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Abstract — The data-rich environments of industrial applications lead to large amounts of correlated quality characteristics that are
monitored using Multivariate Statistical Process Control (MSPC) tools. These variables usually represent heterogeneous quantities that
originate from one or multiple sensors and are acquired with different sampling parameters. In this framework, any assumptions
relative to the underlying statistical distribution may not be appropriate, and conventional MSPC methods may deliver unacceptable
performances. In addition, in many practical applications, the process switches from one operating mode to a different one, leading to a
stream of multimode data.

Various non-parametric approaches have been proposed for the design of multivariate control charts, but the monitoring of
multimode processes remains a challenge for most of them. In this study, we investigate the use of distribution-free MSPC methods
based on statistical learning tools. In this work, we compared the kernel distance-based control chart (K-chart) based on a one-class-
classification variant of Support Vector Machines and a fuzzy neural network method based on the Adaptive Resonance Theory. The
performances of the two methods were evaluated using both Monte Carlo simulations and real industrial data. The simulated scenarios
include different types of out-of-control conditions to highlight the advantages and disadvantages of the two methods. Real data
acquired during a roll grinding process provide a framework for assessment of the practical applicability of these methods in
multimode industrial applications.

Index Terms — Multimode Processes, Support Vector Machine, Artificial Neural Networks, Adaptive

Resonance Theory, Statistical Process Control

1 Introduction

The technological advances in sensor systems together with the continuous improvement of real-time
data processing capabilities have increased the use of in-process sensing to enhance process quality
control outcomes. The signals from one or multiple sensors are analyzed to extract synthetic features
used to characterize the stability of the ongoing process. Therefore, the quality characteristics
represent multiple variables and consist of a collection of features that represent heterogeneous
quantities resulting from different pre-processing procedures. In this framework, the conventional
assumptions relative to the underlying distribution may not be appropriate for the design of statistical
process monitoring tools. Moreover, in many practical applications, the natural process behavior
switches from an operating mode to the following one, producing streams of data from different

distributions that follow one another over time, without information about the duration of each mode
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and their temporal allocation. Motivational examples are qualitatively depicted in Fig. 1. Fig. 1a)
depicts a milling process performed on a workpiece whose geometry produces different levels of
cutting depth along the cutting trajectory. The monitored variables consist of features extracted from
a cutting force signal (e.g., the mean force level and the standard deviation). This process is
multimode in nature, as it switches from a data distribution to another one as the tool moves along its
path. Fig. 1b) shows a drilling process applied to a multi-layer (hybrid material) workpiece for which
different materials produce different thrust force levels, and hence, the monitored features extracted
from the force signal are multimode in nature, with different distributions corresponding to different

material layers.

INSERT FIGURE 1 ABOUT HERE
INSERT FIGURE 2 ABOUT HERE

A further example from a real industrial case study is shown in Fig. 2 and refers to a roll grinding
process that consists of grinding of large cylindrical rolls for use in a subsequent rolling process on
metal sheets. An accelerometer is mounted on the wheel head (Fig. 2 a), and the signal along the X-
axis is used to detect any out-of-control departure from a nominal and stable cutting condition during
the process itself. The bivariate monitored statistics {xj ER?j =12, } consists of two synthetic
indices, nominally the rms index and the kurtosis index (see Section 7), such that x; =
[rms;, kurt;] T is computed by segmenting the signal into sliding time windows of fixed duration.

In common operating conditions, a grinding cycle is composed of different passes, each with cutting
parameters that vary within given ranges. This situation yields a multimode process in which the in-
control (IC) distribution of the monitored indices is characterized by temporally consecutive
distributions, which correspond to different combinations of wheel speed ng and infeed a,
parameters.

Fig. 2b) shows the multimode distribution of x; under IC conditions for different combinations of
cutting parameters (ng, a,) and its distribution in the presence of an out-of-control (OOC) chatter
onset (this real case study is discussed in additional detail in Section 7).

If the process exhibits multimode behavior, clustered data represent the natural pattern that
characterizes the IC condition. Any transition between one mode and another should not be signaled
by the control chart because such a transition is the consequence of the natural process variability.

The result is one of the most challenging violations of the traditional SPC distributional assumptions.



Despite of a great industrial interest for multimode process monitoring in the field of discrete part
manufacturing, this problem attracted very limited attention in the literature. Certain authors
proposed Multivariate Statistical Process Control (MSPC) schemes for multimode processes in
chemometrics applications, but most of them are based on distributional assumptions within each
mode! or assumptions about the covariance structure of multiple modes*>. The proposed methods
include either the use of multiple models®® or the use of local models to be iteratively updated’.
Some authors assumed the availability of external knowledge to filter out the effect of operating
conditions'®!!". However, there is a lack of non-parametric methods in this area that motivates the
present study.

For in-process MSPC industrial applications, parametric methods may be of limited practical interest
because single modes frequently exhibit deviations from multivariate normality and they may be
difficult to classify in a reliable way. Furthermore, assumptions about the covariance structure of the
data and the availability of external knowledge are rarely applicable in practice.

1218 and the limits of

Various authors have discussed the need for distribution-free MSPC methods
traditional control charts in the presence of non-normal data!®, but not in the frame of multimode
processes. Our study represents a first attempt to assess the applicability of selected non-parametric
MSPC methods to multimode process monitoring in the field of industrial production. Our analysis is
aimed at demonstrating and comparing their performances and limitations by means of both
simulated and real industrial data.

In particular, we focus on a category of methods that is often referred to as one-class-classification®®
21 or novelty detection®*. These approaches are statistical learning methods that can be trained on a
dataset (Phase I) consisting of only natural process data, i.e., data collected under IC process
conditions. During the actual process-monitoring phase (Phase II), every observation that cannot be
classified within the IC class is signaled. This approach allows implementation of traditional
classification techniques in the SPC frame in which no information on the nature of possible
departures from the natural condition is available, at least in the preliminary implementation stage.
One interesting feature of this category of methods consists of their distribution-free properties, and
hence, they can be applied regardless of the single-mode or multimode nature of the monitored data.
A rationale for the choice of such a family of techniques for multimode process monitoring is
discussed in Section 3.

Our comparison study involves two one-class-classification methods, which are respectively based
on the Support Vector Data Description (SVDD) methodology and on unsupervised Artificial Neural
Networks (ANNs). Their performances are evaluated using Monte Carlo simulations in the presence

of multimode data and a real dataset acquired in roll grinding operations. The improved K-chart



design proposed by Ning and Tsung?® and the Fuzzy-ART-based scheme proposed by Pacella and

Semeraro®*?’

are reviewed and compared. The previous work of Pacella and Semeraro®*2’ focused
on process monitoring of univariate time series or streams of profile data. In this study, we extend
this Fuzzy-ART-based scheme to monitoring of a multivariate multimode process. We also build on
the study by Ning and Tsung®®, which focused on mixed type data; in the current paper, we extend
the previous analysis to characterize the Phase II performances of this method under different out-of-
control scenarios in a multimode process framework, and we further study the role played by the
kernel function and the design parameters in Phase I of control charting.

In the remainder of the paper, the terms Phase [ dataset and training dataset are used
interchangeably under the assumption that the IC state of the process has been proven, which ensures
that the collected samples are representative of its natural condition.

The performances of all competing methods are compared using a real case study that addresses
chatter detection in roll grinding. In this case, in-process signal monitoring is aimed at detecting
anomalous vibration onset. The real case study allows us to evaluate the practical applicability of the
proposed methods for actual industrial scenarios in which streams of multimode data are acquired via
sensors installed on the machine tool.

The paper is organized as follows. Section 2 lists the nomenclature used in the paper, Section 3
presents a rationale for the use of one-class-classification methods, Section 4 describes the K-chart
approach, Section 5 details the Fuzzy ART-based approach, Section 6 presents the simulated
scenarios and discusses the results of the comparative analysis, Section 7 presents the real case study

in roll grinding, and Section 8 concludes the paper.

2 Nomenclature

#SV(S) Number of support vectors (K-chart approach)

bout Output signal of the Fuzzy ART network

C Penalty coefficient (K -chart approach)

fo, (S) Proportion of artificial outliers classified as in-boundary data (K-chart approach)

Fy, Fy, F, Layers of the Fuzzy ART architecture

h Control limit (K -chart approach)

IC In-control

L Number of mixtures

M Overall number of samples collected under natural process conditions



Number of artificial outliers

Number of training samples (Fuzzy-ART-based approach)

Multivariate Statistical Process Control

Number of tuning samples (Fuzzy-ART-based approach)

Center of the irregular shaped region in the K-chart approach
Out-of-control

Number of variables

Number of nodes in the F, layer

Index of the node with maximum bottom-up input (Fuzzy-ART-based approach)
Radius of the irregular shaped region in the K-chart approach

Kernel width parameter (K-chart approach)

Range for the selection of the kernel width parameter

Bottom-up inputs (Fuzzy ART based approach), j = 1, 2, ....

Weight used in Eq. 10

j th multivariate sample; elements are denoted by x4 j, .., Xp j, j = 1,2, ....
Input vector after the complement coding step (Fuzzy-ART-based approach),
j=12,..

Weight vector (Fuzzy-ART-based approach)

Generic new multivariate observation

Targeted Type I error

Lagrangian coefficients (K-chart approach), j = 1, 2, ....

Choice parameter (Fuzzy-ART-based approach)

Objective function for the kernel width parameter selection

Shift parameters

Vigilance step (Fuzzy-ART-based approach)

Multivariate mean of the Gaussian mixture model, l =1, ..., L

Slack variables (K-chart approach)

Prior probabilities in Gaussian mixture model, [ = 1, ..., L

Vigilance parameter (Fuzzy-ART-based approach)

Maximum value of the vigilance parameter that induces one class

Variance-covariance matrix of the Gaussian mixture model, [ = 1, ..., L



3 A Rationale for the Use of One-Class-Classification
Methods

A commonly used approach for the design of non-parametric multivariate control charts involves
certain generalizations of rank-based methods and/or a transformation of the original data into a
categorical form!>!":2-3_ However, these methods usually rely on the assumption of identically
distributed data and are not designed to deal with processes that jump from one operating mode to
another, without being known the duration of each mode and the temporal allocation of multiple
modes. In multimode processes, the i.i.d. assumption may hold only within each mode, and the
transitions between consecutive natural modes should not be signaled by the control chart. In
addition, rank-based methods may be affected by limited efficiency in the presence of large shifts®'.
For a brief review of non-parametric MSPC methods, see the recent book of Qiu'® and the work of
Bersimis et al.*.

A more widely used approach applied to address unknown distributions consists of adjusting the
control limits of conventional control charts by estimating the empirical percentiles of the monitored
statistic. If the number of Phase I samples is small, the bootstrap re-sampling technique can be
used**~>. However, in presence of multimode processes, conventional control statistics may be not
adequate and the bootstrap approach may produce unreliable estimates of the tail probabilities>®.
Alternatively, a different paradigm consists of using one-class-classification methods that are
designed to adapt classical data-mining and machine-learning techniques to MSPC.

These methods are aimed at estimating a multivariate region that envelops the Phase I data such that
a target Type I error is achieved. Next, the contour of this region plays the role of the control limit,
and any observation that falls outside of this region is signaled. Thus, when a multimode historical
dataset is available, one-class-classification methods provide a non-parametric framework to monitor
the process, regardless of the jumps from one mode to another. It is worth to notice that this kind of
methods may be applied without the need for prior knowledge about the number or the temporal
allocation of the modes, and without the need for a preliminary data clustering step.

Selected one-class-classification variants of statistical learning techniques have been proposed in the
literature, including Support Vector Machines (SVMs)?® and Artificial Neural Networks (ANNs)*.
With respect to the use of ANNs for SPC applications, few authors have considered the one-class-
classification case in which the training dataset is composed of natural process data only. Among
these, Al-Ghanim®’ presented an Adaptive Resonance Theory (ART) neural network to distinguish

natural from unnatural variations in the outcomes of a manufacturing process. Pacella and



Semeraro®*2?® extended the study of Al-Ghanim®’ by proposing a Fuzzy ART neural network to
address arbitrary sequences of input patterns, whereas the ANN model proposed by Al-Ghanim?’
was limited to binary inputs. Pacella and Semeraro?’ derived a variant of the previously proposed
Fuzzy ART-based scheme to monitor the stability over time of profile data. A different type of
unsupervised ANN method, i.e., the Self Organizing Map (SOM), was discussed by Tax>® for one-
class-classification applications. For a survey of ANN methods in SPC applications, the interested
reader should refer to the papers by Guh?® and Psarakis*’.

A different statistical learning tool for which one-class-classification variants were proposed in the
literature is the SVM method. A one-class-classification variant known as the Support Vector Data
Description (SVDD) was proposed by Tax*® and Tax and Duin*' and was used by Sun and Tsung*?
to design a kernel distance-based control chart referred to as the K-chart. Other authors studied
SVDD-based MSPC approaches. Camci et al.*® studied a version of the K -chart believed to be robust

1.44

to Phase I contamination. Sukchotrat et al.** compared the SVDD-based approach with a method

based on the k-Nearest Neighbors (k-NN) algorithm. Ge et al.*> applied an SVDD-based control

1.% eventually applied the K-chart to monitor the quality

chart to batch process monitoring. Gani ef a
characteristics in a refrigerator metal sheet manufacturing process.

The K-chart approach shares certain common points with data-depth based methods®=°, but it
involves neither data-depth measures nor ranking operations. The control statistic consists of the
kernel distance of any observation from a common multivariate center estimated using the one-class
variant of the SVM optimization procedure. The K-chart also differs from control charting
approaches whose control region consists of a percentile of an estimated multivariate density
function. Indeed, this approach does not require the estimation of the complete density but only a
boundary around a data set. Furthermore, Tax and Duin*' demonstrated that the SVDD technique
outperforms basic control charting methods based on density estimation.

A critical issue affecting any kernel distance-based control chart involves the proper selection of
kernel parameters and the estimation of the control limits. Recently, Ning and Tsung?® proposed an
improved design of the K-chart, including an effective strategy for kernel parameter selection, which
will be used as a reference in this study.

Both the K-chart approach and the Fuzzy ART-based approach are suitable for monitoring of the
stability over time of multivariate data, regardless of the single-mode or multimode nature of the
process. These approaches do not require any assumption on the underlying distribution of the

natural process data, their covariance structure, or the number of modes. Thus, these methods can be



used to design completely distribution-free MSPC tools and to address such complex signal data as
those that characterize actual industrial applications.

To the best of the authors’ knowledge, no comparison studies for monitoring of multimode data via
distribution-free MSPC have been presented in the literature. Our paper aims to fill this gap and

address practical issues that arise in real industrial scenarios.

4 K-chart Based on Support Vector Data Description

The SVDD method was presented by Tax and Duin®® to extend the SVM classification technique to
problems characterized by single-class training sets. Given a multivariate Phase I (or training) dataset
{xj ERP,j =1, ...,M}, where x; = [xljj,lej, ...,xp,j] T  the SVDD method consists of finding a
minimal volume control region characterized by a center 0 € RP, and a radius R, that can envelop a
given percentage of the original data. The K-chart*? is a multivariate control chart whose control
statistic consists of the kernel distance of any observation z € RP from the center 0 € RP of that
region. The control limit is estimated to guarantee a target Type I error with the available dataset. A
kernel distance, hereafter denoted by kd(z), replaces the traditional Euclidean and statistical distance
notions to adapt the control region boundary to the actual spread of the data, whereas using the
Hotelling’s T2 distance, the control region would become a p-dimensional ellipsoid, as an example.

The SVDD methodology is briefly reviewed in Sub-section 4.1 to explain how the kernel distance
kd(z) is computed. Sub-section 4.2 is devoted to the selection of the kernel parameter and the K-

chart design procedure.

41 The SVDD Methodology

The SVDD works by estimating a minimal volume control region that adapts to the actual spread of
the data. The estimation of such a region, centered in 0 € RP and with radius R, requires the solution

of the following data-driven optimization problem:

min(R? + Czyzl )

(1)
st.(x;—0)"(x; —0) < R*+¢;and¢;20,j=1,..,.M
where ¢;, j = 1, ..., M, are slack variables, and C is a penalty coefficient used to weight the trade-off
between the volume of the region and the percentage of enclosed data (C > 0). By introducing the

Lagrangian function:



L(R,0,&ja;,y;) = R*+ CYL & — T a;(R* + & — (x; — 0)"(x; — 0)) — TJL1¥4¢; (2)

and by setting the partial derivatives w.r.t. R, 0, and &;, j = 1, ..., M, to zero, the problem (1) can be

simplified as follows>>:

maX(Zﬁ-il ajijxj - Zykzl a; akijxk)

(3)
st.YM,aqp=1and0<a;<C,j=1,..,M

The points whose Lagrangian coefficients are larger than zero are known as support vectors. It can
be demonstrated that the shape of region is determined by those points only>®.

By introducing the kernel trick, it is possible to replace the inner product a’b by a kernel function
K(a x b) that allows generation of a more flexible and data-adaptive control region. The K-chart is
aimed at monitoring the stability over time of the kernel distance kd(z) of any new observation z €

RP from the center o:
kd(z) = K(z x z) = 25 L ;K (x; x 2) + B}oiapaK (x; X x3,) (4)

Ning and Tsung®® showed that there are different possible approaches to the design of the K-chart
because there are three major parameters to set: the kernel width parameter denoted by S, the penalty
coefficient C, and the control limit denoted by h. By comparing different design solutions, Ning and
Tsung'¢ showed that the best performances might be achieved by reducing the number of parameters
to two (i.e., S and h). In fact, by assuming C > 1, the constraint 0 < a; < C is replaced by a; = 0,
and problem (3) can be solved by introducing the kernel function K (x. X x.).

In this case, no penalty is applied, and hence, the kernel-based boundary is estimated by enclosing all
of the training data. The false alarm rate is controlled by setting a proper value for the control limit h.
Thus, only the S and h parameters remain to be determined. The next sub-section reviews the
procedure used to automatically select those two parameters and to design the K-chart.

With respect to the kernel function, the most common choices include the Gaussian Radial Basis
(GRB) and the polynomial and sigmoidal functions*’.

Tax*® demonstrated that the GRB function is more appropriate than other kernel functions in
classification problems. In the framework of K-chart-based monitoring, this approach has been used

23,42

in previous studies=**, although its benefits over other kernels were not fully investigated. Thus, the

9



GRB function is used as the default choice in this study, but we discuss the use of other kernel
functions in Section 6.

If a, b € RP, the GRB function with kernel width parameter S € R is defined as follows:

(5)

a — b||?
K(axb) =exp{—”5—2”}

4.2 Automated Selection of the Kernel Parameter and Control Chart Design

In most cases, the selection of the kernel width parameter involves trial and error. When in-process
monitoring is considered, an automated data-driven procedure is required. To this aim, Tax and
Duin®® proposed a method that was further improved by Ning and Tsung?’. The method is derived
from multi-class SVM problems in which the classification errors can be used as a standard to select
S. In a one-class-classification problem, a similar approach might be applied by generating artificial
outliers. Tax and Duin* proposed drawing of those outliers from a block-shaped or a hyper-spherical
uniform distribution that encloses the training data in R”.

Given f,, (S), the proportion of artificial outliers that are classified as in-boundary data for a given

choice of S, and #SV(§), the number of support vectors, S can be selected by minimizing:

v, (), (6)

v =>1-v)

because #SV(S)/M is a counterpart of the Type I error, and f, (S) is the counterpart of the Type II

error, where 0 < v < 1 is a weight.

The procedure for the selection of the kernel width parameter is applied as follows:

1. Given a training set of M observations, generate a number M, of artificial outliers;

2. Set S equal to an initial value Sj,, and solve problem (9) for the M + M, available data;

3. Compute f,, (So) and #5V (S);

4. Set S equal to a new value S, + s, where s is a step value, and repeat steps 3 and 4 until S equals
a pre-fixed upper limit Sy;

5. Find the value of S (known as S$*) such that #SV (§*)/M is nearest to the targeted Type I error;
foi (59 )‘1_

6. Calculate the weight v as follows: v(§*) = (1 + V(S

7. Calculate the y(S) value in Equation (10), where v = v(S§*), for S values in the range [Sy, Sy;

10



8. Eventually, S is determined by the minimal y(S).

Once the optimal value of the kernel width parameter is determined, the control region can be
estimated. The control limit h can be estimated as the 100(1 — @)% empirical percentile of the
kernel distance kd (zj), j=1,2,..,M%, where a is the targeted Type I error.

The same procedure can be applied using other kernel functions, provided that the control region
geometry depends on a single kernel parameter. A discussion on the use of different kernel functions

for the design of the K-chart is reported in Section 6.

5 A Quality Control Scheme Based on Fuzzy ART Networks

The ART methodology was introduced by Grossberg in 1976, which led to a number of ART-based
neural network models widely used in different applications**-°,

An ART-based neural network allows clustering of data into groups characterized by similar features
in a self-organizing manner. The Fuzzy ART belongs to the class of unsupervised ART architectures;
it is based on fuzzy set theory operations and allows clustering of arbitrarily complex analog input
patterns. The method proposed by Pacella and Semeraro®* adapts this learning paradigm to SPC
applications by training the network on a Phase I dataset and associating a control region to natural
process data. Similar to the SVDD approach, the control region is estimated to guarantee that the
target Type I error is achieved on the IC data. When a new sample is presented to the Fuzzy ART
network, an output signal b, is generated. If the new sample is internal to the control region, it is
judged as in-control (b,,; = 1),, and no alarm is signaled. Otherwise, the output signal is b,,; = —1,
and an alarm is signaled. Therefore, the Fuzzy ART can operate as a non-parametric statistical
process control tool. Sub-section 5.1 discusses the Fuzzy ART-based approach for multivariate data,

and Sub-section 5.2 reviews a procedure used to estimate the so-called vigilance parameter p used to

control the actual false alarm rate.

5.1 The Fuzzy ART Methodology

A block diagram of the Fuzzy ART architecture is shown in Fig. 3.

INSERT FIGURE 3 ABOUT HERE
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The multivariate vector x; =[xy, X3 j, .., Xp j] T €RP,j=1,2,.., represents the j** input vector
of the Fuzzy ART network. Note that the values of input data can range only between 0 and 1, and
hence, a re-scaling operation might be required in the pre-processing phase. The re-scaling operation
is carried out by guaranteeing that any departure from the IC condition within a reasonable number
of standard deviation units falls into the new [0,1] range. Notably large shifts that fall outside the
range can be directly signaled as out-of-control observations using a simple check rule.

The Fuzzy ART architecture consists of two subsystems, the attentional subsystem and the orienting
subsystem®. The attentional subsystem consists of three layers of nodes denoted as F,, F;, and F,.
The F, layer consists of p nodes and is charged with applying a pre-processing operation known as

complement coding. Given the input sample x;, the complement coding produces an output sample

x;, such that:

X = [x1,Xpj s Xpjy L= %1 j, 1= Xp 5, e, 1= X 17 (7)
The F; layer is the comparison layer and consists of 2p nodes. The F, layer is the recognition layer
and consists of a number Q of nodes equal to (or greater than) the number of clusters formed during
the training phase. Every node in the F, layer is connected with every node in the F; layer via a
weight vector wy = [wg 1, Wg 2, ...,Wq,zp]T, q =1, ...,Q, which subsumes both the bottom-up and
top-down weight vectors of the Fuzzy ART.

The orienting subsystem consists of a single node referred to as the reset node. The output of the
reset node depends on the vigilance parameter p and affects the nodes in the F, layer. The vigilance
parameter p determines the required degree of similarity among input samples. The reset signal to
the recognition layer causes either a different class to be selected or, if no more classes are available,
it indicates the end of the training process. We refer the reader to Appendix A for a brief description
of the training procedure (see also Carpenter et al. >').

After training the network, a number Q of classes is generated to cluster all of the training data.
Small values of the vigilance parameter p result in coarse clustering, whereas large values of p result
in fine clustering. Thus, it is evident that the performances are strongly affected by the choice of the
vigilance parameter p, both in terms of false alarm rates and actual disturbance detection rates.

Pacella and Semeraro®*?’

proposed a method used to select the proper value of the p parameter given
a targeted Type I error. In the presence of multimode data, the Fuzzy ART network could be
theoretically trained to find the most appropriate clustering configuration of IC variables. However,

it is not possible to control both the number of classes and the false alarm rate by acting only on the

12



vigilance parameter. The procedure proposed by Pacella and Semeraro®*?’

assumes that a single
control region is suitable for monitoring the process, regardless of the distribution and including
mixture distributions. To the best of the authors’ knowledge, this method is the only training

approach that allows control of the false alarm rate, and hence, it is used as a reference in this study.

5.2 Automated Selection of the Vigilance Parameter and Design Procedure

When no more than one class is formed during the training process, a monotonic relationship exists

between the false alarm rate and the vigilance parameter p. Moreover, by decreasing the vigilance

parameter and fixing any other parameter, the number of classes generated during the training

process decreases and converges to one. These two Fuzzy ART properties are useful in developing

an iterative procedure for the selection of the proper value of p, given a targeted Type I error. The

procedure requires the data acquired under natural process conditions to be divided into two sets: a

training set used to train the network as discussed above and a funing set used to determine the

vigilance parameter value that provides the desired false alarm rate.

Given M training samples and N tuning samples, the procedure is applied as follows:

1. Let i be an iteration index and 71 the vigilance step; initialize i = 1, and set a small value for n
(e.g.,n =1.0e™%);

2. Set the vigilance parameter to p; = 1 — in, and train the network on the M training samples;

3. Repeat step 2 by setting i = i + 1 until only one class is formed. Let p,, be the maximum value

that induces one class, and from this step on, only values in [0, p, ] will be considered for the

vigilance parameter;

Re-initialize the iteration index i = 0, and set a smaller vigilance step (e.g., n = 1.0e™>);

Train the Fuzzy ART on the M training samples by setting p; = p,, — in;

Disengage learning, and calculate the actual false alarm rate on the N tuning samples;

A

Repeat steps 5 and 6 by setting i = i + 1 until the actual false alarm rate is equal to the targeted

one within a given tolerance.

When the iterative procedure is completed, the final network and the resulting vigilance parameter p
are saved and will be used to monitor any newly acquired sample. The procedure used to design and
implement the MSPC approach based on the Fuzzy ART technique consists of a Phase I and a Phase
II. The main steps in Phase I include (i) collection of a training dataset and a tuning dataset that are

representative of the natural process conditions; (i) re-scaling of original data (if required); (iii)

13



complement coding of original data; (iv) Fuzzy ART network training (see Appendix A); and (v)
Fuzzy ART network tuning for the selection of the vigilance parameter (see above). Next, Phase 11
simply consists of applying the same re-scaling and complement coding operations to any new
observations and submission of the resulting data vector to the Fuzzy ART network with the
parameters estimated during Phase 1. The observation is eventually classified as either IC or OOC.

For further details on the vigilance parameter selection and the neural network implementation, see

Pacella and Semeraro*?’.

6 Comparison of Methods

6.1 Simulated Scenarios

A condition often encountered in industrial practice consists of a multimode process characterized by
a mixture of natural patterns. In this study, two multimode reference scenarios were considered to
test and compare the performances provided by the different methods: (i) Scenario A is
representative of a two-mode process, with a limited displacement between the modes; (ii) Scenario
B is representative of a three-mode process, with clusters that are easily separable and located far
away from one another. In both cases, without loss of generality, the data in each mode are randomly
drawn from a bivariate Gaussian distribution with equal prior probability. The two reference
scenarios are shown in Fig. 4 (M = 2000 samples). The same analysis were performed for different
kinds of distributions, and the results confirmed the main findings and conclusions discussed in this

study. Additional results are available from the authors upon request.

INSERT FIGURE 4 ABOUT HERE

Let {xj ER%j=1,...M }, where x; = [le, ij]T, be a bivariate dataset generated by the underlying
process p(xj) =Yk mMN(u;, X;), where L is the number of Gaussian distributions, and ; is the

k" prior probability, such that ¥+, m; = 1. The following parameters were used to simulate the

training data (natural process condition):
Scenario A:
L=2,m;=1/L,forl =1,2,

Hi = [03, O.3]T, U = [05, 0.4‘]T,
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The departure from multivariate normality caused by the multimode nature of the process strongly
affects the SPC performances when a traditional control chart with theoretical control limits is
applied. This effect is shown in Table 1, where the Average Run Length (ARL) of a T? control chart
under IC conditions is computed in both scenarios. A total of M = 10000 samples were used to
design the control chart, and the other 10000 samples were used to test its performances. The actual
ARL values were computed in 1000 runs. Table 1 shows that the actual ARL is much larger than the
target, and the more broadly the clusters are spread, the larger the gap between the target value and
the actual value. In Scenario B, the ARL is even larger than the number of samples used in the test
set. With respect to Scenario A, the 99% confidence intervals were computed using the batch means

approach by dividing the 1000 ARL values into 20 batches of 50 observations.
INSERT TABLE 1 ABOUT HERE

The results shown in Table 1 are due to an inflation of the sample variance-covariance matrix caused
by the clustered nature of the multimode data. The result is an overestimated control limit that yields
a reduced Type I error, and consequently, a larger Type II error. The use of empirical control limits
for the T? statistics allows for improved performances, but it is not a sufficiently reliable approach,
as demonstrated in the remainder of the paper.

With respect to the simulation of unnatural departures from the IC conditions, different types of
deviation were considered and are listed in Table 2 and Table 3 for Scenario A and Scenario B,
respectively, where &1, §, and &5 are the shift parameters. The out-of-control conditions were chosen
because they are representative of the most typical unnatural shifts that may occur in multimode
processes. These shifts include (i) location shifts of only one cluster, (i1) location shifts of all

clusters, (iii) variability increase in only one cluster, and (iv) variability increase in all clusters.
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Furthermore, different directions of location shift were considered to highlight the need for a flexible

and adaptive control region. Five severity levels were simulated for each disturbance, namely:

8, € {0.025,0.0375,0.05, 0.0625, 0.075}
8, € {1.25,1.5,2,2.5,3} (8)
85 € {0.01,0.025,0.05,0.075, 0.1}

INSERT TABLE 2 ABOUT HERE
INSERT TABLE 3 ABOUT HERE

The Phase II performances were compared in terms of the ARL for a targeted Type I error with a =
0.01. Without loss of generality, the proposed results are based on setting ARL, = 100 to ensure a
reasonable duration of the overall simulation tests. As a matter of fact, larger values of ARL require
a higher computational effort in tuning the proposed methods without affecting the conclusion of the
comparison analysis. Nevertheless, the control regions for both ARL, = 100 and ARL, = 370 are
depicted in the graphics from here on.

In each simulation scenario, 1000 runs were performed. In each run, a set of M = 2000 randomly
generated bivariate samples was used as the training set. Such a large number of training samples is
compatible with in-process monitoring applications in which the observed variables are synthetic
indices automatically extracted from sensor signals. In typical data-rich manufacturing operations,
thousands of signal-based observations can be acquired in a few minutes.

With respect to the Fuzzy ART-based approach, the M samples were divided into M; = 150 training
samples and N tuning samples (M; + N = M = 2000). The choice of the ratio M; /N represents a
tradeoff between the ability to train the network on a sufficient number of representative samples and
the ability to estimate the actual false alarm rate on a sufficient number of tuning samples.

For all of the considered methods, a set of 10000 randomly generated samples was used as the test
set. The batch means approach was used to estimate the 99% confidence intervals of the ARL

estimates by dividing the 1000 ARL values into 20 batches of 50 observations.

6.2 Analysis of Results

Both the K-chart and the Fuzzy-ART-based methods assume that the Phase | dataset is representative

of the natural process conditions, regardless of the number of clusters associated with different
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operating modes. Thus, no prior information on the actual data distribution is used for process
monitoring purposes, and no cluster identification or separation is involved in the training
procedures, i.e., the two methods are completely distribution-free in nature. Moreover, in both cases,
an automated procedure is used to tune the control region with respect to the Phase I data by
guaranteeing compliance with the targeted Type I error. These factors make the two methods
realistically comparable on a fair basis.

The K-chart and the Fuzzy ART-based method were also compared with the traditional T2 chart with
an empirical limit. In this case, the empirical limit was estimated using the approach proposed by
Phaladiganon et al.*.

INSERT FIGURE 5 ABOUT HERE
INSERT FIGURE 6 ABOUT HERE

With respect to the K-chart approach, Fig. 5 and Fig. 6 show the contour patterns of the irregular
shaped region that encloses 100% of the training data for different values of the GRB kernel width
parameter S. A discussion on the effects of using a different kernel function is reported in Sub-
section 6.3.

The values of the kernel width parameter S resulting from 1000 runs under natural process
conditions for different choices of the number M, of artificial outliers are shown in Fig. 7 (the 95%
confidence intervals are depicted). In particular, four different choices of M, are considered: M, =

M/4,M, = M, M, = 2M, and M, = 3M, with M = 2000.

INSERT FIGURE 7 ABOUT HERE

Fig. 7 shows that if a sufficient number of outliers are used in the kernel width selection procedure,
such a parameter has no statistically significant effect on the estimated mean of S. In Scenario A, if
M, = M, there is no significant difference at level @ = 0.05 in the mean of S at different values of
M,, whereas in Scenario B, no significant difference in the result is also observed at M, = M /4.
Moreover, the automatically selected value of S in Scenario A oscillates near S = 0.31, which may
be slightly overestimated. In Scenario B, instead, the kernel width selection procedure yields an
average value of approximately S = 0.15, which seems to be more appropriate (see Fig. 6).

In this study, a number of artificial outliers M, = M = 2000 was used for the design of the K-chart.
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The boundaries of the control regions resulting from the T2 chart, the K-chart, and the Fuzzy-ART-

based approach for a training set of M = 2000 samples are shown in Fig. 8.

INSERT FIGURE 8 ABOUT HERE

Fig. 8 shows that the Fuzzy-ART-based approach yields a rectangular control region with possibly
blunted corners. Therefore, the K-chart approach is the only one that provides a control region that
adapts to the actual spread of the data. As shown in the final portion of the paper, this result leads to
improved performances with respect to the T2 chart and the Fuzzy ART method, especially in the
presence of strong departures from an elliptic spread of the data.

The resulting ARLs and the corresponding 99% confidence intervals for the different disturbances
simulated in Scenario A are shown in Table 4 and are also depicted in Fig. 9. The severity levels are
ranked from 1 to 5, where 1 refers to the lowest level of the corresponding shift parameter and 5

refers to the highest level. Bold fonts identify the approach that provides the best performances.

INSERT TABLE 4 ABOUT HERE
INSERT TABLE 5 ABOUT HERE
INSERT TABLE 6 ABOUT HERE
INSERT TABLE 7 ABOUT HERE

For Scenario A, Table 4 and Fig. 9 show that the K-chart outperforms the T2 chart in the presence of
Disturbance 2 (shift of cluster A2), Disturbance 5 (variance increase of cluster A2), and Disturbance
6 (variance increase of both clusters). In the case of Disturbance 4 (variance increase of cluster Al),
the K-chart provides lower ARLs than the T? chart only for large shifts because the control region in
the K-chart approach better adapts to the actual shape of cluster A2, leading to a faster reaction to a
shift of its centroid or an increase of its variance. However, the tightness of the T2 elliptic control
region along its semi-minor axis allows achievement of lower ARLs than the K-chart in the presence
of Disturbance 1 (shift of cluster A1) and Disturbance 3 (shift of both clusters).

In Scenario A, the Fuzzy-ART-based approach outperforms the competitor methods only in the
presence of Disturbance 1 (shift of cluster Al). In the case of Disturbance 2, it provides better
performances than the T2 chart, but for Disturbances 3 and 4, the T? chart is more reactive than the
Fuzzy ART in detecting the occurrence of a shift.

The resulting ARLs in Scenario B are shown in Tables 5, 6, and 7.
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Table 5 summarizes the results for the IC case and the four out-of-control scenarios that consist of
rigid translations of one or more centroids towards the outside of the ellipse that encloses the data
(see Fig. 7). Table 6 summarizes the results for the scenarios that consist of rigid translations towards
the inside of the ellipse that encloses the data. Eventually, Table 7 shows the results for scenarios

involving a variance increase of at least one cluster.

INSERT FIGURE 9 ABOUT HERE

Figs. 10, 11, and 12 graphically depict the results listed in Table 5, Table 6, and Table 7,
respectively. Table 5 and Fig. 10 show that the Fuzzy-ART-based approach outperforms the T2 chart
if outward shifts of one or more centroids are present in Scenario B, with the only exception of
Disturbance 2 (leftward shift of cluster B2) in which the improvement occurs for large shifts only.
The Fuzzy-ART-based approach performs better than the K-chart for Disturbance 6 (up- and right-
ward shift of cluster B3) and Disturbance 7 (outward shift of all clusters), whereas the two methods
provide analogous results for Disturbance 4 (downward shift of cluster B2). In case of Disturbance 2
(left-ward shift of cluster B1), the K-chart performs slightly better for large shifts only.

The K-chart approach performs better than the T2 chart for all of the disturbances reported in Table

3, at least for shifts of medium and large severity.

INSERT FIGURE 10 ABOUT HERE

Table 6 and Fig. 11 show that when the cluster shift is directed toward the inside of the ellipse (or the
rectangle) that encloses the data, both the T2 chart and the Fuzzy-ART-based approach completely
fail in detecting the disturbance. In the case of inward translations, an increasing trend of the ARL is
observed because the probability of observing data outside the elliptical or rectangular control
regions decreases. If the natural process condition is described by a mixture distribution, the operator
may be interested in detecting any deviation from that condition, regardless of the direction of the
shift. In this frame, a rectangular or an elliptical control region is not adequate to detect a translation
of one or more clusters in the multivariate variable space, and the methods based on those types of

control regions lack actual flexibility.

INSERT FIGURE 11 ABOUT HERE
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In contrast, the K-chart is able to detect the shift regardless of the direction of the centroid translation
due to the irregular-shaped control region, which adapts to the actual spread of the data. Therefore,
the K-chart is the most flexible non-parametric method among the methods considered in this work.
Table 7 and Fig. 12 show that the K-chart outperforms both the T? chart and the Fuzzy-ART-based
approach in detecting any variance increase that involves one or more clusters. Additionally, in this
case, the particular nature of the control region provides a faster reaction with respect to disturbances

that affect the data dispersion.

INSERT FIGURE 12 ABOUT HERE

6.3 Use of Different Kernel Functions

As stated in Section 4, the two most popular alternatives to the RGB kernel function in the SVM

literature*’ are the polynomial function K, 1y(@ X b), and the sigmoidal function K; 4, (@ X b):

Kpory(@x b) = (1 +a"b)? o)
Ksigm(a x b) = tanh(d;a"b + d;),

where d € Nt is the polynomial kernel parameter and (dq,d,) € R are two sigmoidal kernel
parameters. Different combinations of values for d; and d, were compared by Lin and Lin>?, who
demonstrated that the choices of d; > 0 and d, < 0 are the most suitable, but they concluded that
the RGB function is preferable in general. Furthermore, the dependency on two parameters renders
the kernel optimization procedure more expensive from a computational viewpoint. For these
reasons, only the polynomial function is considered and compared with the GRB function in this
work.

The automatic procedure for the selection of the kernel parameter described in Section 4 can be
applied without modifications to the polynomial function. The only difference is represented by the
discrete nature of the parameter d € N*. Fig. 13 shows the geometry of the control regions for
ARLy = 100 and M = 2000 in Scenario A and Scenario B using the polynomial kernel and the RGB
kernel, where the values of S and d result from the automatic selection procedure.

One limitation of the polynomial kernel

is that it is strongly influenced by observations with a large
norm. The result is an undesired inflation of the control-region volume, which can be reduced by

centering and re-scaling the original observations. As an example, Fig. 13 shows the boundary of the
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bivariate regions estimated for the data transformed to a zero mean and unit standard deviation.
Notice that by rescaling the data, the range of suitable values of the RGB kernel parameter S is
changed as well. The optimal values estimated in this case are S = 2.2 in Scenario A and S = 1.3 in

Scenario B.

INSERT FIGURE 13 ABOUT HERE

Fig. 13 shows that the control region based on the GRB function fits the data better than the control
region based on the polynomial function. The difference is larger in Scenario B in which the clusters
are more widely spread. The optimal polynomial degree is d = 17 in Scenario A and d = 15 in
Scenario B. At lower degrees, the contour of the region approaches an ellipse, whereas at higher
degrees, the contour becomes more irregular without enhancing the data fitting. However, in the
overall explored domain of function degrees, the control region generated by the polynomial kernel
is always much less representative of the actual data distribution than the region generated by the
GRB kernel. This empirical outcome shows that in the presence of mixed distributions, the GRB is
preferred over other common kernels in accordance with the results of previous studies devoted to

single-mode non-normal distributions*-2.

7 A Real Test Case

In this section, a real case study that addresses chatter detection in a roll grinding process, as
mentioned in Section 1, is discussed and used to highlight the applicability of the proposed methods
in an actual industrial operation. The in-process acquisition of sensor signals has particular industrial
relevance because it allows the detection of undesired process phenomena that affect product quality
and implementation of adaptive control actions. However, signal data might present a multimode
pattern caused by frequent changes of the cutting parameters during each grinding cycle>*->*, and this

situation makes chatter detection®

a troublesome task using traditional control charting methods.
Despite a body of literature devoted to the chatter detection problem®*®?, few automatic methods
have been considered for actual industrial implementation. In this framework, multimode SPC
techniques may represent a valuable alternative to common approaches. For a review of chatter
vibration fundamentals in grinding processes, see Altintas and Weck® and Inasaki et al.%.

The scheme of the experimental setup used to collect real signal data during a roll grinding process is

presented in Fig. 2a). The grinding process was performed on a special alloyed steel roll with an
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initial diameter of 500 mm and an axial length of 1700 mm. The grinding wheel was constructed of
an aluminum oxide material with a nominal diameter of 700 mm and a width of 75 mm. The
accelerometer signal along the X axis was sampled at 2 kHz and segmented into sliding time
windows of duration T = 15, with an overlap ratio of 90%. The signal was processed online to
compute two synthetic indices denoted by rms; and kurt;, j = 1,2, ..., which consist of the root
mean square index of the vibration signal and the kurtosis of its time-domain distribution within the
jt™" time window. The rms index was chosen because it represents the most basic choice for
vibration monitoring in industrial applications>*. Our previous experimental studies showed that use
of the kurt index in combination with the rms index enhances the capability of chatter detection.
The result is a bivariate quality characteristic {xj € R?, j=1.2, .. }, where xXj = [rmsj, kurtj] T,

The experiments were performed as follows. A total of M grinding passes were carried out under
chatter-free conditions with different combinations of the cutting parameters. These combinations of
parameters are representative of the different operative conditions adopted by the operator during
each grinding cycle. Therefore, the data collected during this phase are expected to be representative
of the natural process behavior and are hence used as the Phase I dataset.

To simulate the OOC Phase II data, a new set of grinding passes was performed to induce chatter
vibrations that grow over time as the waviness on the workpiece and the wheel becomes increasingly
severe. The waviness on the wheel was artificially induced to produce the chatter onset. At the end of
each sub-set of the grinding passes, the surface condition of the roll was checked by visual
inspection, and the presence or absence of chatter marks was used to qualify the passes as IC or
OOC, respectively.

The different combinations of cutting parameters used in all the test runs are reported in Table 8. The

roll speed was held constant during the experiments at n,, = 30 rpm.
INSERT TABLE 8 ABOUT HERE

The data collected under chatter-free conditions (see Fig. 2b)) with the eight combinations of
parameters shown in Table 8 were used as the Phase I dataset (approximately M = 3000
observations).

A traditional SPC approach would require the design of one control chart for each cutting condition
(each mode of the multimode IC state), which could lead to a considerable amount of work. In
addition, any departure from the multivariate normality assumption within each mode implies the

need for a non-parametric approach. The major advantage provided by the use of a non-parametric
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multimode technique consists of the design of a single monitoring tool that is able to cover multiple

operative conditions regardless of the actual data distribution in each mode.

INSERT TABLE 9 ABOUT HERE

Table 9 shows the detection percentages of data acquired under the chattered conditions provided by
the T? chart, the Fuzzy-ART-based approach and the K-chart. The corresponding control regions at
ARLy, = 100 and ARLy = 370 are shown in Fig. 14 in which the data are depicted after the re-
scaling operation imposed by the Fuzzy ART-based approach.

INSERT FIGURE 14 ABOUT HERE

Due to its adaptive properties, the K—chart allows detection of greater than 98% of the data acquired
under chattered conditions. Fig. 14 shows that the SVDD-based procedure yields a double control
region that encloses the two separate clusters. In this case, the estimated kernel parameter is S =
0.0425. The Fuzzy-ART-based approach is the one that provides the lowest performance because a
large percentage of the out-of-control observations are spread within the rectangular control region
that encloses the IC data. The T2 chart performs slightly better than the Fuzzy ART, but an elliptical
control region (analogous to a rectangular region) is far from a good choice for the multimode
grinding data.

The results in the real case study confirm the major conclusions drawn based on the simulation
experiments. The K—chart outperforms the other two approaches due to its kernel-based procedure

for estimation of a flexible and adaptive control region.

8 Conclusions

The implementation of traditional MSPC tools based on conventional assumptions on the underlying
data distribution might not be appropriate for industrial applications of practical interest, especially if
in-process sensor data are used. A challenging violation of traditional MSPC assumptions consists of
a multimode process characterized by transitions from one operating mode to another. The
development of distribution-free MSPC tools that are able to monitor multimode processes is of great
practical interest, but it has attracted limited attention in the mainstream literature thus far, especially

in the discrete part manufacturing field.
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Our study is aimed at investigating the applicability of certain non-parametric MSPC methods to
multimode processes and demonstrating their performances using a comparison study that includes
both simulated and real industrial data.

The paper compares two distribution-free methods based on one-class classification variants of two
well-known statistical learning techniques, i.e., the Fuzzy-ART-based approach and the so-called K-
chart, which require no assumption on the data distribution and their variance-covariance structure.
Our analysis showed that the Fuzzy-ART-based approach generates a rectangular-like control region,
possibly with blunted corners. Such a control region is the result of the procedure adopted to select
the vigilance parameter p, which assumes that all of the training data can be grouped into a single IC
class. The single-class assumption allows design of a simple-to-implement procedure to control the
false alarm rate, but it may lead to reduced performance in the presence of clustered data.

Further research efforts are required to design a Fuzzy-ART-based approach that allows control of
the number of classes generated during the training step and the false alarm rate at the same time.
The K-chart provides a more flexible solution due to an irregularly shaped control region that adapts
to the actual spread in the data. The simulation results showed that the K-chart is able to detect
departures from the natural multimode distribution regardless of the direction of the shift within the
multivariate variable space. The greater the departure from multi-normality and/or single-mode
distributions, the greater the expected benefits provided by the K-chart over other methods will be.

A real case study that addresses chatter detection in roll grinding via in-process sensor signals was
proposed to evaluate the implementation of the proposed methods in an actual industrial application.
The results achieved in the real case study confirm the main conclusions drawn based on the
simulation analysis. In particular, due to its adaptive properties, the K-chart is the more flexible
approach among those considered in this work for monitoring of a multimode process regardless of
the actual distribution of the acquired variables.

With respect to the K-chart design, we tested two different kernel functions, i.e., the GRB function
and the polynomial function. We showed that the automated procedure for selection of the kernel
parameter could be applied without modification to a different kernel without any modifications.
However, the results show that the GRB function provides better adaptability to mixture distributions
than the polynomial function, and hence, it should be generally preferred.

The automated procedure for selection of the kernel parameter involves simulation of artificial
outliers during the training phase. Our simulation analysis showed that such a procedure is robust
with respect to the number of artificial outliers, at least when such a number is reasonably large.

Future studies might be aimed at further assessment of the sensitivity of such a procedure with
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respect to different parameters and settings. Possible improvements of the procedure may be studied

as well, e.g., avoiding the need for the inclusion of artificially generated outliers.
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Appendix A: The Fuzzy-ART Training Procedure

The weight initialization consists of setting wg 1 = Wy = ** = Wy 2, = 1. The F, node with these

weights is referred to as an uncommitted node. After one class is chosen to represent an input pattern

xf, the corresponding F, node is referred to as a committed node. Given a multivariate training set

{xj}, Jj =1,..., M, the training phase of Fuzzy ART is applied as follows:

1. Initialize the number of committed nodes to 0, and only one uncommitted node remains;

2. Set a choice parameter 8 € [0, %] (a small value is usually adopted, e.g., B = 107° in this work)
and a vigilance parameter p € [0,1];

3. Apply the complement coding to the new input sample x;;

4. Calculate the bottom-up inputs to the F, nodes as follows:

(D
| B+ 2p if the ¢*" node is the uncommitted node

T(3) = | Aw, | (A1)
L B+ |Wq| if the qth node is a committed node

where operator ‘A’ gives the vector uav = (min{uy, v;}, ..., min{u;, v;}...), and operator ‘||’
gives the scalar |u| = Y;;abs(w;);

5. Choose the F, node that receives the maximum bottom-up input (assume that this node has index
Qmax)- Three cases can now be distinguished:

a) The qpqy node is the uncommitted node, and in this case, the vigilance criterion is satisfied:

|x]§AWQmax| (AZ)

|}

Increase the number of committed nodes by one. A new uncommitted node is introduced, and
its weight vector is initialized as discussed above: Go to step 6;
b) The gnq, node is a committed node, and it satisfies the vigilance criterion (A2): Go to step 6;
¢) The gpqy node is a committed node, but it does not satisfy the vigilance criterion (A2):
Disqualify the node by setting T, (xj) = —1 and repeat Step 5;

6. The weights associated with the q,,4, node are modified according to the following equation:
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AXS (A3)

Wamax = Wamax
If this is the last input sample, go to step 7; otherwise, go back to step 3;
7. After all M samples are presented, two cases are possible:
a) In the previous training data presentation, at least one component of the weight vectors is
changed: Go to step 3 by presenting each training sample again to the network;
b) In the previous training data presentation, no weight change occurred: The learning process is

complete.

The stop condition at step 7 is driven by a tolerance index (e.g., tol = 1le — 6) for comparison of the
weight vector in consecutive training data presentations.
Note that by choosing a small value of the choice parameter 8, the convergence of the learning

process is guaranteed after one presentation of the input data to the network>.
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Table 1 — Actual IC ARL performances of T2 chart with theoretical limit

Scenario | Target ARL | Actual ARL with 99% confidence intervals
100 198.48 [195.81,201.15]
A 370 874.76 [845.88, 903.64]
100 >10000
B 370 >10000
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Table 2 — Description of simulated disturbances in Scenario A

Disturbance

Description

Settings

1
2
3

Shift of cluster Al centroid
Shift of cluster A2 centroid

Shift of both the cluster centroids

Variance increase of cluster Al
Variance increase of cluster A2

Variance increase of both the clusters

By =py —[61,6:]7

Ko =y +[61,61]"

My =+ (61,6,

Ko = Py + [61,—6,]"
{Z1}ii =62 {Z )i i =12
{B2}ii = 6z {E2}i 1= 1,2
{Z1}ii =62 {Zi )i i =12
{E2}ii = 6 {E2}ii 1= 1,2
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Table 3 — Description of simulated disturbances in Scenario B

Disturbance

Description

Settings

1

2
3
4
5
6
7

10
11

Rightward shift of cluster B1 centroid
Leftward shift of cluster B1 centroid
Upward shift of cluster B2 centroid
Downward shift of cluster B2 centroid
Down-left-ward shift of cluster B3 centroid
Up-right-ward shift of cluster B3 centroid

Outward shift of all the clusters

Variance increase of cluster B1
Variance increase of cluster B2
Variance increase of cluster B3

Variance increase of all the clusters

My = + (65,017
By = py —[65,0]7
H2 =z +[0,65]"
B2 = pp —[0,85]"
B3 = p3 — [63,85]"
B3 = 3+ [63,85]"

W =u —[63, O]T: u, =, — [0, 53]T:

H3 = pu3 + [53:53]T

{Z1}i1 =6,
{Z2}ii =62
{Z3}ii = 62
{Z1}ii =62
{Z2}ii = 62
{Z3}ii =62

{Za}i, =12
Zodi =12
sl 1 =12
Za}i =12
Zali 1 =12
{Zsli i =12
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Table 4 — Comparison of ARLs and 99% confidence intervals (Scenario A)

Scenario A Severity T? chart Fuzzy ART K-chart
In Control - 102.98 | [98.06,107.90] | 99.37 | [95.12,103.63] | 103.30 | [97.79, 108.81]
Disturbance 1 1 61.88 [60.15, 63.60] 48.09 [46.40, 49.77] 81.43 [77.28, 85.57]
Shift of cluster 2 45.07 [44.01, 46.14] 39.49 [34.88, 44.10] 63.18 [58.97, 67.38]
Al 3 31.60 [30.92, 32.28] 24.53 [22.53, 26.54] 41.75 [39.46, 44.04]
4 22.25 [21.73, 22.77] 16.27 [14.34, 18.19] 31.24 [28.42, 34.06]
5 15.37 [15.03, 15.72] 11.08 [10.00, 12.15] 19.66 [18.19, 21.13]
Disturbance 2 1 85.09 [80.48, 89.70] 50.35 [44.44, 56.26] 28.85 [27.34, 30.36]
Shift of cluster 2 71.75 [69.23, 74.28] 27.46 [23.70, 31.22] 11.83 [11.08, 12.58]
A2 3 54.90 [56.70, 57.11] 13.80 [12.05, 15.55] 5.78 [5.42, 6.14]
4 40.92 [39.19, 42.65] 7.95 [7.26, 8.63] 3.41 [3.27, 3.55]
5 27.59 [26.44, 28.74] 4.79 [4.50, 5.09] 2.48 [2.44, 2.52]
Disturbance 3 1 26.41 [25.58, 27.24] 63.02 [53.15, 72.89] 34.61 [32.35, 36.87]
Shift of both 2 12.66 [12.41,12.91] 32.32 [28.64, 36.00] 15.54 [14.77, 16.30]
the cluster 3 6.70 [6.62, 6.79] 16.74 [15.03, 18.44] 8.30 [7.74, 8.85]
centroids 4 3.98 [3.91, 4.05] 10.75 [9.36, 12.14] 4.53 [4.32,4.74]
5 2.59 [2.57, 2.62] 6.00 [5.40, 6.59] 2.92 [2.82,3.01]
Disturbance 4 1 54.58 [50.86, 54.58] 68.68 [65.99, 71.37] 52.10 [50.40, 53.81]
Variance 2 33.46 [31.58, 33.46] 48.93 [46.60, 51.25] 31.27 [30.22, 32.33]
increase of 3 17.13 [16.57,17.13] 27.29 [26.38, 28.21] 16.14 [15.60, 16.70]
cluster Al 4 11.60 [11.30, 11.60] 18.60 [17.94, 19.26] 11.05 [10.83, 11.26]
5 9.03 [8.78,9.03] 14.12 [13.71, 14.53] 8.55 [8.38, 8.73]
Disturbance 5 1 73.98 [71.80, 76.15] 73.72 [68.20, 79.25] 64.75 [61.29, 68.22]
Variance 2 53.79 [52.59, 55.00] 53.70 [51.09, 56.31] 41.62 [39.87, 43.37]
increase of 3 33.11 [32.30, 33.92] 31.79 [30.30, 33.27] 22.26 [21.74, 22.78]
cluster A2 4 23.15 [22.77, 23.52] 23.10 [21.84, 24.37] 14.82 [14.40, 15.23]
5 17.34 [17.05, 17.63] 16.76 [15.99, 17.52] 11.46 [11.23, 11.69]
Disturbance 6 1 45.86 [43.60, 45.86] 50.93 [48.98, 52.89] 39.48 [37.94, 41.02]
Variance 2 26.06 [24.61, 26.06] 30.58 [29.68, 31.49] 21.34 [20.56, 22.12]
increase of 3 12.81 [12.34, 12.81] 15.96 [15.53, 16.44] 10.28 [10.02, 10.55]
both the 4 8.411 [8.16, 8.41] 10.63 [10.39, 10.87] 6.77 [6.66, 6.88]
clusters 5 6.40 [6.25, 6.40] 7.88 [7.66, 8.10] 5.14 [5.06, 5.23]
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Table 5 — Comparison of ARLs and 99% confidence intervals (Scenario B) — part 1

Scenario B Severity T2 chart Fuzzy ART K-chart
In Control - 101.89 [97.77,106.00] | 102.39  [97.04, 107.75] | 102.32 [98.57, 106.07]
Disturbance 2 1 79.63 [77.25, 80.02] 82.98 [78.06, 87.90] 93.10 [88.45,97.74]
Leftward shift 2 50.86 [49.15, 52.57] 51.96 [48.34, 55.57] 57.26 [54.20, 60.32]
of cluster B1 3 24.64 [23.95, 25.32] 19.29 [17.01, 21.56] 18.20 [16.04, 20.37]
4 12.90 [12.55, 13.25] 8.47 [7.83,9.12] 6.12 [5.71, 6.52]
5 7.42 [7.31, 7.53] 4.73 [4.41, 5.06] 3.54 [3.46, 3.61]
Disturbance 4 1 79.56 [77.32, 81.80] 75.78 [70.47, 81.09] 77.30 [73.29, 81.30]
Downward 2 45.44 [44.12, 46.76] 35.96 [32.77, 39.16] 34.59 [32.54, 36.64]
shift of cluster 3 14.33 [13.87, 14.78] 8.81 [7.87,9.76] 8.23 [7.86, 8.60]
B2 4 5.46 [5.40, 5.53] 3.84 [3.72, 3.95] 3.80 [3.72, 3.87]
5 3.41 [3.38, 3.43] 3.03 [3.01, 3.05] 3.04 [3.02, 3.05]
Disturbance 6 1 96.07 [91.38, 100.75] 61.73 [58.94, 64.52] 90.39 [85.40, 95.37]
Up-right-ward 2 70.23 [67.66, 72.80] 23.26 [21.88, 24.65] 44.50 [41.71, 47.29]
shift of cluster 3 16.37 [15.81, 16.93] 6.19 [5.87, 6.51] 9.71 [9.10, 10.33]
B3 4 4.93 [4.87,4.99] 3.43 [3.37, 3.49] 3.96 [3.85, 4.08]
5 3.14 [3.13, 3.16] 3.00 [2.99, 3.00] 3.05 [3.03, 3.07]
Disturbance 7 1 60.99 [59.09, 62.90] 40.55 [38.66, 42.44] 69.78 [67.20, 72.35]
Outward shift 2 27.43 [26.74, 28.12] 11.58 [11.19,11.98] 23.62 [22.28, 24.96]
of all the 3 6.50 [6.34, 6.66] 2.87 [2.81, 2.93] 4.47 [4.31, 4.63]
clusters 4 2.25 [2.23, 2.28] 1.47 [1.45, 1.49] 1.78 [1.75,1.81]
5 1.37 [1.37,1.38] 1.15 [1.14, 1.16] 1.19 [1.18,1.20]

36



Table 6 — Comparison of ARLs and 99% confidence intervals (Scenario B) — part 2

Scenario B Severity T? chart Fuzzy ART K-chart
Disturbance 1 1 132.96  [128.21,137.71] | 133.23 [126.37,140.10] | 87.66 [83.55,91.78]
Rightward 2 185.16  [176.64,193.67] | 170.38 [151.96,188.79] | 50.89 [46.60, 55.18]
shift of cluster 3 265.84 [251.86,279.81] | 186.42 [161.78,211.07] | 14.07 [12.98, 15.15]
B1 4 315.93  [303.19,328.66] | 183.44 [158.54,208.35] | 5.18 [4.98, 5.38]

5 337.37 [318.44,356.29] | 202.70  [169.89, 235.51 3.42 [3.37, 3.47]
Disturbance 3 1 121.22  [118.15,124.28] | 135.26 [127.27,143.26] | 94.42 [89.02, 99.83]
Upward shift 2 137.00  [132.83,141.16] | 155.14 [143.74,166.54] | 51.86 [46.88, 56.85]
of cluster B2 3 143.73  [138.98,148.48] | 143.76 [131.09, 156.43] | 13.16 [10.61, 15.72]
4 149.69  [145.24,154.14] | 166.18 [141.56,190.79] | 5.27 [4.78, 5.74]
5 146.01  [141.51,150.51] | 150.34 [132.87,167.81] | 3.52 [3.42, 3.61]
Disturbance 5 1 102.89  [100.26,105.52] | 167.85 [159.02,176.69] | 88.11 [84.72, 91.49]
Down-left- 2 107.46  [103.01,111.91] | 264.06 [226.10, 302.01] | 47.16 [44.27,50.04]
ward shift of 3 102.96  [98.93,106.98] | 266.09 [232.21,299.96] | 12.13 [10.95, 13.31]
cluster B3 4 103.98  [100.41, 107.57] | 309.44 [259.93,358.96] | 4.55 [4.20, 4.89]
5 102.46  [99.72,105.20] | 315.87 [234.46,397.27] | 3.27 [3.10, 3.45]
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Table 7 — Comparison of ARLs and 99% confidence intervals (Scenario B) — part 3

Scenario B Severity T? chart Fuzzy ART K-chart
Disturbance 8 1 79.88 [77.70, 82.07] 86.92 [81.95, 91.88] 49.29 [47.52,51.05]
Variance 2 64.41 [62.38, 66.43] 68.67 [65.41, 71.93] 30.62 [29.45, 31.78]
increase of 3 45.93 [44.96, 46.90] 51.29 [48.65, 53.93] 16.73 [16.28,17.18]
cluster B1 4 35.36 [34.68, 36.05] 38.52 [36.80, 40.24] 11.91 [11.61, 12.20]

5 29.40 [28.80, 30.01] 30.75 [29.76, 31.75] 9.50 [9.34, 9.66]
Disturbance 9 1 79.07 [76.58, 81.56] 86.99 [83.38, 90.59] 70.54 [67.78,73.31]
Variance 2 62.44 [60.49, 64.40] 71.00 [68.21, 73.78] 48.94 [47.31, 50.56]
increase of 3 42.22 [41.41, 43.02] 46.01 [43.81, 48.20] 28.73 [27.86, 29.60]
cluster B2 4 31.00 [30.34, 31.67] 33.62 [32.38, 34.86] 19.53 [18.97, 20.08]
5 24.93 [24.45, 24.41] 26.12 [25.10, 27.15] 15.10 [14.74, 15.47]
Disturbance 10 1 100.42 [97.49, 103.34] 77.87 [75.23, 80.51] 67.26 [64.83, 69.69]
Variance 2 95.26 [91.92, 98.60] 57.52 [55.65, 59.40] 44.13 [42.07, 46.19]
increase of 3 86.41 [83.34, 89.48] 36.32 [34.60, 38.04] 24.26 [23.40, 25.13]
cluster B3 4 74.02 [71.58, 76.47] 26.66 [25.23, 28.09] 16.17 [15.79, 16.55]
5 63.07 [61.28, 64.86] 21.27 [20.23, 22.31] 12.63 [12.31, 12.95]
Disturbance 11 1 64.01 [62.22, 65.81] 56.13 [53.70, 58.55] 33.53 [32.43, 34.64]
Variance 2 44.66 [43.50, 45.82] 34.87 [33.87, 35.86] 17.68 [17.22, 18.14]
increase of all 3 26.57 [25.89, 27.25] 19.04 [18.77, 19.31] 8.40 [8.27, 8.53]
the clusters 4 18.40 [18.14, 18.66] 13.00 [12.69, 13.30] 5.65 [5.55, 5.74]
5 14.18 [13.98, 14.37] 9.63 [9.52,9.75] 4.31 [4.26, 4.36]
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Table 8 — Cutting parameters used in the real case study

Condition Wheel speed [rpm] (ng) Infeed [mm] (a,)

680 0.01

680 0.02

780 0.01

780 0.02

In-Control (IC) - Chatter-free 830 0.01
830 0.02

1100 0.01

1100 0.02

Out-of-Control (OOC) - Chatter 1100 0.01
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Table 9 — Chatter detection percentage in the real case study

ARL, T? Fuzzy ART K-Chart (S = 0.0425)
100 63.73% 43.63% 98.04%
370 61.76% 42.65% 98.04%




