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Abstract 

An increasing amount of commercial measurement instruments implementing a wide range 

of measurement technologies is rapidly becoming available for dimensional and geometric 

verification. Multiple solutions are often acquired within the shop-floor with the aim of 

providing alternatives to cover a wider array of measurement needs, thus overcoming the 

limitations of individual instruments and technologies.  

In such scenarios, multisensor data fusion aims at going one step further by seeking original 

and different ways to analyze and combine multiple measurement datasets taken from the 

same measurand, in order to produce synergistic effects and ultimately obtain overall better 

measurement results. 

In this work an original approach to multisensor data fusion is presented, based on the 

development of Gaussian process models (the technique also known as kriging), starting 

from point sets acquired from multiple instruments. The approach is illustrated and validated 

through the application to a simulated test case and two real-life industrial metrology 

scenarios involving structured light scanners and coordinate measurement machines.   

The results show that not only the proposed approach allows for obtaining final 

measurement results whose metrological quality transcends that of the original single-sensor 

datasets, but also it allows to better characterize metrological performance and potential 

sources of measurement error originated from within each individual sensor. 

 

 

Keywords: Multisensor data fusion, coordinate metrology, CMM, structured light scanner, 
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1. Introduction 

1.1. Multisensor instruments for dimensional metrology 

The combined use of multiple measurement sensors is becoming commonplace in 

dimensional metrology and an increasingly wider array of instruments equipped with multiple 

probes is becoming available. Popular commercial solutions for the measurement of parts 

include touch-probe CMMs equipped with additional optical and/or vision sensors [1-4], and 

measuring arms equipped with touch-probes and laser point or line scanners [5, 6]. Even in 

surface metrology, where the aim is the characterization of surface texture at micro and sub-

micro scales, 3D microscopes have recently become available equipped with multiple 

measurement heads implementing different measurement technologies (e.g. vertical 

scanning interferometry + focus variation [7]). 

All such commercial offerings are based on the same conceptual approach: “one fixture, 

multiple sensors”, i.e. all these instruments are designed to provide multiple measurement 

options within a single measurement setup, essentially letting the user select the proper 

sensor for each task, thus overcoming the limitations of each single measurement 

technology. Once the workpiece is mounted onto the instrument, depending on the type of 

characterization, part accessibility, time and accuracy requirements, the user is free to select 

the probe / sensor technology that is better suited to accomplish the inspection/verification 

task. 

 

1.2. Multisensor data fusion 

Multisensor data fusion tries to go one step further [8-13], and refers to the process of 

combining multiple sensor data sets with the goal of obtaining a result which either marks an 

improvement with respect to what obtainable from each data set taken singularly, or 

constitutes an entirely new piece of information, which could not be obtained by simply 

analyzing any of the individual datasets. 

In multisensor data fusion, it is not necessary that all the datasets come from the same 

instrument, and data may have been acquired at different places and times. Combining 

multiple data sets may refer to combining data coming from different sensors and/or sensor 

types, but may also refer to combining data coming from the same sensor, used with 

different setups, or even used multiple times with identical operating conditions (i.e. 

combining replicate data sets).  

Data types, which can be integrated in dimensional metrology, include: 

- conventional digital images (RGB, greyscale): as acquired by digital cameras; 

- range images (images whose pixels contain distance information): as acquired by 

structured light scanners, 3D microscopes and photogrammetry systems; 

- point clouds (i.e. set of points in 3D space): as acquired by CMM, measuring arms, 

single-point laser trackers, laser radar, etc., and 
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- volume data (i.e. 3D matrices): as acquired by X-ray Computerized Tomography. 

 

In general, the term homogeneous integration is used when combining the same type of data 

(e.g. 3D point clouds), while inhomogeneous integration is used in all the other cases. 

Depending on the type of data to be integrated and on the overall characterization goal, 

many multisensor data fusion scenarios may be imagined; these can be categorized into 

three main classes according to a popular classification scheme [14]. In competitive data 

fusion, redundancy originated by replicate data sets acquired with the same sensor and in 

the exact same operating conditions is used to improve the metrological quality of the result. 

For example, multiple identical images of the measurand can be combined in order to extract 

an average image, more robust to noise. In complementary data fusion, homogeneous data 

sets, taken by the same sensor but in slightly different operating conditions, provide 

information so that each set is meant to complement the others. Fusion in this case is meant 

to take advantage of such complementarity. For example, digital images with the same 

magnification but slightly different localization may be stitched to obtain increased spatial 

coverage, or images taken at different magnification could be fused to obtain a result that 

covers a wider array of spatial resolutions (scales). Finally, cooperative data fusion gathers 

all the types of integration involving homogeneous/inhomogeneous data sets, which cannot 

be classified under competitive or complementary integration. A few scenarios of cooperative 

data fusion have already gained some popularity [9]: in dimensional and geometric 

verification, vision can be used to acquire global shape information needed to automatically 

produce an inspection path for the touch probe; in defect identification vision can be used to 

identify and localize a defect, then localization information can be used to drive a laser line 

scanner which performs the actual shape measurement of the defect; in reverse 

engineering, high-density point clouds obtained by an optical sensor can be stitched together 

with the help of a few reference points obtained by a touch probe to reconstruct the full-3D 

shape of an object. Some sensor technologies are intrinsically based on some form of 

cooperative integration [9]: for example, depth from focus, shape from shading and 

photogrammetry are 3D imaging technologies, which are based on fusing data obtained from 

conventional 2D images in order to obtain 3D information.  

 

1.3. An overview of some notable approaches to multisensor data fusion 

Some of the cooperative scenarios cited above can also be classified as sequential data 

fusion, an additional category where the first dataset is used to obtain the second, and then it 

is discarded. For example, in [12] high-density, low-quality information acquired by means of 

a vision system is used to guide the acquisition of a low-density, high quality dataset via a 

touch probe CMM. The dataset obtained by vision is discarded after the CMM dataset is 

available. An approach where both datasets are kept can be found in [15], where a laser 
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scanner is used to acquire free-form surface patches, while a CMM is used to acquire  patch 

boundaries only. Fusion is achieved by simply adding the two datasets together.  

Fusion is also meant as a way to define the appropriate compensation (i.e., a roto-translation 

matrix) to be applied to a sensor to achieve information provided by the other one [16]. As in 

many applications of data fusion, this approach assumes that all the sensors acquire data at 

the same locations, an assumption that usually does not hold when measurement systems 

based on high-density optical scanning are considered.  

In [17] a method is proposed for fusing high-resolution and a low-resolution data: after  

registration and elimination of redundant points, merging is achieved by remeshing all the 

acquired data points. No statistical models to represent measurement errors are considered 

in the merging procedure. On the contrary, in [18] the datasets acquired by different sensors 

are considered as different responses of a multivariate linear (or non-linear) model, and 

Bayesian estimates of the unknown coefficients are carried out.  The statistical model is 

used specifically to correct laser trackers responses; The same locations are measured with 

all the available sensors (or multiple times by the same tracker) in order to compute the 

fusion step. 

 

Most of the aforementioned approaches for data fusion either combine information by simply 

adding data points originated from different observations (after appropriate elimination of 

redundant data) or, assuming points are taken at the exact same locations, use one dataset 

to correct the other. Furthermore, most of the methods assume deterministic data fusion or 

statistics as a way to estimate unknown coefficients.  A notable exception is the method 

presented in [19], aimed at multisensor data alignment. In this case, the main idea is to 

reconstruct the information provided by all the different sensors before performing the fusion 

step. This approach has the main advantages of i) include statistical modelling while 

reconstructing the information provided by different data sets, providing prediction intervals 

for the local discrepancies between different data sets as well as on the final prediction of the 

shape at any given location; ii) relaxing the assumption of acquiring all the data at the same 

location set. This approach is considered as starting reference for the fusion procedure 

presented in this work. 

 

1.4.  Multisensor scenarios involving 3D point sets with different densities and 

metrological performance 

The specific data fusion scenarios investigated by this work involve multiple 3D point sets 

(point clouds, i.e. homogeneous data) acquired from the same measurand surface as part of 

an inspection / verification process [20]. 

In these scenarios, the datasets are supposed to belong to one of the two following main 

categories: 
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- Points coming from touch-probe CMMs:  

In a conventional CMM, point acquisition is generally very slow (acquisition in single 

point mode), or slightly less so (acquisition in profile mode); the localization of the points 

on the measurand can be accurately controlled by the operator, and variable point 

spatial density on the measurand surface is usually explicitly designed into the 

verification process with the aim of collecting an increased number of points in high-

curvature or otherwise critical regions. Point density is generally low anyways, given the 

cost of slow measurement. Due to the optimal traceability of CMMs, measurement can 

be considered as fairly accurate, hence in general high trueness and high precision are 

to be expected. In summary, these points sets will be referred to as characterized by 

low-density (LD) and high (metrological) performance, but will tend to be scarcely 

populated, given the high acquisition costs. 

 

- Points coming from line scanners, structured light scanners, and photogrammetry: 

In these techniques, point acquisition is generally extremely fast and data sets are 

highly populated. However, there is usually little to no control on the exact localization of 

each acquired point over the measurand surface. In imaging techniques such as 

structured light scanning and photogrammetry, points are usually spread along a 

regular, rectangular grid in the x,y projection plane, and are differentiated from each 

other by height (z) information (i.e. they form a range image). Spatial density (in the x,y 

plane) is very high. However, trueness and precision tend to be low. These instruments 

are poorly characterized from a metrological standpoint and scarcely traceable. 

Moreover, the likelihood of local bias (usually due to some form of optical distortion) is 

potentially very high. In summary, these points sets will be referred to as characterized 

by high-density (HD) and low metrological performance, and will tend to be highly 

populated, given the low acquisition costs. 

 

It is clear that measurement with line scanners, structured light scanners and 

photogrammetry possesses some very desirable properties, in particular in terms of 

acquisition speed and low cost for obtaining a very large amount of points. However, the 

appeal of these techniques is somehow hampered by their poor metrological performance. 

This is why currently the CMM touch-probe is still considered the standard de-facto for 

metrological characterization, while these high-speed techniques are relegated to reverse 

engineering and in general to any type of shape reconstruction where metrological accuracy 

is not as relevant.  

 

1.5. Multisensor data fusion scenario investigated in this work 

This work investigates the possibility of improving the metrological performance of a point set 

acquired with a structured light scanner or analogous high-speed technique (cheap, many 
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points, high-density, low metrological performance). The main goal is to improve local 

trueness (reduce local bias) of the dataset by fusing it with a smaller set of “truer” points 

acquired with a touch-probe CMM, or analogous technique with high metrological 

performance but low acquisition speed – high measurement cost). The idea is to implement 

a fusion process where the CMM points act as local attractors, essentially introducing 

corrections to local bias into the high density point set, or at least highlighting those regions 

in the set where the bias problem is more significant.   

Therefore, two datasets are assumed available in this scenario:  

- a high-density, highly-populated, low metrological performance one, generated from a 

structured light scanner or analogous technique. This will be simply referred to as the 

HD (high density) set; 

- a low-density, scarcely-populated, high metrological performance one, generated from a 

touch probe CMM. This will be simply referred to as the LD (low density) set. 

 

It is assumed that both the LD and HD sets have already been correctly localized within the 

same coordinate system, i.e. that the registration problem has been solved. This is already a 

non-trivial task, and a fundamental one in determining the successfulness of fusion. Details 

on how registration can be successfully accomplished in multisensor data fusion scenarios 

can be found in recent work by the authors [21].  

 

Since the main goal of the proposed approach is to reduce the systematic measurement 

error, which can greatly contribute to the overall uncertainty budget, this paper will mainly 

focus on this aspect (from Section 2 to Section 4). 

Additional benefits of the proposed approach are illustrated in Section 5:  the model for 

multisensor data fusion can be used as a valid tool to assess the precision (i.e. the random 

error component) that can be associated to each dataset involved in fusion, even without the 

need to resort to replicate measurements. Moreover it allows for investigating how the 

random error components associated to the individual datasets propagate through fusion 

and ultimately affect the prediction error associated to the fusion result. Conclusions and 

potential directions for future research are reported in Section 6.   

 

 

2. The Multisensor Data Fusion (MsDF) model 

2.1. Formal representation of the point sets 

It is assumed that both point sets can be represented by discrete functions of the type: 

z x
i
,y

i( ) , i.e. where the z-coordinate of the i-th point is expressed as a function of its position 

on the x,y plane. This formal encoding is ideally suited to the HD set, since structured light 

scanners and similar imaging devices produce range image data (i.e., only one z value can 
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exist at any given x,y position) and can be adapted to most CMM point sets (LD sets) as long 

as the low density allows for identifying a transform that maps the points to the same x,y 

plane of the HD set. Then, by expressing point position as a vector of two components: 

v
i
= x

i
,y

i( )  the HD set becomes: z
HD
v
i( )  with v

i
∈V

HD
⊂ R

2
, i = 1,2,,n

HD
 and similarly, the 

LD set becomes: z
LD
v
i( )  with v

i
∈V

LD
⊂ R

2
, i = 1,2,,n

LD
. As stated previously, the HD set 

is larger than the LD set, i.e. n
HD

> n
LD

 and in general the points of the two sets will not 

share the same locations on the x,y plane, i.e. V
HD

∩V
LD

=∅ , because it is very hard to 

acquire a point with a touch probe CMM at the exact same location of a point belonging to a 

range image obtained with a structured light scanner or similar. 

 

2.2. First stage of the data fusion model 

Data fusion is achieved using a two-stage Multisensor Data Fusion (MsDF) model [19, 22]. 

At the first stage, a representation of the geometry is obtained by using the HD data only and 

can be defined as follows: 

z
HD
v
i( ) = fHD vi( ) + εHD         (1) 

where the term ε
HD

 accounts for the error, and is assumed to follow a normal distribution 

with 0 mean and σ
εHD

2
 variance, i.e. ε

HD
~ N 0,σ

εHD

2( ) . In the ideal case of a perfect fitting, 

that is when the model f
HD
v
i( )  of the underlying surface is appropriate and the related 

coefficients are correctly estimated, ε
HD

 should represent the HD measurement error. 

Therefore, it is clear that the core part of equation (1) is the term f
HD
v
i( ) , representing the 

pattern of the underlying feature observed with noise. Among the different models that can 

be assumed for this term, a Gaussian Process (GP) model [23-25] is considered in this work. 

A GP model (the technique also known as kriging) is a particular type of random process 

where the pdf associated to any process observation (i.e. the z value at a given location in 

the x,y plane) is normal, and the joint probability distributions associated to any finite subset 

of process observations are normal as well [26-28]. Formally, a GP model is defined by: 

f
HD
v
i( ) =GP m

zHD
v
i( ),kzHD vi ,v j( )( )       (2) 

where m
zHD

v
i( ) = E z

HD
v
i( )⎡

⎣
⎤
⎦  is the mean function, which is used to describe the expected z 

value at v
i
. k

zHD
v
i
,v

j( ) = E z
HD
v
i( ) −mzHD

v
i( )( ) zHD v j( ) −mzHD

v
j( )( )⎡

⎣
⎤
⎦

 is the covariance 

function, which is used to describe the variance of the z value at location v
i
= v

j
 as well as 
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the covariance between the z values located at v
i
≠ v

j
 (a measure of how much such z 

values change together). 

In this work, we used a simple linear model (geometrically a plane in space) to represent the 

mean function of the GP model: m
zHD

v
i( ) = β

0,HD
+ β

1,HD
x
i
+ β

2,HD
y
i
. In addition, we used the 

squared exponential function to represent the covariance of the GP model, i.e.: 

k
zHD

v
i
,v

j( ) = σ
zHD

2 exp −
v
i
− v

j

2

2l
HD

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

      (3) 

where v
i
− v

j
 is the Euclidean distance between locations v

i
 and v

j
 in the x,y plane, 

σ
zHD

2
 is the constant variance of the GP model (note that the overall variance of z

HD
v
i( )  is 

constant too and is equal to σ
zHD

2
+σ

εHD

2
) and l

HD

 

is the characteristic length-scale (i.e., the 

length over which there is no significant relationship between two z values). In practice, 

according to equation (3), z values which lie closely together on the x,y plane (no matter 

where they are located) are likely to be more similar. The squared exponential is one of the 

most popular choices for GP models, because it yields positive definite correlation matrices, 

enables proper convergence of the statistical estimation algorithms and can model smooth 

and infinitely differentiable functions [27]. 

Parameters β
0,HD
,β

1,HD
,β

2,HD
,σ

εHD

2
,l
HD
,σ

zHD

2{ }  of the geometry model described by equations 

(1)-(3) are all unknown and must be estimated from the actual measurement data z
HD
v
i( )  

with v
i
∈V

HD
⊂ R

2
, i = 1,2,,n

HD
. 

Details on the statistical estimation of the GP parameters can be found the appendix of this 

paper. Fitting of GP models was implemented in this paper based on the code developed in 

[29]. 

Once parameter estimation is complete, the knowledge of the mean m
zHD

⋅( )  and covariance 

k ⋅,⋅( )  functions makes it possible to estimate the function value z
HD
v( )  at any new location 

v  in the x,y plane, given the measured points z
HD
v
i( )  with v

i
∈V

HD
⊂ R

2
, i = 1,2,,n

HD
 

(refer to the appendix for details). Both a punctual ( ẑ
HD
v( ) ) and a prediction interval for the 

function value z
HD
v( )  can be computed at any location v . Note that prediction intervals are 

particularly useful in providing information concerning the level of uncertainty corresponding 

to each new prediction computed at a new location. 

 

2.3. First stage of the data fusion model 
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In order to illustrate how the first stage of the MsDF works, a simple simulated example is 

shown. Without loss of generality, a profile is used as reference instead of a surface, to ease 

the graphical representation of the approach. Figure 1 shows the profile to be measured.  

 

 

Figure 1: a simple example of profile to be measured 

 

In Figure 2.a the set of points resulting from low-quality, high density, simulated 

measurement (HD set) is shown. Consistent with the type of optical measurement being 

investigated, precision is low over the entire profile. The simulation replicates also typical 

calibration conditions of optical systems and in particular of structured light scanners: 

measurement is unbiased at the center of the field of view, but not so at the boundaries, 

where effects such as optical aberration introduce an increasing amount of bias. 

 

 

(a) 

 

(b) 

Figure 2: Fitting a GP model to the HD set; a) original HD set; b) results of fitting: original profile (black), 

original HD set (red dots), prediction interval (gray band) and mean line (red, dashed) 
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In Figure 2.b, the results of fitting to the model in equation (1), i.e. a GP model with a simple 

line as mean function and the squared exponential as covariance function, are shown 

overimposed to the original profile (black, continuous line) and the original HD set (red dots). 

The red, dashed line represents the local estimate ẑ
HD
v( ) , while the grey band represents 

the prediction interval at 95% confidence level. The prediction interval appears quite narrow 

about the mean line thanks to the high density of the HD points.  

As it is clear from the figure, the predicted model follows the HD set, drifting away from the 

real profile in presence of measurement bias.  

 

2.4. Second stage of the data fusion model 

As seen in the previous section, the GP model built over the HD data set allows for having a 

continuous function that can be interrogated at any location, and that provides surface 

information in statistical terms (estimate of z, and associated prediction interval at any 

location). The downside is that the model is incapable of correcting local bias which may be 

present in the original HD set. This is where data fusion really comes to help. 

Recall the availability of the second set of points, a low-density, high quality set set: z
LD
v
i( ) . 

It is assumed that high quality comes in the form of high precision (i.e. small variance for the 

measurement error) and unbiasedness (i.e. zero mean measurement error) over the entire 

measurement range. Unbiasedness in particular means that even in those locations where 

the HD set drifts away from the surface being measured, the LD set would still provide a 

reliable reference. Thus it makes sense to find a way to use the information contained in the 

LD set to "correct" the GP model produced starting from the HD set.  

To understand how the correction is made, it is necessary to introduce a "linkage" model 

first, i.e. a model that describes the difference between the z-values estimated by the GP 

model obtained from HD data (where the punctual prediction is represented by ẑ
HD
v( ) ) and 

the z-values of the LD set z
LD
v
i( ) , in correspondence to those locations v

i
 where the LD 

data area available, i.e v
i
∈V

LD
, i = 1,2,,n

LD
. Following [19, 22], the following form of the 

linkage model is assumed: 

z
LD
v
i( ) = ρ v

i( ) ẑHD vi( ) + δ v
i( ) + εMsDF , v

i
∈V

LD
,   i = 1,2,,n

LD  
 (4) 

The terms ρ v
i( )  and δ v

i( )  represent a scaling and a shifting factor, respectively. The 

linkage model is saying that, in correspondence to a location containing a LD point, the LD z-

value can be obtained by scaling and shifting the z-value obtained by the GP model fitted to 

the HD data ẑ
HD
v
i( ) , plus/minus an error associated to the LD data. As the model in 
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equation (4) is statistical, it also includes an error term 
MsDF
ε  which models the residual 

differences between the LD set z
LD
v
i( )  and ρ v

i( ) ẑHD vi( ) + δ v
i( ) . These residuals are 

assumed to be normally distributed with zero mean and constant variance σ
εMsDF

2
, i.e., 

ε
MsDF

~N 0,σ
εMsDF

2( ) . 

The scaling function can be assumed as linear: ρ v
i( ) = ρ

0
+ ρ

1
x
i
+ ρ

2
y
i
 (again, a plane in 

space). On the authors knowledge, more complex models for the scaling function are 

unnecessary in common multi-resolution scenarios. The shifting function can be modeled by 

another GP of constant mean δ
0
 and covariance function k

δ
v
i
,v

j( ) , i.e.: 

δ v
i( ) ~GP δ

0
,k

δ
v
i
,v

j( )( ) ,       (5) 

As in the previous equation (3), the covariance function can be described by the squared 

exponential, i.e.: k
δ
v
i
,v

j( ) = σδ

2 exp − v
i
− v

j

2

2l
δ

2⎛
⎝⎜

⎞
⎠⎟ . 

Parameters ρ
0
,ρ

1
,ρ

2
,δ
0
,σ

δ

2
,l
δ
,σ

εMsdF

2{ }  in equations (4) and (5) are all unknown and must be 

estimated from the measurements z
LD
v
i( )  with v

i
∈V

LD
⊂ R

2
, i = 1,2,,n

LD
. Again, this is 

mathematically handled as an optimization problem where the parameters that define the GP 

in equation (4) are varied while searching for the best solution measured in terms of the 

likelihood of such parameters for the given LD point set. 

The successful estimation of all the unknown parameters leads to the full reconstruction of 

the linkage model. The model can then be used to extract the correction factors to be applied 

to the original GP model defined from the HD set. In fact, at any generic location v , the 

original prediction ẑ
HD
v
i( )  can be corrected into: ẑ

MsDF
v( ) = ρ v( ) ẑHD v( ) + δ̂ v( ) . This has the 

effect of bending the original GP model (biased) towards the LD set (unbiased) where 

discrepancies exist. 

 

2.5. Second stage of the data fusion model: example 

To better illustrate the second stage of the data fusion model, the same example introduced 

before can be used. In Figure 3, the profile being measured is shown as a black, dashed 

line. The original HD points are shown as red dots, and the estimated z value ẑ
HD
v
i( )  of the 

original GP model fitted to the HD points is shown as a red, dashed line. The LD points are 

shown as blue dots, while the final model (after the correction by the linkage model) is 

represented by a dashed blue line (corrected z estimates) and associated prediction interval 

(grey band). 
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Figure 3: Correction of the GP model fitted to HD data by means of the linkage model; profile being measured 

(black, dashed); HD points (red dots), z estimates of the original GP model fitted to the HD set (red, dashed); LD 

points (blue dots), z estimates of the corrected GP model (blue, dashed); prediction interval of the corrected GP 

model (grey band) 

 

By comparing Figure 3 with the uncorrected results in Figure 2.b, the final effect of data 

fusion (reduced bias in the prediction) is evident. 

 

2.6. Fusion model vs. using only the LD set 

Essentially, in the two-stage fusion process, a GP model is first built starting from HD data, 

and then it is corrected (scaling and shifting) by means of another GP (linkage) model based 

on LD data. At this point, one may wonder if it would be more convenient to build a 

continuous function by directly fitting a GP model to the LD set, discarding the HD data 

altogether and thus eliminating the bias problem. 

Unfortunately, for the specific application scenario discussed in this work, this would be 

inadvisable, due to the low-density of the LD dataset. This is immediately visible with the 

help of Figure 4, where a GP model has been fitted directly to the LD points acquired from 

the test profile. The original LD points are shown in Figure 4.a; the fitted GP model 

z
LD
v
i( ) = fLD vi( )+εLD , where f

LD
v
i( )  is a GP model in all similar to that used in section 2.2 

(i.e., a simple line as mean function and the squared exponential as covariance function). 

The result is shown in Figure 4.b in terms of its z-estimates ẑ
LD
v( )  (light blue) and prediction 

interval (gray band). In Figure 4.c, the illustration is completed with the addition of the 

original profile being measured (black, dashed line). It is evident that, tough at least the line 
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of the estimates adequately follows the general orientation of the profile, it does not 

accurately reproduce its shape; also, the prediction interval is too large to be of any practical 

use. On the contrary, the use of the HD data set, albeit introducing bias, is invaluable 

because, given its high density, it is capable of providing a better starting point of the GP 

model which can be later corrected through fusion.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 4: Directly fitting the LD dataset to a GP model: a) LD dataset; b) line of the z estimates (light blue) and 

prediction interval (gray band) of the fitted GP model; c) same as the previous, with added the profile being 

measured (black dashed line) 

 

2.7. Other uses of the MsDF model 

Even without applying the correction, the simple observation of the fitted terms ρ v( )  and 

δ v( )  functions of the linkage model provides hints at regions where discrepancies between 
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the LD and HD sets are significant. This may be an indication of local bias, as in the simple 

profile example, but it may also indicate the presence of other problems in the measurement 

set-up. Therefore, by assuming consistency among sensors as an indication of higher 

reliability, the information may be used to decide what parts of both point sets to retain, and 

what to discard.  

 

3. Experimental validation of the MsDF model 

The freeform surface presented in [30] is used as a first case study (Figure 5). It was 

machined from a 100x100x100 mm workpiece. Three orthogonal planes (where dots are 

shown) define a reference system for the artifact. 

The freeform surface was measured by means of two metrological devices, namely a 

structured light (SL) scanner and a Coordinate Measuring Machine (CMM) Zeiss “Prismo 5 

HTG VAST” equipped with a analogue probe head with maximum probing error MPEP = 2 

µm (according to ISO 10360-2). The free-form surface was first measured via SL using the 

calibration procedure presented in the literature [31]. The resulting point cloud was referred 

to the coordinate system defined by three orthogonal planes as shown in Figure 5.a, in order 

to allow the CMM to replicate measurements at the same locations where SL data were 

available. 

The SL point cloud represents the HD dataset and consists of a total of n
HD

= 9635  points 

(Figure 6.b). The LD dataset consists of n
LD

= 100  CMM data points (Figure 6.a). 

An additional set of n
test

= n
HD

− n
LD

 CMM data points were acquired at the same locations 

where HD data were available acting as testing dataset V
test

, i.e., the accurate 

measurements used to evaluate the prediction ability of all the competing methods. 

The LD and HD data set were registered to the same Cartesian coordinate system (Figure 

5.a) by aligning the points taken on the three orthogonal, reference surfaces of the object to 

be inspected (reference-based alignment - Figure 5.a). Since calibration error in one or both 

instruments may lead to an erroneous alignment result and thus influence fusion, an 

additional scenario was investigated where the dataset were subjected to further registration 

refinement via the Iterative Closest Point (ICP) procedure [32].  
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(a) 

 

(b) 

Figure 5: The free-form surface used as case study. Three orthogonal reference surfaces (a). CMM sampling of 

the artifact (b) 

 

 

(a) 

 

(b) 

Figure 6: The free-form surface used as case study. 100 LD data set obtained via a CMM (a), 9635 HD data 

measured by SL scanner (b) (all values in [mm]) 

 

In order to evaluate the effectiveness of the proposed procedures, the Mean Squared 

Prediction Error (MSPE) was considered as performance indicator: 

MSPE =
1

n
test

z
test

v
i( ) − ẑmethod vi( )( )

2

v
i
∈V
test

∑ i = 1,2,…,n
test

,  (6) 

where z
test

v
i( )  is the CMM measurement at v

i
∈V

test
 and ẑ

method
v
i( )  represents the 

predicted value for the surface at location v
i
, obtained using one of the following four 

approaches: 

1. a GP model estimated using the LD data only ( n
LD

= 100 ); 

2. a GP model estimated using the HD data only ( n
HD

= 9635 ); 
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3. a GP model estimated using the LD and the HD sets merged into a single dataset, 

as if they came from the same measurement system ( n
LD

+ n
HD

); 

4. the MsDF approach illustrated in the previous section (GP model estimated using 

the LD data only and corrected by means of the HD data via the linkage model (

n
LD

+ n
HD

). 

Figure 7 summarizes the results in terms of the MSPE (showing also the 95% confidence 

intervals on the MSPE, computed as the confidence interval on the mean value of the 

squared prediction errors observed at all the locations). Two scenarios are represented, 

depending on whether a fine ICP alignment is performed or not after the standard reference-

based registration procedure. The MsDF method performs best, leading to predictions which 

are closer to the ideal result represented by z
test

v
i( ) , thus confirming that the proposed 

procedure for integrating multi-resolution data is worth. From Figure 7, it appears that 

merging the LD and HD data without considering data fusion (method 3) does not have 

significant advantage over the GP model based on the HD data alone. This is probably due 

to the large size difference between the LD and the HD samples ( n
LD

<< n
HD

), which causes 

the LD sample to have a negligible effect on the performance of the GP model. This result 

can be observed in both the experimental scenarios (reference-based alignment and 

reference-based + ICP alignment) as summarized in Figure 7. 

The performance of the GP model based on the HD data alone (method 2) is worse than 

what achievable using a GP model on the LD data (method 1) when reference-based 

alignment is assumed. This most likely indicates that the GP model alone was not able to 

compensate for the alignment error between the original HD dataset and the CMM 

verification set. When the additional ICP alignment is considered, the alignment error is 

greatly reduced, and the performance of the model based only on the HD data, improves 

significantly. Nevertheless, this is not enough to beat the MsDF performance, which still 

results in almost half the prediction error. 
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(a) 

 

(b) 

Figure 7: Performance of the different approaches. MSPE and the 95% confidence intervals of the MSPE for each 

model (values in [mm
2
]). Reference-based alignment of the data (a). Reference-based+ICP alignment of the data 

(b) 

 

Figure 8 depicts the color-plot of the local prediction error ( z
true

v
i( ) − ẑmethod vi( ) ) of the four 

competing methods, when n
LD

= 100  and only the reference-based alignment is performed. 

Warm colors represent underestimates of the true value ( z
true

v
i( ) > ẑmethod vi( ) ), while cold 

colors highlight overestimates of the prediction ( z
true

v
i( ) < ẑmethod vi( ) ). The green color 

indicates the correctness of the predictions. From Figure 8, it can be observed that the 

model based on LD data produces severe underestimates/overestimates in small portions of 

the surfaces. This is probably due to the lack of sampled data in those zones, which makes 

the GP model unable to estimate correctly the true values. On the other hand, the GP model 

based on HD and LD+HD (simple merging, no data fusion) produces severe underestimates 

in large portions of the surface (e.g. for abscissa ranging between 20 and 60). 

The MsDF approach produces good predictions because it is able to appropriately take care 

of the bias through the linkage model, as illustrated in Figure 9, which depicts the color-plot 

of both the scaling function ( ρ v( ) ) and the shifting function (δ v( ) ). On the one hand, ρ v( )  

produces a general compensation of bias in the zone with abscissa ranging between 20 and 

60. On the other hand, some localized corrections are introduced by δ v( )  especially in those 

zones where CMM measurement data are placed. 
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(a) 

 

(b) 

 

(c)
 

 

(d) 

Figure 8: Color plot of the local prediction error (true minus predicted) for each method. 100 LD data points and 

feature-based alignment of data (all values in [mm]). LD model (a). HD model (b). LD+HD model (no data 

fusion) (c). MsDF model (d) 

 

 

(a) 

 

(b) 

Figure 9: MsDF model. Color plot of ρ v( )  (a) and δ v( )  (b) on the predicted surface. 100 LD data and feature-

based alignment of data (all values in [mm]) 
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Similar graphs are shown in Figure 10 in the case of 100 LD data points when ICP alignment 

is further performed to better align the two LD and HD data sets. By comparing the scaling 

function ( ρ v( ) ) of the MsDF model in Figure 9 and Figure 10, it can be observed that the 

ICP alignment actually compensates for the bias and hence no scale adjustment of the low-

resolution GP model is necessary (this is clear also by looking at the color-plots of the 

prediction error in Figure 10). Despite of this, some localized corrections by the shifting 

function δ v( )  in those zones where CMM data is located are still required. In fact, the 

shifting function δ v( )  based on 100 LD points in Figure 11 (after ICP alignment) looks 

similar to that in Figure 9 (before ICP alignment) because it mainly depends on the LD 

dataset obtained via CMM. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 10: Color plot of the local prediction error (true minus predicted) for each model. 100 LD data points and 

feature-based +ICP alignment of data (all values in [mm]). LD model (a). HD model (b). LD+HD model (no data 

fusion) (c). MsDF model (d) 
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(a) 

 

(b) 

Figure 11: MsDF model. Color plot of ρ v( )  (a) and δ v( )  (b) on the predicted surface. 100 LD data points and 

feature-based +ICP alignment of data (all values in [mm]) 

 

Finally, it is worth noting that the scaling and shifting functions of the MsDF model provide 

useful information to the analyst concerning measurement uncertainty of the metrology 

devices considered. In particular, at each location, information about variance of the scaling 

and shifting functions can be useful to evaluate how reliable the discrepancy map is. As an 

example, Figure 12 shows the standard deviation of the shifting function. From Figure 12 it 

can be observed that measurement uncertainty is greater in zones not covered by the CMM 

samples, regardless of the specific algorithm used to align the point clouds. 

 

 

(a) 

 

(b) 

Figure 12: Color plot of the standard deviation of the shifting function of the MsDF model (all values in [mm]). 

Superimposed in each graph, the LD point cloud (red points). Reference-based alignment of the data (a). 

Reference-based+ICP alignment of the data (b) 
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4. Performance of MsDF on multiple connected freeform 

surfaces 

The second case study involves the measurement of multiple connected freeform surfaces 

of a toy car. The prototype Mobile Spatial coordinate Measuring System – MScMS-II for non-

contact, indoors large-scale metrology (presented in [33]) is selected as the main 

measurement instrument. The MScMS-II is a touch-probe CMM manually operated in single-

point mode. The peculiarity with respect to a conventional CMM consists of not having a 

solid frame to whom the machine coordinate system is referred to; instead, a wireless 

network of cooperating infra-red sensors, freely placed anywhere in the measurement space 

is used to localize the touch probe as it is manually operated over the surfaces to be 

measured [33]. While extremely flexible and capable of covering a wide range of dimensions 

and complex shapes (in-measurement repositioning of the networked sensors allows for 

overcoming any problem related to undercuts and can virtually extend the working area at 

will), the MScMS-II suffers from poor metrological performance if compared to the direct 

competitors in large-scale metrology (laser trackers and large-scale CMMs). This is mostly 

due to the difficulty of calibrating the constellation of networked sensors, which -before being 

able to accurately localize the touch probe- must be able to localize accurately each other 

within the measurement volume. Furthermore, a new calibration problem must be faced any 

time a sensor belonging to the constellation is moved in order to overcome the limitations of 

a fixed-frame CMM. 

In this case study, it was interesting to investigate how the proposed approach to data fusion 

may help improving the metrological performance of the MScMS-II measurement. The fusion 

involves a high-density point set acquired with a structured light (SL) scanner, covering the 

same region where the fewer, sparse MScMS-II points are located. 

The toy car is shown in Figure 13 (overall envelope dimensions: 507x350x912 mm). The 

specific surfaces subjected to measurements are shown in Figure 13.b, and include the front 

hood, windshield, and portions of the front bumper, fenders and lights. The HD point set (SL 

scanner) is comprised of n
HD

= 81790  points (Figure 14.b); the LD set (MScMS-II) is 

comprised of n
LD

= 853  points (Figure 14.a). 
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(a) 

 

(b) 

Figure 13: Multiple connected freeform surfaces used as case study. Toy car (a); measured surfaces (b) 

 

(a) 

 

(b) 

Figure 14: Multiple connected freeform surfaces used as case study. 853 LD data set obtained via the MScMS-II 

measurement system (a), 81790 HD data measured by SL scanner (b) (all values in [mm]) 

 

The application of the MsDF model begins by processing the HD data. Computational 

concerns due to the very high density of the point set, suggested the application of a simpler 

variation of the procedure previously described in section 2. Thus, instead of fitting the HD 

points to a GP model, conventional interpolation was used to obtain a simpler triangulated 

model. 

At the second stage of the MsDF, the linkage model connecting the HD to the LD data was 

computed: as usual with the goal of correcting the prediction of the first-stage model. 

Similarly to the previous case study, a linear model was used for the scaling function ρ v( )  

while a GP model was used for the shifting function δ v( ) . 

Figure 15 depicts the color-plot of the scaling and shifting functions ρ v( )  and δ v( )  

computed by the MsDF model. The scaling function produces a (small) compensation of the 

possible bias between the point cloud data available from the different sensors. Although the 
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point clouds provided by the two measurement devices (SL and MScMS-II) were first 

appropriately registered, a scale adjustment of the HD model was actually introduced by the 

scaling function, whose values range between 0.9 and about 1.02 (dimensionless scaling 

coefficients for the HD model). 

On the contrary, large local corrections are introduced by the shifting function, whose values 

range approximately between -5 and 5 millimeters (corrections in z-coordinate for the HD 

model). In particular, the shifting model results in important corrections in zones such as in 

the right border of the MScMS-II sampling surface as well as in the zone between the hood 

and bumper of the toy car model. 

Two observations can be drawn from this case study. The first is a confirmation that the 

proposed MsDF approach can be effectively used to enhance reconstruction of surfaces in 

large-scale metrology. The second is that the scaling and the shifting adjustment functions of 

the MsDF model provide useful information to the analyst concerning measurement 

uncertainty of the metrology devices considered. In particular, at each location, information 

about variance of the scaling and shifting functions can be useful to evaluate how reliable the 

discrepancy map is. As an example, Figure 16.a shows the standard deviation of the shifting 

function.  

The discrepancy map obtained by MsDF can be usefully exploited in order to decide where it 

is necessary to have additional measurement data at locations sampled with the LD device 

(the MScMS-II system in the case study). To this aim, Figure 16.b highlights zones where 

the shifting function (color axis in Figure 15.b) results statistically different from zero (type-I 

error rate 10%), given the standard deviation at the same location (color axis in Figure 16.a). 

Additional measurements of the LD system should be collected in these highlighted zones in 

order to investigate the causes of the statistically significant discrepancies between the LD 

and HD models. 
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(a) 

 

(b) 

Figure 15: MsDF model. Color plot of the expected value of the scaling (a) and the shifting (b) functions shown 

on the reconstruction of the underlying surface obtained by means of the proposed MsDF model (all values in 

[mm]) 
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(a) 

 

(b) 

Figure 16: Color plot of the standard deviation of the shifting function (a) and zones where the shifting function is 

statistically different from zero, 10% type-I error (b). (All values in [mm]) 
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5. Investigating measurement uncertainty with the proposed 

MsDF model  

Used as a means for identifying and reducing local bias in measurement, the MsDF 

approach is already serving as a powerful tool for operating on the uncertainty budget, acting 

in particular on some notable components of systematic error typically affecting most optical 

systems (e.g. local bias due to optical aberrations). In addition to that, as stated in the 

introduction, the MsDF approach provides further benefits; notably the estimation of the 

precision associated to the individual datasets before they are fused (random error sources 

in the uncertainty budget), and the possibility of observing how random error components 

associated to the individual datasets propagate through fusion, finally affecting the  

prediction interval associated to the fusion result. 

To illustrate these additional benefits of the MsDF model, the same simple profile example 

previously introduced in Section 2 is used.  

 

5.1 Estimating the random measurement error associated to the HD dataset 

 

The random measurement error associated to an individual dataset can be assumed as an 

indication of precision of the instrument that was involved in the generation of the dataset (or 

better stated, the precision arising from the interaction of the instrument with the specific 

measurand). In the mathematical framework introduced in section 2.2, where the GP model 

in equation (1) is used to fit HD data generated by a single high-density sensor (first stage of 

the MsDF model), such random error is captured by the term ε
HD

~ N 0,σ
εHD

2( ) .  Obviously, 

ε
HD

 must be considered as part of the uncertainty budget, and the parameter σ
εHD

2  (or σ
εHD

) 

is a quantitative indication of precision. The estimation of σ
εHD

 is a consequence of solving 

the model fitting problem onto the given dataset, therefore the first stage of the MsDF is 

already providing an indication of precision to be associated to the dataset, useful for 

uncertainty analysis. It should be noted that this estimate has been obtained without the 

need of replicate datasets, which is the conventional way one could follow to estimate 

precision of this type of profile data without resorting to GP model fitting. It remains to be 

determined how accurate is the estimate of σ
εHD

 obtained by simply fitting the dataset to the 

GP model.  

In order to investigate this issue, as experimental procedure was set up consisting in 

simulating HD datasets where at each position v
i
 multiple z values were randomly 

generated, acting as measurement replicates in repeatability conditions. Three cases were 
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considered, consisting of either n=1, 2 or 5 z-value replicates at each position v
i
. A known 

standard deviation (σ
εHD

= 2 ) was used to generate the z-value replicates. On each 

generated dataset, the GP model described in equations (1-3) was used to estimate all the 

unknown parameters. In this case, the focus was  on the estimate of the standard deviation 

of the noise term, i.e., 
  
σ̂

εHD
. For each sample size n (n=1, 2 or 5), the entire procedure 

(random generation of the HD data set and estimation of the unknown parameters) was 

repeated 35 times. The resulting confidence intervals for 
  
σ̂

εHD
 are shown in Figure 17. Clearly, 

the estimation is improved as the number of replicates increases (the width of the confidence 

interval decreases); nevertheless, in all cases the actual standard deviation (=2) is correctly 

located within the confidence interval, demonstrating that the estimation of dataset precision 

by GP model fitting is successful even with only one available dataset. In a more rigorous 

way, it can seen that the null hypothesis 
  
H

0
:σ

εHD
= 2  (vs. 

  
H

1
:σ

εHD
≠ 2 ) cannot be rejected in 

any scenario (p-values 0.3295, 0.7134 and 0.7518 for n= 1, 2 and 5, respectively) 

 

Figure 17: 95% Confidence intervals the estimated standard deviation of the random measurement error for the 

HD dataset, representative of the HD measurement precision (true value = 2). On the abscissa, the first number 

(1, 2 and 5) represents the number of replicated HD measurements at each location.  

 

5.2 Estimating the random measurement error associated to the LD dataset 
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As shown previously in Section 2.6 (Figure 4), the low density of the LD dataset does not 

lead to a good fitting. Therefore it is not possible to use the same procedure described in 

Section 5.1, i.e., estimate the precision of the LD dataset by simply fitting a GP model using 

the LD dataset only. On the other side, this limitation intrinsic to the LD dataset is the main 

reason for the data fusion approach proposed in this paper, where information provided by 

an additional (HD) dataset is appropriately combined to the LD one to improve the overall 

measurement result. 

The data fusion model can be used to estimate the LD system random error component by 

using the second stage of the proposed model. In this second stage, the linkage equation 

(4), contains two terms:  

i) ρ v
i( ) ẑHD vi( ) + δ v

i( )  which is supposed to consider the z-values fitted at the first 

stage on HD data and correct them for systematic deviations observed with 

respect to the LD data. Note that the random component of the HD 

measurement system should not be included in the linkage model, since ẑ
HD
v
i( )  

is supposed to be a fitted value, i.e., after the noise has been canceled out.    

ii) ε
MsDF

~N 0,σ
εMsDF

2( )  represents the noise which remains unexplained by the 

linkage model. In principle, this should represent the random part of the LD 

measurement error, possibly contaminated by an additional component due to 

under/overfitting. However, usually the presence of replicated response data in 

the linkage model (i.e., replicated LD data) reduces the over/underfitting 

problem, thus making the noise term an appropriate model of the randomness 

due to replicated masurement at the same location (i.e., random term of the 

measurment error).  

 

In order to check whether that error term in the linkage model can correctly estimate the 

random part of the LD measurement error, a simulation study similar to the one described in 

section 5.1 was carried out. Different scenarios were considered, assuming to have n=1, 2, 5 

and 10 replicated measurements available. In all these scenarios, the same number of 

replicates was assumed for both the (LD and HD) systems. The standard deviations of the 

random error components were assumed equal to 2 and 1 for the HD and LD system 

respectively. This assumption is consistent with the increased precision of touch probe CMM 

measurement (standard deviation set to 1) if compared to structured light scanning (standard 

deviation set to 2). For each scenario (characterized by a different value of the sample size 

n), the two-stage model was used to estimate all the unknown parameters. The whole 

procedure (random generation of the replicates and estimates of the unknown parameters) 

was repeated 35 times. 
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The resulting confidence intervals for σ̂
εMsDF

, are shown in Figure 18. The correct value for 

the standard deviation is included in the confidence interval only when at least 2 z-value 

replicates per point are available in the LD dataset.   

In summary, the estimation of the random error component to be included in the uncertainty 

budget of the LD dataset is possible with the method; however, the low density of the LD 

dataset requires the linkage stage, and at least 2 z-value replicates per dataset (i.e. both for 

the HD and the LD datasets). 

 

 

 

Figure 18: 95% confidence intervals for the estimated standard deviation of the random term of the linkage 

model, representative of the measurement error for the LD dataset, i.e. its measurement precision (true value 1).  

 

3.3 Estimating how the random error components associated to the HD and LD 

datasets propagate through fusion and ultimately affect the prediction error of the 

MsDF model 

 

In the previous sections, it was shown that the fusion method can be effectively used to 

estimate the random components of the measurement error for the two systems, provided 
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that i) a dense acquisition is available for the HD system and ii) (at least 2) replicated LD 

measurements are available at each location.  

In this last section, the objective is to show how knowledge of the random component of the 

LD system error can be easily included in the fusion model. To this aim, the mean square 

prediction error MSPE (equation (6)) is used as performance index. 

In a first scenario, consistent with real-life industrial practice, it can be assumed that σ
εLD

 

is  known (i.e. the touch probe CMM is metrologically characterized); in a second scenario it 

can be imagined that σ
εLD  

is estimated by the MsDF approach itself. Of course in both cases 

the precision of the LD dataset is actually represented by the standard deviation of the error 

term in the linkage model: σ
εMsDF

, but in the first scenario the value is simply plugged-in, 

while in the second scenario it needs to be estimated.  

In Figure 19, confidence intervals for MSPE are shown. The first scenario is represented by 

the suffix “FIX” (fixed, i.e. plugged-in) and the second by the suffix “EST” (estimated). 

Analogously to Sections 5.1 and 5.2, datasets are simulated in 35 replicates, and replicate z-

values are provided at each v
i  

location. However, for the first scenario (FIX), only z-value 

replicates of the HD set are needed (1,2 or 5 replicates), while for the second scenario 

(EST), z-value replicates of both the HD and LD sets are needed in equal numbers (also 1,2 

or 5 replicates).   

From Figure 19 it is clear that the MSPE is reduced as the number of replicate z-values 

increases, both in the EST and FIX scenarios. However, confidence intervals on the MSPE 

obtained in the FIX or EST scenarios are almost indistinguishible (i.e., show large overlap) if 

at least 2 z-value replicates are available.In other words, the prediction ability of the data 

fusion model is similar when random error associated to LD system is either known in 

advance or estimated by the fusion procedure itself, expecially if at least 2 z-value replicates 

are available for each location in both the LD and HD sets. 
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Figure 19: 95% confidence intervals of the Mean Square Prediction Error (MSPE) for the MsDF model. 

Simulated scenarios: 1,2,5-EST,FIX; where the number refers to the measurement replications at each point, FIX: 

known (EST: not known) value for the standard deviation to be plugged in the linkage model. 

 
 

6. Conclusions and directions of further research 

A statistical approach to combine high-density, low-quality data (e.g. from structured light 

scanners) with low-density, high-quality data (e.g. from touch probe CMMs) was presented. 

Advantages of the proposed method are explored considering both simulated and real case 

studies. In particular the real case studies focus on reconstruction of free-form shapes 

involving instruments dedicated to normal- and large-scale metrology. The main 

characteristics of the proposed approach can be summarized as follows: i) fusion can be 

performed even when sensors acquire data points at different locations; ii) fusion is 

performed by (locally) correcting the high-density, low-quality dataset (i.e. reducing bias) by 

means of the low-density, high-quality dataset; iii) uncertainty of the local correction can be 

estimated; iv) the proposed approach provides a means to estimate precision (random error 

component) associated to each dataset ahead of fusion if the dataset is sufficiently dense, 

otherwise it can still predict the random error component of a not-so-dense dataset at the 

fusion stage, through the linkage model; v) regardless of whether random error components 

of the datasets are known in advance or need to be computed by the method, the data 
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fusion approach provides means to follow the error components as they propagate through 

fusion and ultimately influence the final result. In fact, the data fusion approach provides as 

final results both the expected value and the uncertainty of the final geometry reconstructed 

at any location, in form of a prediction interval.  

The proposed method involves the use of Gaussian processes (also known as kriging) as 

modeling tool to correct the high-density data and to guide the final reconstruction. Different 

parametric or nonparametric tools (based on spline or local regression) can be considered 

as well. 

Different directions for further research can be outlined. First, the initial alignment of the point 

sets has shown to play a relevant role in the predictive ability of the different models. This is 

why more attention will be devoted to this preliminary step. In particular, comparison 

between the ICP algorithm used throughout the paper and different procedures will be 

performed.  

Second, an additional model able to include the a priori knowledge of the uncertainty 

associated to each measurement system could be included. Third, a multi-stage extension of 

the two-stage model presented in this paper can be foreseen, where more than two sensors 

are used to measure the target geometry. 

Eventually, the method proposed in this paper for reconstructing a geometry starting from 

multiple sensors could be appropriately included in the more general framework of inspection 

(i.e., comparison with the nominal shape) or statistical process monitoring (detecting out-of-

control states of the machining or measuring processes). 
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APPENDIX  

GPs are very popular in spatial statistics for modeling a set of highly correlated random 

values, associated with a point set in a space [26]. Assume the point set represented by a 

discrete function of the type: z v
i( ) , v

i
= x

i
,y

i( )  with v
i
∈V ⊂ R

2
, i = 1,2,,n , i.e. where the 

z-coordinate of the i-th point is expressed as a function of its position on the x,y plane. A 

statistical representation of the surface geometry can be defined as follows: 

z v
i( ) = f vi( ) + ε ,       (a1) 

where ε  is a Gaussian noise of zero mean and constant variance σ
ε

2
 and f v

i( )  is a GP 

model defined as: 

f v
i( ) =GP m v

i( ),k vi ,v j( )( )       (a2) 

where m v
i( )  is the mean function and k v

i
,v

j( )  is the covariance function of the GP. The 

mean function can be arbitrarily defined. In some cases, it can be even set equal to a 

constant value for every point in the space. Similarly, the covariance function can be 

arbitrarily defined, but common choices are models that guarantee GP to have some 

important properties such as stationarity, isotropy and smoothness. In the following, a 

stationary GP is considered, such that k v
i
,v

j( ) = k vi +h,v j +h( )  for any displacement 

vector h  and, hence, with a constant variance k v
i
,v

i( ) = σ
z

2
. 

Given the models for m v
i( )  and k v

i
,v

j( ) , they are usually dependent on a set of 

parameters (collectively denoted by θ ) that are unknown and that must be estimated from 

the actual measurement data z v
i( )  with v

i
∈V ⊂ R

2
, i = 1,2,,n . Let vectors z  and m  

represent respectively the values of functions z v( )  and m v( ) , in the sampled location v
i
, 

i.e. 
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z = z v
1( ) z v

2( )  z v
n

( )⎡
⎣⎢

⎤
⎦⎥

m = m v
1( ) m v

2( )  m v
n

( )⎡
⎣⎢

⎤
⎦⎥

.     (a3) 

Our maximum a posteriori estimate of θ  occurs when the probability of the parameters 

given the dataset, say p θ z,v
1
,v

2
,,v

n( ) , is at its maximum value. Assuming we have little 

prior knowledge about θ , this corresponds to maximizing the probability of the data given 

the parameters. The logarithm of this quantity is called the log marginal likelihood. In this 

paper, a numerical gradient-based optimization routine was used in order to find the values 

of parameters that optimize the marginal likelihood. 

After the set of parameters θ  has been estimated, we can predict z v( )  in any novel location 

v . To this aim, we first calculate the covariance function among all of the possible 

combinations between the sampled locations v
i
 (for any i = 1,2,,n ) and the unsampled 

one v , summarizing our findings in vector k : 

k = k v,v
1( ) k v,v

2( )  k v,v
n

( )⎡
⎣⎢

⎤
⎦⎥

.     (a4) 

Our best estimate of z v( )  in the unsampled location v  is the mean value of the conditional 

distribution z v( ) z , i.e., ẑ v( ) = E z v( ) z⎡
⎣

⎤
⎦

. The uncertainty in our estimate is captured in the 

variance of the conditional distribution z v( ) z , i.e., Var z v( ) z⎡
⎣

⎤
⎦

. It can be possible to 

demonstrate that the conditional distribution z v( ) z  is a Gaussian distribution of mean and 

variance respectively equal to: 

E z v( ) z⎡
⎣

⎤
⎦
=m v( ) +k ⋅K−1 ⋅ z −m( )

T

Var z v( ) z⎡
⎣

⎤
⎦
= σ

z

2
+σ

ε

2 −k ⋅K−1 ⋅kT
.     (a5) 


