue for CBCT-based IGRT. When compared to other

imaging modalities, such as CT or MRI, CBCT carries the

highest interobserver variability in target and organs at risk

identification. These difficulties are due to the lack of contrast

medium and reduced image quality. Segmentation and delinea-

tion assessment, as well as the analysis of interobserver varia-

bility are part of the IGRT quality assurance program.39 In one

study,40 the authors reported an interobserver variability for

prostate delineation on CBCT images lower than 2 mm. In

another study,41 the authors reported a similar interobserver

variability (*1 mm) for bladder delineation on CBCT images.

Recently, guidelines for reporting contouring variability have

Figure 6. Leave-one-out (LOO) results obtained training cohort-based model learning using Gompertzian growth function (cMg) on 14 patients
at a time and testing the parameter combination on the left-out-patient. The training and testing errors are showed for each patient (left panel)
and on average taking into account the standard deviation (right panel).

Figure 7. Extrapolation results obtained by pMg performed on the
reduced data set of patient 5 (pMg5) on another patient of PSI (patient
6). Diamond and squared marks represent the measured and pre-
dicted volumes, respectively. Circular dots at the baseline correspond
to the irradiation days.
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been proposed.42 In the present article, we performed a test to

evaluate the model robustness by simulating data uncertainty.

Considering a reasonable uncertainty of 5% of the measured

volumes, with respect to the initial tumor size, we remarkably

obtained a fitting error variation lower than 0.2%.

The nominal value of the dose delivered to the patient was

used despite the possible occurrence of errors due to tumor

shape modification, soft tissue deformation and physical

interaction with the surrounding organs. However, as the

radiation is delivered according to the PTV, which is enlarged

with respect to the GTV, the morphological deviations to

planning are addressed, however at the cost of an increase

in toxicity. In order to quantify the exact dose to the tumor,

the image registration between CBCT and planning CT

appears to be mandatory.

The reported results are promising, as they prove that con-

current proliferative regrowth and radiation cell killing effects

are sufficient to represent tumor regression in cervical cancer.

The applied models did not make any assumption about radio-

therapy or ChT killing mechanisms at a cellular level, as only

cell survival fractions were used. Therefore, these equations

can be applied to radiotherapy or combined radiotherapy and

ChT treatments, in temporally nonuniform treatment schedul-

ing. In conclusion, the main contributions of this study can be

summarized as follows: (1) macroscopic proliferative and LQ

radiosensitivity models can represent cervical cancer tumor

regression within experimental uncertainties; (2) the differ-

ence between Gompertzian and logistic growth models is

negligible; (3) tumor regrowth and radiobiological parameters

can be evaluated both on patient- and group-specific basis.

Potentially, the predictive ability of the model can be

exploited to simulate how changes in the treatment schedule

(number of fractions, doses, and intervals among fractions)

can affect the tumor regression on an individual basis. One of

the simplest appealing scenarios, disclosed by the use of such

predictive models, would provide meaningful information to

the physician at the time of treatment planning and during

therapy administration, so that the therapeutic schedule can

be adapted at run time accounting for patient specific tumor

regression patterns observed on image guidance data.

Conclusions

In this study, we analyzed the potential ability of macroscopic

time-continuous models to represent tumor response when

trained on a patient-set and patient-specific basis. The ODE

models, which integrate proliferative functions (Gompertzian

and logistic) with the radiobiological LQ model, were imple-

mented to cope with 2 concurrent tumor features, namely repo-

pulation and sensitivity to radiation. The basic assumptions of

the reported modeling effort were the following: (1) the tumor

mass is characterized by a single cell type; (2) the regression is

independent of the initial absolute tumor size; and (3) the radia-

tion response is locally time-delayed and globally dependent

upon the specific treatment schedule.

Serial CBCT data showed a general tumor regression in all

of the 15 patients, in agreement with other studies, which

observed tumor shape regression performed through megavol-

tage CT imaging.43 These data (GTV volume) were used to

learn model parameters by means of evolutionary optimization,

accounting for 2 different histological cervical cancer types and

different treatment regimens (with and without concomitant

ChT). A short-time window (*60 days), coincident with the

irradiation period, was considered, and no follow-up measure-

ments were taken into account.
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