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Abstract— Single-photon avalanche diodes (SPADs) emerged as
the most suitable photodetectors for both single-photon counting
and photon-timing applications. Different complementary
metal-oxide—semiconductor (CMOS) devices have been reported
in the literature, with quite different performance and some
excelling in just few of them, but often at different operating
conditions. In order to provide proper criteria for performance
assessment, we present some figures of merit (FoMs) able to
summarize the typical SPAD performance (i.e. photon detection
efficiency, dark counting rate, afterpulsing probability, hold-off
time, and timing jitter) and to identify a proper metric for SPAD
comparisons, when used either as single-pixel detectors or in
imaging arrays. The ultimate goal is not to define a ranking list of
best-in-class detectors, but to quantitatively help the end-user to
state the overall performance of different SPADs in either photon-
counting, timing, or imaging applications. We review many
CMOS SPADs from different research groups and companies,
we compute the proposed FoMs for all them and, eventually,
we provide an insight on present CMOS SPAD technologies and
future trends.

Index Terms—CMOS imagers, figure of merit,
counting, single-photon avalanche diode (SPAD).
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I. INTRODUCTION

INCE 60’s, Single-Photon Avalanche Diodes (SPADs)
have been deeply studied and used in several fields
where single-photon sensitivity is required such as fluores-
cence correlation spectroscopy (FCS) [1], fluorescence lifetime
imaging (FLIM) [2], positron emission tomography (PET) [3],
as well as laser (LIDAR/LADAR) [4] and 3-D optical
ranging [5]. In all these applications, the intensity and
time-dependent waveform of very faint optical signals can
be acquired by counting photons (photon-counting) in real
time, within time bins down to the microsecond time scale.
Also, the waveforms of very fast events, down to the picosec-
ond timescale, can be reconstructed by repetitively acquiring
the arrival time (photon-timing), exploiting Time-Correlated
Single-Photon Counting (TCSPC) for building the histogram.
Although many single-photon sensitive devices already
existed, SPADs have gained attention because of some
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advantages over photomultiplier tubes (PMTs) and multi-
channel plates (MCPs), which require high bias voltages, are
bulky and sensitive to magnetic fields, and cannot be integrated
with complementary metal-oxide semiconductor (CMOS)
electronics. Conversely, SPADs are small, rugged, easy to
integrate in large array, and are insensitive to magnetic fields,
making them suitable for medicine and space application [6].
Until ten years ago, SPADs were fabricated solely through
fully custom processes, whose flexibility provided devices
with thick depleted regions, engineered -electric fields,
dedicated annealing steps and gettering processes to minimize
lattice damages for improving noise, yield, and uniformity.
Custom SPADs provide best-in-class performance in terms
of detection efficiency, noise and timing jitter [7]-[14].
However, because of dedicated processes and the impossibility
to integrate proper quenching and processing electronics with
the detector, custom SPADs are best suited for small (up to
about a hundred) pixel arrays [15].

From the early 2000s onwards, it was possible to
exploit standard CMOS technologies to fabricate SPADs,
with the main advantage of monolithic integration on the
same chip of photodetectors, analog avalanche sensing and
quenching electronics, and digital circuitry for implementing
smart photon-counting and photon-timing on-chip processing.
As a matter of fact, researchers started to develop compact
and cost-effective multi-pixel SPAD-based image sensors
that represent a viable solution for all those applica-
tions where bulky and expensive intensified (I-CCDs)
or electron-multiplying charge-coupled devices (EM-CCDs)
are used, although there is still room for improvements
regarding fill-factor, quantum efficiency and optical stack
optimization.

In the last years, many groups worldwide developed dif-
ferent SPAD structures in different CMOS technology nodes
[16]-[48] for coping with the different issues, including but
not limited to premature edge breakdown, tunneling effects,
electric field uniformity, sensing electronics complexity, and
wide depleted region thickness. Very often each group per-
formed measurements in different experimental conditions
(e.g. breakdown voltage, excess bias, hold-off time, average
count rate, wavelength, etc.), which better maximized the
target data, and often considered to have reached the novel
state-of-the-art performance in one or another parameter. In
such a maze of variables and measurements, it is difficult to
make a fair comparison between different SPAD designs and
CMOS technologies, and to envision a clear trend, unless a
subset of representative parameters is found.



To this purpose, we propose a comprehensive Figure-of-
Merit (FoM) based on well-assessed typical SPAD perfor-
mance, like photon detection efficiency, noise, dead-time,
timing jitter, fill-factor [49], and other well-known quality
meters, like Signal-to-Noise Ratio, Noise Equivalent Power,
and Detectivity. Our aim is not to outline a ranking list, but
to define a proper user-friendly metric to help SPAD users to
compare detection performance in different application fields
(photon-counting and photon-timing) and also as single pixels
or as SPAD array imagers.

We consider also Silicon Photomultipliers (SiPMs)
[50]-[57], which can overcome some limitation of SPADs,
since they provide large area and are made of hundreds or
thousands of SPAD microcells connected in parallel — thus
behaving like a single detector, but with the capability to
resolve the number of imping photons. In analog SiPMs,
each SPAD is integrated with its own quenching resistor
and the avalanche currents are summed up to provide the
detector analog output. Instead, digital SiPMs provide active
quenching circuits into each microcell and further on-chip
digital electronics.

The paper is organized as follows: Section 2 briefly
describes the main SPAD parameters; Section 3 defines the
proposed FoMs and Section 4 shows and comments how they
apply to a broad selection of SPADs and SiPMs either reported
in literature or commercially available.

I1I. MAIN SPAD PARAMETERS

Photon Detection Efficiency (PDE) is defined as the ratio
of the number of detected photons and the number of pho-
tons incident on the photoactive area. This ratio depends on
absorption probability and on triggering efficiency [49].

Apart from signal fluctuations due to its own Poisson
statistics, SPAD’s main noise source is due to spurious counts,
which are either uncorrelated or correlated to signal photons.
The uncorrelated contribution is due to ignitions caused by
carriers generated through Shockley-Read-Hall processes,
trap-assisted tunneling (TAT), or Poole-Frenkel emission and is
referred to as Dark Counting Rate (DCR) [49]. Instead, corre-
lated noise comes from different sources, such as optical and
electrical crosstalk (among different pixels) and afterpulsing
(within the same pixel). The latter is caused by carriers that
get trapped during an avalanche current pulse and are released
when the SPAD is newly biased above breakdown (Vpp), thus
igniting an “afterpulse”. If Npgr photons are detected and
N4p additional correlated counts are generated, the afterpuls-
ing probability P4p can be defined as:

Pap = Nap/NpET (1)

Of course, afterpulsing is a cascade process and N4qp counts
will generate Nap - P4p counts and so on. Therefore, for
Npgr detected photons the number of measured counts
NMEAS 1s:

o
NymEeas = Nper + NperPap +... = Nper - ZPXP
n=0
Npgr
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Hence, because of afterpulsing, the number of real photons is
always lower than the measured number of ignitions; if such
afterpulsing probability is high enough, SPAD saturation can
occur. In order to reduce afterpulsing, a dead-time Tpgap,
(from tens to hundreds of nanoseconds) is enforced to the
SPAD after each ignition, allowing the trapped carriers to be
released. Apart from reducing P4p, long dead-time lowers
the maximum count rate to 1/Tpgap, in case of active reset,
or to 1/(e - Tppap) with passive reset [S8] (e being the
Euler number).

Finally, the SPAD timing jitter (photon-timing precision) is
the statistical spread of output pulse on-set compared to the
true photon arrival time [59] and is quoted by the Full-Width
at Half Maximum (FWHM) of the distribution histogram.

IIT1. FIGURES OF MERIT

Single-photon detectors are exploited in three main
approaches, namely photon-counting (for measuring the inten-
sity of slowly varying optical signals, in the us range), photon-
timing (for reconstructing very fast optical waveforms, in the
ps range) and photon-imaging (for acquiring one- or two-
dimensional images). In the first two modes, one or few
dozen independent detectors usually suffice, whereas imaging
requires large arrays at least hundreds of detectors, hence pixel
pitch and fill-factor do play an important role.

A. Photon-Counting Applications

In photon-counting, performance are commonly quoted as
Noise Equivalent Power (NEP), Signal-to-Noise Ratio (SNR),
specific detectivity (D*), and Dynamic Range (DR). In this
paragraph, we will study their dependence on SPAD parame-
ters in order to define a new unique FoM.

For a SPAD, SNR is given by [49]:

PDE - ©g - TinT

~J/StN PDE ®s Tint + DCR Tinr
3)

where @g is the signal photon-rate and 7y 7 is the integration
time employed to count photons.

NEP is defined as the minimum signal intensity required to
achieve SNR = 1 within 1 Hz bandwidth [60] and quantifies
detector sensitivity:

SNR

v2-DCR
NEP =hy  ——— — 4)
PDE

A lower NEP denotes better SPAD performance. Specific
detectivity D* is a measure of the minimum detectable radiant
power and takes into account the photoactive area [61]:

VArea 1
D* = = ie. f (PDE,vArea, 7) 5)
NEP VDCR
Moreover, in photon-counting applications it is desirable
to have a high dynamic range, defined as the ratio between

maximum Syr4xy and minimum Sys;y detectable signals:

DR = Syax/SmiIn (6)




The maximum achievable photon flux, @4y, is limited
by the dead time, Tpgap, imposed after each ignition and
the afterpulsing probability, P4 p, taking also into account the
wasted count rate due to noise, i.e. the DCR.

Therefore:

1 — Pap R)~ 1 — Pap
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The approximation is usually valid, since SPADs have
DCR from tens to thousands of counts per second,
i.e. much lower than the inverse of typical dead times of some
tens of nanoseconds. Eventually, given a certain integration
time 7T7y7, the maximum achievable signal can be written as:

Dyax = ( @)

Suax = Oyax - Tint (8)

The minimum detectable signal (Sys7y) represents the photon
count needed to reach SNR = 1, as a function of the integra-
tion time [49], and for most cases it is given by:

Suiv = vV DCR - TinT 9)

We can express dynamic range as:

Oyax - T 1
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Both D* and DR increase with improved performance, so
we define the photon-counting FoOMc considering all device
parameters appearing in these two quantities, i.e. efficiency,
noise, active area, and maximum achievable photon flux:

JA 1—P
FoM¢ = PDE - Y24 AP (11)
vDCR TpEap

where we considered T;y7 = 1 s. The dimensions of FoM¢
for photon-counting is m, since the square root of DRC is
given as s~Vand Tpgap is quoted in s, the detector’s area is
given as m?, and PDE and P4p are dimensionless. Table T
shows the FoMc values computed for a large number of
custom SPADs, CMOS SPADs, and SiPMs; as can be seen,
typical values range from 1072 m to 10° m. Since PDE
depends on photon wavelength, spot FoMc values could be
quoted for application-specific wavelengths or an average PDE
value could be used as representative over the range of interest.

B. Photon-Timing Applications

In photon-timing applications, SNR still plays an important
role. Fig. 1 shows the typical photon-timing response of a
SPAD to a laser pulse of negligible width. The Gaussian
component of the timing waveform is described as:

_ PDE - s (n-Tgin — p)°
fn) = m - TpiN - exp [_T :| (12)

where n is the number of bins, Tp;y is the histogram bin
width, @y is the signal photon rate, u is the time at which
the timing peak occurs, and ¢ is given by FWHM =
20+/21In2 = 2.350. The peak value is given by:
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Fig. 1. Typical timing waveform of a SPAD, with its components described
in the text, and the Signal-to-Noise ratio defined as the ratio between the
timing peak and the noise background.

The background level is set by dark counts as:

SgeNp = DCR - Ty (14)

and its standard deviation is +/Spenp, since DCR follows a
Poisson distribution.
Hence, considering a unit 775, SNR can be written as:

SPEAK _ PDE - Og 1
VSsonp k- FWHM /DCR
Hence SPADs with higher PDE, lower DCR, and narrower

timing response will exhibit better SNR. Therefore we can
define the photon-timing FoMrt as:

SNR =

15)

JA 1—p 1 FoM,

FoMy = PDE - Y24 AP _ _roMc
DCR Tpgap FWHM FWHM
(16)

where we considered as signal flux the maximum achiev-
able one, and we added the area to consider its influence
on the dark count rate. Eq. (16) highlights the relationship
existing between FoMT and FoMc. The dimensions of FoMt
are m - s—!. As done for FoMc, Table I shows also the FoMr
values computed for a large number of custom SPADs, CMOS
SPADs, and SiPMs; as can be seen, typical values range from
10m-s~! t0 107 m-s—!. Also similar to FoMc, PDE should be
evaluated at the specific wavelength of the desired application
or the PDE average could be computed over the range of
interest.

C. SiPM Case

Concerning the application of the proposed FoM to SiPMs,
some comments are necessary. From a technological stand-
point, in order to assess the quality of a SiPM, namely the
quality of the SPADs composing the SiPM (either analog
or digital) microcells, the SiPM microcell could be treated
as an individual SPAD. Hence FoMc and FoMt equations
apply, when considering the parameters of the individual
microcell. However, since in datasheets only the overall SiPM
performance is reported, in Table I we inferred the microcell
parameters in this way: the microcell PDE is obtained by



TABLE I
MAIN SPAD PARAMETERS FOR SEVERAL SPADS AND SiPMS AND THEIR COUNTING AND TIMING
FIGURES-OF-MERIT. BEST PERFORMANCE FOR EACH CATEGORY ARE IN BOLD

Ref. Vex/Vep  PDEpgax Area DCR @RT AP FWHM ®y,x  FoMc counting FoMy timing
) (VIV) (%)@ (nm) (um’) (cps) (%)  (ps) @ nm)  (Mcps) (m) (m/s)
Custom SPADs
[7] 20/55 60 [650] 1,963 550 n.a. 93 [820] 27.6" 31.3 336,510
[8] na. 70 [700] 25447 500 * 0.5 350 [825] 35 774.8 2,213,594*
[9] 5/m.a. 50 [550] 7,854 2,500 * 1 35 [850] 13 118.7 3,390,663*
[10] 5/n.a. 60 [650] 7,854 2,500 * n.a. 100 [850] 13 142.4 1,424,079*
[13] 10/n.a. 62 [650] 196,350 150,000 na. 400 [650] 1 0.7 1,773
[14] n.a. 73 [650] 7,854 250 0.5 800 n.a. 12 49.0 61,212
SiPMs
[50] 3.3/25 31 [420] 780 200 n.a. 54 [410] 25 153 283,653
[51] n.a. 3sn n.a. 17.2 312 n.a. 1637 100 8.2 50,416
[52] 1.5/n.a. 45 [410] 208 13,700 <0.1 171 [470] 6.7 0.4 2,173
[53] 5/95 55 [520] 1,500 375 n.a. 200*%  [440] 27.67 30.4 151,800
[54] 2.6/65 56 [450] 1,550 250 n.a. 250 * 27.6 38.5 153,941
[55] 5/26 43 [420] 960 160 n.a. 1637 5 53 32,309
[56] 3.75/25 80 [420] 1,575 277 n.a. 163 7 27.6 " 52.7 323,007
[57] 2.5/24.5 48.6  [420] 1,800 92 0.6 600 * 3 6.4 10,749
800 nm CMOS SPADs
[16] 5/25 28 [470] 38.5 900 7.5 60 [710] 12.3 0.7 11,872
[17] 2.5/21 20 [470] 322 50 ~0 50 [710] 31.3 5.0 100,466
[18] 5/16 32 [460] 113 600 2.6 41 [820] 17.7 25 59,979
[19] 5/25.5 26 [460] 38.5 350 ~0 115 n.a. 25 2.2 18,746
350 nm CMOS SPADs
[20] 5/25 55 [420] 1,963 155 3.9 75 [780] 48.1 94.1 1,254,969
[21] 3.3/n.a. 36 [460] 785 750 23 80 [670] 4 0.5 5,823
[22] 4/28 13 [600] 400 5000 40 80 [637] 27.6 1.0 12,685
[23] 5/48 344  [450] 19.6 50 n.a. 80 n.a. 10 2.2 26,922
[24] 5/17.7 35 [460] 38.5 646 ~0 1637 n.a. 1.9 0.2 996
[25] 3.3/28 33 [450] 400 300 45 160  [470] 47 1.8 11,193
[26] 4/n.a. 32 [455] 250 1000 6 70 [420] 7.3 1.2 16,686
[27] 5/24 42 [450] 314 4900 27 39 [820] 27.6 " 2.9 75,266
[28] S/n.a. 20 [465] 28.3 186 n.a. 230 [637] 16.6 1.3 5,631
[29] 2/18.9 13.2  [610] 78.5 750 23 80 n.a. 4 0.2 2,135
180 nm CMOS SPADs
[30] 0.5/10.2 2.5 [470] 78.5 60000 ~0 163~ 333 0.03 185
[31] 2.5/10 11 [450] 49 200000 ~0 27 [650] 200 0.34 12,754
[32] 3.5/20.3 20 [470] 503 180 ~0 80 n.a. 66.7 7.05 88,142
[33] 1.5/11 17.4  [470] 78.5 13000 ~0 1637 25 0.34 2,074
[34] 4/20 36 [600] 78.5 5000 50 165 [790] 0.7 0.03 191
130 nm CMOS SPADs
[35] 1.7/10 34 [450] 78.5 105 ~0 144 [637] 10 2.94 20,412
[36] 2/9.4 26 [480] 58.1 220 n.a. 128 [408] 27.6 " 3.69 28,809
[37] 1.4/14.4 28 [500]  50.3 60 ~0 200  [470] 10 2.56 12,818
[38] 1.5/12 30 [425] 19.6 230 n.a. 198 [408] 27.6 " 242 12,207
[39] 0.5/11.3 2 [570] 100 1000 ~0 163 7 83.3 0.53 3,232
[40] 0.73/n.a. 27.5 [500] 24.6 160 ~0 140 [637] 10 1.08 7,702
[41] 1/n.a. 25 [480] 58.1 100 0.1 61 n.a. 10 1.91 31,241
[42] 2/20 25 [560]  50.3 18 1 88 [654] 66 27.58 313,372
90 nm CMOS SPADs
[43] 0.13/10.4 16 [470] 50.3 16000 32 398 [637] 0.6 0.01 14
[44] 0.5/10 36 [410] 3.1 250 0 107 [470]  16.6 0.67 6,219
[45] 1.4/14.9 38 [690] 32.2 70 0.4 82 [470] 66.4 17.13 208,885

* The commercial module is internally cooled, DCR is considered at the operating (unknown) temperature.
~ Since the value was not reported in the paper, the median of the values of all the other devices was considered in the computations.

dividing the SiPM PDE by fill-factor (FF). This was necessary
because the PDE specified in the SiPM datasheets takes
into consideration also the geometrical losses. The microcell
area is computed by multiplying the total SiPM area by the
fill-factor (FF) — which gives the total photoactive area — and
by dividing the result by the number of microcells (N).
Finally, the microcell DRC is obtained by dividing the total

SiPM DCR by the number of microcells (N). Note that, for a
fair comparison, the median DCR of a SiPM microcell can be
lower than the total DCR divided by the number of microcells,
since in large SiPMs the overall noise is affected by hot-pixels
and crosstalk [49].

Instead, from an application standpoint, SiPM consisting
of N microcells could reach a maximum achievable photon



flux, ®pax, being theoretically N-times higher than the one
of a single SPAD microcell, but in practice limited by the
analog noise of the front-end electronics. Moreover, SiPM
PDE and total area are affected by the fill-factor FF, which
will further limit the achievable FoM¢ for a SiPM. In a similar
way the FoMr for a SiPM could theoretically reach N times
the FoMr of the microcell (thanks to the increased maximum
achievable photon flux). However in practice it is limited
by the degradation of the SiPM overall DCR and FWHM
performance, when compared to the single microcell ones, and
to the ability of the digital electronics to properly count events
few hundred of picoseconds apart.

D. Imaging Applications

CMOS SPAD:s typically have worst performance than cus-
tom SPADs, but they can be integrated together with on-chip
electronics, resulting in monolithic large arrays with thousands
of pixels, which can provide either 2D, 3D (distance-resolved),
or time-resolved images and videos.

In most imaging applications, the sensor is used to count
the number of incoming photons, either in free-running or in
gated-mode. For this reason, the imaging FoM can be derived
starting from FoMc, by further adding three fundamental para-
meters for array imagers: i) fill-factor; ii) number of pixels;
iii) maximum frame-rate. Another important item is crosstalk
probability among pixels, but this value is usually not reported
in literature as it is generally negligible, thus we will not
consider it. Hence, FoM should take into account efficiency,
noise, fill-factor (FF), number of pixels (N), maximum frame-
rate (fmax), and maximum count rate:

Dyrax
~DCR

where we considered Tyyy = 1 s, as for FoMc. The
dimensions of FoMj for imaging applications is frame per
second (fps), since the ratio between ®@y4x and DRC, as well
as PDE and imager dimensions (pixel count and fill-factor) are
dimensionless, while maximum frame-rate is given as frame
per second.

Table III shows the FoMj values computed for a large
number of CMOS SPAD imagers; as can be seen, typical
values range from 5 - 103 fps to 108 fps. The previous
consideration about PDE still holds.

FoM; = PDE - -FF-N - fuax (17)

IV. DISCUSSION

We reviewed a large number of papers on Silicon SPADs
and SiPMs presented in scientific literature or commercially
available. Table I reports a detailed list of state-of-the-art
SPAD-based pixels, fabricated in both custom and CMOS
technologies, with their main parameters and corresponding
FoMc and FoMrt values. The analyzed SPAD technologies
are seven: custom technologies, two submicron (0.8 xm and
0.35 um), three deep-submicron (DSM) (0.18 xm, 0.13 um
and 90 nm) technologies, and single-cells of digital and analog
SiPMs. Submicron technologies are based on Local Oxida-
tion (LOCOS) isolation processes, while deep-submicron ones
exploit Shallow-Trench Isolation (STI) processing.
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Fig. 2. FoMc for photon-counting (top) and FoMt for photon-timing
(bottom) applications vs. technology node for the data listed in Table I. Only
the best-in-class for each technology node are shown with the reference.

Photon detection efficiency, dark count rate, and afterpulsing
probability are rated at the same excess bias. If parameters
were rated at more than one excess bias in the original paper,
we considered the one that provides the best FoM. When
not specified in the original paper, we considered afterpulsing
to be almost negligible (<0.5%). When some data — useful
to compute the FoMs — are not reported in the paper, the
median of the values of all the other devices was considered
in the calculations. We also report the wavelength of the
peak PDE and the wavelength at which timing response
was characterized. In addition, the table also lists breakdown
voltage and operating excess bias, even if they do not appear
in any FoM, because they give an approximate idea on electric
field strength and depletion width, both influencing noise and
time jitter performance [49].

In Table I, we computed FoMc and FoMrt considering
the maximum PDE. If needed for specific applications, it is
still possible to compute the FoM at a particular wavelength.
In principle, also FoMt should be computed with the intrinsic
SPAD time jitter at the desired wavelength. Since timing jitter
depends not only on the SPAD itself and on its active area
size, but also on readout circuitry and measurement set-up, we
computed FoMT by employing the best time jitter reported by
the respective authors.

For some commercially available SPAD modules ([8]—-[10]),
we reported DCR at low temperature (instead of room tem-
perature as reported for the other SPADs), since those SPADs
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vs. breakdown voltage (bottom) for different technology nodes and CMOS
SPADs, all listed in Table 1.

are internally cooled and no information about DCR at room
temperature is reported in the datasheet.

Among CMOS SPADs, the performance of “older” nodes
shows minor spread: this is related to the fabrication of
almost “standard” structure devices (i.e. shallow p-diffusion in
n-well, with p-doped guard-ring). On the contrary, for scaled
devices, different structures were proposed: [30], [32], and [33]
implemented a standard structure device; [34] and [43] pre-
sented a reverse n+/p-well structure. While these structures
are not amenable to scaling and thus to improve fill-factor in
SPAD arrays, [31] presented an STI-bounded SPAD, where
shallow trenches are used as guard-ring in place of low-doped
diffusions, thus allowing to shrink SPAD dimension down
to 2 um; and in [39] a scalable n+/p-well diode, with deep
n-well insulation is reported.

Nonetheless, all those structures proved to be very noisy
because of the high doping concentrations and consequently
high electric fields (typical of scaled technologies), which
boost tunneling and field-enhanced carrier generation effects.
Indeed, as Fig. 3 (top) shows, most of DSM implementations
have lower breakdown values resulting in higher DCR/area
ratio, due to increased tunneling contribution, as proved by
Fig. 3 (bottom). Also, the presence of shallow trenches
increases the density of deep-level carrier generation centers
at the Si/SiO, interface, and the limited duration and
effectiveness of annealing and drive-in diffusion steps
do not help in reducing impurities, traps, and defects
concentrations [35], [36].
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Fig. 4. Spectral Photon Detection Efficiency (top) and DCR/area ratio vs.

peak PDE at different excess bias (bottom) for some CMOS technologies and
custom SPADs [7]-[10], for comparison.

However, new structures (especially in 130 nm and 90 nm
technologies) were proposed to mitigate the aforementioned
effects. In [35], the STI was moved away from the active-area
by laying out “dummy” polysilicon; in [37], [40], [42], [44],
and [45], a “virtual” guard-ring was used to space shallow
tranches from the high-field region, thus avoiding the injection
of undesired carriers into the avalanche zone, and proper
implant layers were adopted to create junctions where the
electric field is lower. In [36] and [41], the STI is surrounded
by a p-type passivation to prevent carrier injection (a similar
solution is found in [38]) and a lower n-well doping is used
to reduce tunneling contribution so that comparable or even
better performance are achieved, compared to LOCOS SPADs.

FoMc¢ and FoMrt values vs. technology node are shown in
Fig. 2. It is clearly visible that custom SPADs exhibit better
performance than CMOS SPADs, whereas there is no particu-
lar trend among CMOS SPADs at different technology nodes.
In fact, the overall performance of CMOS SPADs depends
more on their structure (guard-ring to prevent edge breakdown,
specific diffusions to reduce electric field, ad-hoc structures
to reduce crosstalk, such as shallow-trench isolation), and on
the cleanness of production processes than on the employed
technology node. For instance, the outstanding performance
obtained in [20] is mainly related to the much lower DCR/area
ratio, at least one order of magnitude better than in other
SPADs manufactured in the same technology node, whereas
other parameters are comparable.



TABLE II
PDE FOR CUSTOM AND CMOS SPADs WITH HIGHEST EFFICIENCY AND CORRESPONDING COUNTING AND TIMING FIGURES-OF-MERIT

AT DIFFERENT WAVELENGTHS AND AVERAGE VALUE IN THE 300 nm — 900 nm SPECTRAL RANGE

PDE PDE PDE  Average Peak @ 650 nm @ 800 nm Average
Ref. Peak @ 650 nm @ 800 nm PDE FoMc¢ FoMy FoMc FoMry FoM¢ FoMry FoMc¢ FoMy
(%) (%) (%) (%) (m) (m/s) (m) (m/s) (m) (m/s) (m) (m/s)
81 70 68.7 544 40.8 774 2,213,594 760 2,172,485 602 1,720,279 452 1,290,209
91 30 37.2 14.6 25.6 119 3,390,663 88 2,522,654 35 990,074 61 1,736,020
[10] 60 58.6 394 344 142 1,424,079 140 1,390,850 94 935,145 82 816,472
[14] 73 73 58 474 49 61,212 49 61,212 39 48,634 31.8 39,746
[50] 31 11 <1 12.6 15 283,653 5.4 100,651 <0.5 <9,150 6.2 115,291
[52] 45 8 2.5 14.6 0.4 2,173 0.07 386 0.02 121 0.12 705
[54] 56 20 8 32.8 38.5 153,941 13.7 54,979 55 21,992 22.5 90,165
[56] 80 17.6 <8 38.8 52.7 323,007 11.6 71,062 53 32,301 25.5 156,658
[57] 48.6 8 2.5 12.3 6.4 10,749 1.1 1,769 0.3 553 1.6 2,720
[18] 32 15 6 14.2 2.5 59,979 1.1 28,115 0.5 11,246 1.1 26,616
[20] 55 15.1 53 22.4 94.1 1,254,969 25.8 344,546 9.1 120,933 38.3 511,115
[34] 36 345 22.5 22 0.03 191 0.03 183 0.02 120 0.02 117
[35] 34 15 4.5 13.7 2.9 20,412 1.3 9,005 0.4 2,702 1.2 8,225
[45] 38 36.8 259 20.1 17.1 208,885 16.6 202,289 11.7 142,372 9.1 110,489
TABLE III
MAIN IMAGER PARAMETERS FOR SEVERAL SPAD ARRAYS AND THEIR IMAGING FIGURE OF MERIT
. . . Pitch FF PDE DCR fyax ®,.. Power FoM;
Ref. Shutter Processing # Pixels Bits/pixel (um) (%) (%) (cps) (kfps) (Mcps) (mW) (kfps)
[17] - Multiplex. 4x8 1 75 0.57 17.5 50 70" 16" - 5
[19] - Multiplex. 32x32 1 58 1.14 12 350 70" 24.9 6 131
[64] - Event-driven ~ 64x48 1 45 9.6 26 370 70" 16" - 4465
[21] - Event-driven  4x112 1 25 12.57 40 750 70" 3.9 - 225
[28] Rolling Multiplex 128128 1 25 4.50 20 186 2.4 249 363 646
[5] Global Parallel 64x32 9+9+9 150 3.14 50 100 100 48 50 15434
[65] Rolling Parallel 60x48 8+8 85 0.53 35% 245 46 25 35 393
[26] Global Multiplex. 644 8 26 34 32 1000 150 5 200 661
[27] Global Parallel 32x32 8 100 3.14 43 4000 100 7 165 153
[66] Rolling Multiplex. 32%32 1 75 8 42.4 7000 70" 4 - 116
[6711 - Multiplex. 10248 1 24 4.90 6 80 0.95 16" - 41
[67]11 - Multiplex. 1024x8 1 24 4430 23 5700 0.95 16" - 168
[68] - Multiplex. 128x96 10 44.65 3.19 28 100 70 10 40 7685
[69] Rolling Multiplex.  512x128 1 24 5 46 366 156 10 1650 122911

The maximum count rate (®pr4x) is directly influenced
by the afterpulsing probability: reduced afterpulsing allows
shortening the dead time, hence to increase the maxi-
mum achievable count rate. In particular, DSM technolo-
gies benefit from lower excess bias and reduced SPAD
(and electronics) area. Both conditions help in reducing
afterpulsing probability, thus allowing to boost the count
rate [62], [63].

Fig. 4 (top) shows the spectral PDE of custom and CMOS
SPADs with the highest reported efficiency. Thick custom
SPADs present higher PDE in the Near Infra-Red (NIR)
because of the wider absorption region (and higher Vpp) than
CMOS ones. Ref. [20] reports a CMOS (0.35um technology)
SPAD that reaches the highest peak PDE in the Near Ultra-
Violet (NUV) thanks to the use of shallow diffusions that
defines the SPAD active volume, but the efficiency drops down
in the NIR (see Table II).

No PDE trend is visible moving from submicron to deep
sub-micron technologies: indeed the PDE is strictly related
to the SPAD design and only marginally dependent on the
employed technology node. For instance, the aforementioned
alternative DSM implementations reach lower fields and have
wider depleted zone, thus exhibiting enhanced and broader
spectral response. Conversely, lower PDE values are achieved
by standard p+4/n-well junction, whose high doping concen-
trations cause a shrinkage of the depleted layer width.

Fig. 4 (bottom) shows DCR/area ratio vs. peak PDE of some
CMOS SPADs reported in Table I, representative of different
technological nodes. The lower the DCR at higher PDE, the
better is the overall performance of the SPAD.

Concerning the imaging performance, Table III reports the
performance of SPAD arrays designed only for photon count-
ing imaging applications as reported in [5], [17], [19], [21],
[26]-[28], and [64]-[69]. We excluded from the



10°4 ¢ in-pixel electronics < [70]
¢ on-chip processing
o | <[5
10" 4 o [69]
© [65])
— 10°4
a8 i 2[26] < [28]
£
= o [21] e o 5235 |
3 103 =Y ° (67)
(e8]
, type Il
10 o
jo [17]
100 T T T T T T
2004 2006 2008 2010 2012 2014
Year
70 4 — -
ovpen 3 Il decione
o [26) PP g
i o [21]
I o [67]
5 [70]
¢}
g ] [68] type | Q? 28]
S | o 169] ¢ [5] and [27]
-
E
14 o [64]
* [66] o [17]
T T T
130 350 800
Technology node (nm)
Fig. 5. FoM;j for imaging applications vs. production year (top) and Fill-

Factor reached by SPAD imagers in different technology nodes (bottom).
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comparison the arrays for timing applications (with integrated
TDC), because the performance of these sensors depends
much more on the timing electronics than on the SPADs
itself and this goes beyond the scope of this discussion.

Fig. 5 (top) shows the trend of FoMj versus year of
publication. The clear improvement during time is linked
above all to cleaner and more sophisticated technologies
and to new features such as shallow trench isolation.
Fig. 5 (top) reports the most representative imagers with
both in-pixel electronics and those imagers with on-chip, but
off-pixel, electronics. Of course, in-pixel electronics affects
overall pixel dimensions and, eventually, fill-factor. To this
aim, Fig. 5 (bottom) shows the fill-factor of the imagers
presented in Table III: as can be seen, arrays with in-pixels
electronics show lower fill-factors and more scaled technolo-
gies do not result in higher fill-factor, since the SPAD detector
itself requires some area overhead (e.g. insulated dependent
well, guard-ring, well contact, trench, etc.) that often becomes
the ultimate limit to the pixel area.

Even if in-pixel electronics becomes more and more com-
pact in deep-submicron technologies, the desire to reduce the
overall pixel pitch forces to design SPADs with smaller and
smaller active area. This trend is clearly visible in Fig. 6 (top),
where the SPAD active area decrease does not correspond to
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Fig. 6.  Fill-Factor of many CMOS SPAD imagers vs. the effective SPAD

active area (top) and pixel pitch size (bottom).

a simultaneous fill-factor increase. Moreover, Fig. 6 (bottom)
shows that the increase of fill-factor in those imagers with
25-30 pum pitch is reached because the electronics is still
integrated on-chip, but off-pixel, and not because of the
employed scaled technology node.

V. CONCLUSION

We proposed for the first time three new figures of merit
to compare the performance of SPAD detectors, elaborated
by analyzing the main SPAD parameters that influence the
performance in real photon-timing, photon-counting and imag-
ing applications. The proposed FoMs can help the end-user to
choose the most suitable device for the specific application of
interest, which can be either the counting of single photons
with single or few pixels, the measurement of the photon
arrival time with single or few pixels, or the acquisition of
both 2D photon-counting and 3D photon-timing images with
multi-pixel SPAD arrays.

As expected, we found that custom SPADs present better
performance than CMOS SPADs when few pixels are needed,
but a fair comparison is often not possible, since datasheets
of commercial SPAD modules do not report the DCR at room
temperature. Conversely, when multi-pixel arrays are required,
CMOS SPADs are the only choice to provide real imaging at
single-photon level. Among different CMOS SPADs, the FoMs
are not strictly influenced by the manufacturing process nodes,
but they also depend on the surface and bulk process cleanness



and uniformity and on the design of the vertical SPAD cross-
section and electric field. State-of-the-art CMOS SPADs are
designed in 0.35 um technologies, where very low DCR and
very large (30-100u4m) SPAD diameters are fabricated, at the
expenses of large (5 mm x 5 mm) chips with just 1k — 2k
pixel count. On the contrary, more scaled technologies allow
one to exploit advanced cross-sections, hence achieving a

much

smaller pitch and chip dimensions, and higher

(up to 10k-15k) pixel count, but with the drawback of very
small SPAD dimensions (few micrometer diameters) and
higher noise density.
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