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1. Introduction

The study of material damage in structures plays an important
role in the design process. Comprehension of the damage behavior
of the materials can be used to define and properly calibrate the
criteria, which can be adopted for numerical simulations reducing
the risks and cost of possible catastrophic failures. Focusing on
ductile metals several damage models have been proposed in the
last decades, which are based on different physical approaches.
However, all of these models can be classified into three main
groups:

� phenomenological models,
� porosity models,
� continuum damage mechanics (CDM) models.

Johnson–Cook [1],Rice–Tracey [2], Leroy et al. [3], Cockroft–
Latham [4] are some of the most famous phenomenological damage 
models. Phenomenological models are increasingly used for many 
industrial applications due to their relatively easy calibration 
procedure and their wide implementation in several commercial 
finite element codes. According to these models, failure occurs

abruptly when a damage parameter reaches a critical value. Gen-
erally, phenomenological models are uncoupled, hence their base 
assumption is that the damage process does not affect the plastic 
behavior of the material. This assumption makes 
phenomenological models relatively easy to implement and to 
calibrate; however, the main drawback of these models is that they 
are aimed at estimating the failure without considering the 
relevant physical background. In the last decade, several new 
phenomenological models have been proposed aimed at 
reproducing the ductile failure phenomenon more closely. The 
Bao–Wierzbicki model [5,6] and the modified Mohr–Coulomb 
model [7,8] are two widely used phenomenological models due to 
promising results in their applications of failure simulations of 
different and extreme load conditions on real components [54] and 
due to their quite good geometry transfer-ability [9–11]. It is well 
known that stress triaxiality plays an important role in the ductile 
fracture [12–14]. However, recently also the importance of another 
parameter, called the Lode angle, has been highlighted in several 
publications including Bai and Wierzbicki [7,8]. The Modified 
Mohr–Coulomb damage criterion considers also this effect on 
fracture. Therefore, the fracture locus is no longer simply a curve in 
a 2D plane (stress triaxiality–failure strain) but it is rather a surface 
in a 3D space (triaxiality–Lode angle–failure strain).

Porosity models are another approach to investigate fracture. 
These models are based on micromechanical concepts and are 
much more complex to calibrate, compared with phenomenolo-
gical ones. Damage and plasticity are also coupled in these models
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and the damage therefore affects the plasticity behavior of the 
material. The Gurson–Tvergaard–Needleman [15,16] model is the 
most important porosity model and nine parameters have to be 
determined for its calibration.

A further framework for damage investigations is the continuum 
damage mechanics (CDM). CDM models differ significantly from 
phenomenological models because plasticity and damage are coupled. 
Damage is described by a continuous parameter which evolves during 
the loading and reaches its maximum value at the onset of failure, 
however its effect on the material behavior is already present even 
before failure. Lemaitre [17] proposed the first CDM model based on the 
pioneer articles of Chaboche [18] and Kachanov [19], aiming to describe 
ductile damage. In the last decades various CDM models have been 
proposed [20–23] and the application of the CDM models has been 
extended to cover more complex material behavior [24–32].

It is common practice to calibrate a model for a specific config-
uration (load, geometry,…) and afterwards extend the calibration to 
other scenarios, see [54]. The drawback of such an extrapolative 
approach is that it can, in some circumstances, lead to relevant errors. 
In order to minimize errors, damage models should therefore be 
investigated for a wide range of loading conditions which would could 
lead to unfeasible costs. In the last few years, some studies investigated 
the applicability of different damage models for different loading 
conditions. Choung [33] has studied API-2W50 and DNV-DH32TM 
steel, adopting smooth, notched round and flat specimens and 
comparing the shear fracture model, Lemaitre's CDM model and 
Gurson's one. Coppola et al. [34] has compared three different steel 
grades carrying out tensile, torsion and bending tests, covering a wide 
range of stress triaxiality and Lode angles and focusing on the 
investigation of the effect of the Lode angle on the fracture locus. 
Wierzbicki et al. [35] and Bao and Wierzbicki [36] have studied 2024-
T351 aluminum alloy performing upsetting and tensile tests on 
various specimen geometries, investigating different phenomenolo-
gical models and subsequently comparing the results with the 
experimental data. Geometry transferability of the Bonora's CDM 
model parameters in ferritic steels has been investigated by Bonora 
et al. [37] both for low and high triaxiality. One of the most 
comprehensive studies of the application of different ductile damage 
criteria in very different scenarios is by Li et al. [38] on an Al6061-T6 
aluminum alloy. The authors performed tensile and compression

tests on different geometries including flat and round specimens 
and they studied the failure predictions of several damage models, 
including phenomenological models, the Gurson–Tvergaard–Needle-
man (GTN) porosity model and Lemaitre's CDM model.

In spite of the abovementioned studies, more research is still 
needed to investigate the geometry transferability of the damage 
models. Therefore, in this paper the modified Mohr–Coulomb, one of 
the most recent and complete phenomenological damage models, 
and Lemaitre's model, as the most important and most used CDM, 
have been investigated. The critical aspects of each model have been 
highlighted with particular attention and the advantages and dis-
advantages of each approach, have been pointed out. A large 
experimental test program has been carried out on various specimen 
geometries and under different loading conditions in order to cover a 
wide range of stress triaxiality and Lode angles. Torsion plus tension/
compression tests and tensile tests on smooth, notched round and 
flat specimens have been carried. Load–displacement/torque–rota-
tion data have been obtained from experimental tests and the results 
have been used for calibration by means of FE models. Specifically 
the MMC model has been calibrated on the basis of all the 
experimentally collected data (excluding the TPBT data which have 
been adopted only for validation purpose, therefore 13 experimental 
points have been considered for the “base calibration”) while  only  
the tensile test of the round smooth specimen has been used for the 
calibration of the CDM model. Eventually, calibration parameters of 
both the MMC and CDM models have been obtained for a Ti–6Al–4V 
titanium alloy. This material has been chosen due to its high strength 
and low volumic mass, which make it a very commonly used 
material in the aerospace industry for critical components. Moreover, 
regardless of the importance of Ti–6Al–4V, only few studies have 
investigated its fracture [9,10,39].

2. Experiments

2.1. Ti–6Al–4V titanium alloy

Ti–6Al–4V is the most widely used titanium alloy, accounting 
for more than 50% of the total titanium usage. Ti–6Al–4V belongs 
to the category of the alphaþbeta alloys, it can be strengthened by

Notations

An
ef CDM, effective resisting area of the intersection plane,

which is reduced due to damage
An
0 CDM, nominal intersection area of the plane and the

reference volume before damage
BW Bao–Wierzbicki damage criterion
CDM continuum damage mechanics
D CDM, isotropic damage variable
Dcr critical value of damage
Dn CDM, damage variable in the direction of the normal

vector n
FD damage dissipation potential
G shear modulus
JC Johnson–Cook damage criterion
K bulk modulus
MMC modified Mohr–Coulomb criterion
q second stress invariant
R isotropic hardening internal variable
r third stress invariant
S parameter related to the evolution of damage
T temperature
Y damage energy release rate

Greek notations

γ plastic multiplier
ε strain tensor
εe elastic strain tensor
εp plastic strain tensor
ε equivalent strain
εf failure strain
εp equivalent plastic strain, PEEQ
εth threshold strain
η stress triaxiality
ηav average stress triaxiality
θ Lode angle parameter
θav average Lode angle parameter
ξ normalized third stress invariant
σ stress tensor
σef f effective stress
σh hydrostatic stress
σn normal stress
σvm von Mises equivalent stress
σy0 initial yield stress
τ shear stress
ϕ yield function



shear dominant specimen and four specimens with medium 
triaxiality values. The second series of experiments has been 
performed on round specimen and includes multiaxial torsion 
tests. This series of experiments covers shear dominant, mixed 
shear and tensile dominant regions. One notched specimen under 
uniaxial tension has been also tested in the second series of tests 
whose triaxiality belongs to the medium-high region. The third 
and last series of experimental tests regards the three point 
bending test of a notched specimen, which is a relevant applica-
tion to validate the transferability of the material models for 
different loading conditions. The three points bending test (TPBT) 
of a notched component is a particularly interesting test because it 
is an application characterized by a high stress/strain gradient 
while offering the advantage that it can be performed using a 
standard test system device, thus in a laboratory environment 
with reduced uncertainties. Basically the results from this test 
have been used for validation purpose (with some exception 
discussed herein). However the capability of the calibrated models 
has been assessed also by the replication (by means of numerical 
model) of all the tests in order to check the consistency of the 
models (formulation and calibrated parameters) in different load-
ing conditions. The experimental program is explained in more 
detail in the following sections. A summary of all the experimental 
tests carried out in this research can be found in Table 2.

2.3. Flat specimens (plane stress)

The first test series is based on uniaxial monotonic tests on flat 
specimens designed to guarantee a plane stress condition. Differ-
ent geometries with different notch radiuses have been designed 
and manufactured to cover a range of stress states including 
triaxiality values near zero and up to 0.6, and Lode angle between 0 
and 1, see Fig. 2. The thickness of all specimens is 2 mm. Tests have 
been performed in displacement control using a MTS alliance 
RT/100 kN testing machine. An extensometer with an initial base 
length of 12.5 mm for the notched specimens and a 50 mm for the 
shear specimen has been used to measure the displacement during 
the tests. Fig. 3 shows flat specimens after failure.

2.4. Uni and multiaxial tests on round specimens

The second test series is based mainly on multi-axial tests 
(torsionþtension) performed on round specimens. The original 
experimental data and more information about the test set up and 
the experimental procedure can be found in [10]. Two different

heat treatment or by thermo mechanical processing and has useful 
creep resistance up to 300 1C, excellent fatigue strength, and a fair 
weldability. Regarding aerospace applications, it is adopted for 
aircraft gas turbine disks and blades and for helicopter main rotor 
hubs. Relevant industrial fields where Ti–6Al–4V alloy is used are 
aerospace, marine, offshore and power generation industries 
(ASME metals handbook, vol. 2 [40]). Table 1 shows the chemical 
composition of the Ti–6AL–4V titanium alloy. Fig. 1 shows the 
microstructure of the tested Ti–6Al–4V titanium alloy. This image 
has been taken from the etched surface of the material using an 
optical microscope. Kroll's reagent (94 ml distilled water, 5 ml 
nitric acid and 1 ml hydrofluoric acid) was used for surface etching. 
The alphaþbeta phases are clearly visible in Fig. 1 and
the average grain size is approximately 20 μm.

2.2. Experimental tests

In this research, an extensive test program has been designed 
and carried out to investigate the ductile fracture of a Ti–6Al–4V 
titanium alloy in a wide range of stress states and deformation 
modes. The development of an extensive experimental program 
along with a particular test system allowing simultaneous multi-
axial loads (tension plus torsion) is one of the main characteristics 
of this research. The test program has been designed to cover a 
large range of loading conditions, characterized by different stress 
triaxiality and Lode angles. Load–displacement and torque–rota-
tion data have been obtained from the experimental tests. They are 
the main data used for the evaluation of the accuracy and the 
reliability of the numerical results. Experiments include a range of 
triaxiality spacing from very low values, close to zero, until the 
medium-high triaxiality regions (slightly more than one). In order 
to evaluate such different stress states, different specimen geome-
tries including notched and smooth round/flat specimens and 
several different load conditions, including uniaxial tensile, torsion 
and three-point bending, have been tested. Three different series of 
experiments have been performed. The first series includes 
uniaxial tensile tests on flat specimens (plane stress state): one

Table 1
Weight chemical composition of Ti–6Al–4V [41].

Composition [wt%]

Ti O N C H Al Fe V

Bal. 0.16 0.01 0.01 0.001 6.38 0.15 4.17

Fig. 1. Microstructure of the tested Ti–6Al–4V titanium alloy (a) 200� . (b) 500� .



Table 2
Summary of all experiments.

Experimental series Specimen type Superimposed axial load (kN) Experimental data

Flat specimens uniaxial tensile Notch20 mm (no. 1) – Load–displacement data-extensometer 25 mm
Notch10 mm (no. 2) – Load–displacement data-extensometer 25 mm
Notch6.6 mm (no. 3) – Load–displacement data-extensometer 25 mm
Hole (no. 4) – Load–displacement data-extensometer 25 mm
Shear (no.5) – Load–displacement data-extensometer 50 mm

Tensile test B (no. 7) – Load–displacement-extensometer 10 mm
Smooth (no. 9) – Load–displacement-extensometer 12.5 mm

Torsionþtension/compression [10] A (no. 6) �24 Torque–rotation
A (no. 6) �10 Torque–rotation
A (no. 6) 0 Torque–rotation
A (no. 6) 20 Torque–rotation
A (no. 6) 30 Torque–rotation
A (no. 6) 40 Torque–rotation

Three point bending Notched (no. 8) – Load–displacement (displacement of pusher) data

Fig. 2. Flat specimens' geometry.

Fig. 3. Flat specimens after failure.



types of specimen geometries have been tested, see Fig. 4 for 
details. Specimen type A has been used for the pure torsion and for 
the multiaxial tensionþtorsion test while type B has been used for 
uniaxial tensile tests. The multi-axial test consists of the applica-
tion of a pre-tensile constant load followed by a rotation ramp. The 
test has been performed in rotation control adopting a hydraulic 
MTS809 testing machine. Torque–rotation curves are the main 
output of the experiments.

Also a uniaxial tensile test on the notched specimen B has been 
carried out. An extensometer with the initial base length of 
12.5 mm has been used to measure the displacement. A MTS 
alliance RT/150 kN testing machine has been used to perform the 
tension test.

2.5. Three point bending test

In order to perform a test in the medium high triaxiality region, 
a three point bending test on a sharp notched specimen has been 
performed. Fig. 5 shows the geometry and failure surface of the 
tested specimen. The test has been carried out adopting a uniaxial 
hydraulic testing machine. A laser sensor (MEL Mikroelektronik 
GMBH, M5L/20, range 20 mm) has been used to measure the 
displacement of the pusher. Load has been acquired by means of a 
load cell [10].

3. Theoretical background

3.1. Modified Mohr–Coulomb fracture locus

The modified Mohr–Coulomb is a very effective phenomenolo-
gical ductile damage criterion compared with other criteria such as 
the Johnson–Cook [1] or Bao–Wierzbicki [5], as it takes into 
account not only the triaxiality but also the Lode angle effect in the 
fracture locus definition. Various studies highlighted that the Lode 
angle plays a key role in the ductile fracture of metals [42–44].

The original MC (Mohr–Coulomb) criterion has been commonly 
applied in rock and soil mechanics [45,46] and only recently in Bai 
and Wierzbicki [7] the importance of triaxiality and Lode angle has 
been acknowledged also for the ductile fracture of metals. The MMC 
is an extension of the original MC criterion whose description and

derivation can be found in [8]. The original MC criterion states that 
fracture happens when the combination of normal stress, σn and shear 
stress, τ reaches a critical value on a fracture plane, see Eq. (1)

τþC1σnð Þ ¼ C2 ð1Þ
C1 and C2 are material constants. In case C1¼0 the criterion is

reduced to the maximal shear stress.
The Lode angle parameter can be defined as Eq. (2)

ϑ¼ 1�2
π
arccosξ ð2Þ

where ξ is the normalized third stress invariant which is calcu-
lated as Eq. (3)

ξ¼ r
σvm

� �3

: ð3Þ

The Lode angle is strictly related to the third deviatoric stress 
invariant, and in particular, it describes the relationship between 
the intermediate principal stress and the minor and major princi-
pal stresses. The authors subsequently refer to the Lode angle 
parameter as the Lode angle for simplicity reasons even if it is not 
exactly the same quantity.

After the transformation of Eq. (1) into the space of stress 
invariants θ and ξ, the final form of the MMC fracture locus is Eq. 
(4), [8]

εf ¼
A
C2

C3þ
ffiffiffi
3

p

2�
ffiffiffi
3

p 1�C3ð Þ sec
θπ
6

 !
�1

 !! ffiffiffiffiffiffiffiffiffiffiffiffiffi
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1

3

s
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θπ
6

 !0
@

0
@

þC1 ηþ1
3
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θπ
6

!!!��1=n

ð4Þ

Eq. (4) is valid for power type hardening materials. The criterion 
is based on five parameters but only three of them are related to 
fracture. Indeed A and n are derived from the plasticity law, hence 
only the parameters C1, C2, C3 refer directly to fracture.

3.2. Lemaitre's model

Damage is considered as a thermodynamic state variable, 
which characterizes the deterioration of the material. The pro-
gressive damage of a ductile material is based on the change of the 
shape and the number of voids within the material. As a matter of 
fact, the load bearing capacity of the material decreases with the 
progression of the damage. Generally speaking, by considering a 
reference volume element at a given point, the damage variable 
can be defined by Eq. (5)

An
ef

Dn ¼ 1� n ð5Þ
A0

where An
ef is the effective resisting area of the intersection plane,

An
0 is the nominal intersection area of the plane and the reference 

volume before damage and Dn is the damage variable in the 
direction of the normal vector n. Lemaitre's model assumes that 
the distribution of damage in the material is isotropic. Therefore,

Fig. 4. Geometry of the specimens (nos. 6 and 7) in the second series of
experiments (dimensions in mm).

Fig. 5. Geometry of the three point bending test specimen (no. 8).



the value of the damage in all directions is the same and it can be
represented by the scalar factor D, instead of Dn. In most of the
applications, this is an acceptable assumption. It is also supposed
that the value of the strain for a damaged material is equal to the
value of the strain in the undamaged material with the stress
value, known as the effective stress, defined by the following
equation:

σef f ¼
σ

1�D
ð6Þ

where σef f is the effective stress.
According to Lemaitre's model, the damage evolution equation

can be solved by the relevant equations of elastoplasticity. Eq. (7)
shows the elastoplasticity and damage evolution equations according
to Lemaitre's model [38]

_D¼ ∂FDðY ; ε; _D;…Þ
∂Y

_εð1�DÞ ð7Þ

where D_ and _ε respectively show the evolution of the damage parameter 
and the strain. FD represents the damage dissipation energy. Y and ε 
are respectively the damage energy release rate and  the equivalent 
strain.

It is therefore necessary to solve a set of equations, which 
include the damage evolution and the plasticity equations in order 
to apply the CDM models.

4. Material characterization

4.1. Numerical models

All the experimental tests have been reproduced using finite 
element models. FE models of the tests are needed for the 
calibration of the MMC criterion; however the three point bending 
test has not been used for calibration but only for validation 
purpose (with some exception discussed herein). For the CDM 
calibration, just one FE model is strictly needed for the calibration 
(in the present case, the round smooth test) and the simulation of 
the other tests represents a validation of the damage model. 
Simulations of the MMC damage model have been performed using 
Abaqus 6.12 commercial software because of the availability of a 
specific MMC subroutine designed for Abaqus. Regarding the CDM 
approach, the Ls-Dyna solver has been used to perform the 
simulations due to the presence of the CDM framework among the 
solver options. Three dimensional finite element models of all 
specimens have been built and 8 node brick elements with reduced 
integration have been used. The same kind of elements have been 
used for the material calibration and for virtual testing purposes 
with excellent results in Bao and Wierzbicki [6], Giglio et al. [9], 
Giglio et al. [10], Gilioli et al. [11], Li et al. [38], and concerning the 
simulation of a ballistic impact Gilioli et al. [54]. Moreover, in [54] 
also an in-depth study of the mesh size sensitivity of C3D8R 
elements, adopted for the material calibration (both plasticity and 
ductile damage criterion) of an aluminum alloy, has been 
performed. The results showed how the chosen element types can 
properly be used in the framework of material characterization.

4.2. MMC material calibration

Ductile phenomenological criteria describe fracture without 
providing a physical explanation. In general terms, they are based 
on the definition of a cumulative damage parameter D as described

in Eq. (8)

D¼
Z εf

0

dεp
εf ðη; θ; _εp ; TÞ

ð8Þ

The parameter D is defined as the accumulation of the plastic 
strain increments εp weighted by a function called fracture locus εf . 
The two most influencing parameters of the fracture locus are the 
stress triaxiality η and the Lode angle parameter θ. The Lode angle 
is related to the third deviatoric stress invariant and has been 
already described in Eq. (2) so only a brief description of triaxiality 
is provided here. The stress triaxiality is a non-dimensional 
quantity, which accounts for the pressure effect on fracture and is 
defined in Eq. (9):

η¼ σh

σvm
: ð9Þ

Taking simultaneously the Lode angle and triaxiality into account 
leads to a definition of a fracture locus, which is no longer a simple 
curve (like the Johnson–Cook one) but rather a surface in a 3D space 
described by triaxiality and Lode angle parameters (MMC).

The working mechanism of the damage phenomenological 
criteria, implemented into a numerical FE software, is based on 
the evaluation of the onset of fracture (damage initiation). When 
the parameter D, Eq. (9), reaches the conventional value of the 
unity, the corresponding failed element completely loses its 
stiffness and is suddenly eliminated from the analysis.

A reverse method approach, in which experimental tests are 
reproduced by means of numerical models in order to track the 
development of the stress/strain state up to failure in the critical 
locations thus acquiring the history of triaxiality and Lode angle 
during test, has to be adopted to calibrate the MMC criterion. Such 
quantities cannot be easily evaluated experimentally and hence FE 
models are essential.

The calibration approach followed in this paper is similar to the 
one used by Bao and Wierzbicki [35,36]. Each numerically 
simulated test can be summarized as a point inside the fracture 
locus plane. Each point ηav; θav; εf is obtained calculating the 
average stress triaxiality, ηav, the average Lode angle para-meter, 
θav, and evaluating the equivalent plastic strain (PEEQ) at the onset 
of failure, εf . These values are evaluated for the elements with the 
highest strain at the load step when the experimental data show 
the onset of failure. The average stress
triaxiality, ηav and the average Lode angle parameter, θav have been 
calculated following Bao's approach [35] following Eqs. (10) and 
(11):

ηav ¼
1
εf

Z εf

0
η dεp ð10Þ

θav ¼
1
εf

Z εf

0
θ dεp: ð11Þ

The free parameters C1, C2, C3 (see Eq. (4)) have been deter-
mined by means of a Matlab subroutine following the approach of 
Luo [47]: the fracture surface has not been fitted by using only the 
average fracture values of triaxiality and Lode angle but by 
considering the complete load history. This approach is summar-
ized in Eq. (12)

Min errorð Þ ¼Min
1
N

1�
XN
i ¼ 1

Z εf

0

dεp
εp

 !2
2
4

3
5: ð12Þ

A summary of the results of the entire test/simulation program 
is shown in Fig. 6. The figure reports the evolution of the plastic 
strain εp (equivalent plastic strain, PEEQ) versus triaxiality and 
versus Lode angle, obtained from each numerical simulation of the 
experimental tests. Furthermore, the average stress triaxiality, ηav,



and the average Lode angle, θav, and the equivalent plastic strain at 
the onset of the failure εf , are reported for each test.

According to Eq. (14) also two other parameters are funda-
mental in the MMC formulation: A, n.

In order to be consistent with the MMC formulation reported in 
Eq. (4) it is necessary to assume a power law to describe plasticity 
as expressed in Eq. (13):

σ ¼ AðεeþεpÞn: ð13Þ
In [35,45,47–49,54] the authors showed that there is currently 

no optimized plasticity model which allows perfect fitting of the 
flow stress for all the different load cases. Indeed, for titanium not 
only fracture is affected by triaxiality and Lode angle but also the 
plasticity behavior. The assumption that the constitutive law 
obtained from the tensile test on the smooth specimen is able to 
reproduce the behavior of all the different tests can potentially lead 
to some errors in the evaluation of the load/displacement history 
during the calibration stage. On the other hand assuming different 
constitutive sets of parameters for each load configura-tions is not 
feasible for real industrial applications. In the present paper this 
issue has been resolved by determining an average constitutive law 
which is a compromise between all the optimized ones (one 
specific set of plasticity parameters for each test) and is thus able to 
reduce the overall error in all of the simulations.

In Table 3, the results of the calibration (base calibration, 13 
experimental points) in terms of the constitutive law and the 
fracture parameters are presented.

In Fig. 7, the MMC fracture surface is shown. The filled black 
circles represent the average fracture point. It is important to 
underline that the lack of an exact overlap of the fracture surface 
with the average point is caused by the approach followed to 
obtain the fracture surface. The average points provide a quick 
overview of the Lode angle/triaxiality state at fracture but they do 
not form the base for the interpolation: the complete load history 
has been taken into account for the interpolation.

�27
2
η η2�1

3

� �
¼ cos 3θ

� �¼ sin
πθ
2

 !
ð14Þ

Fig. 6. Triaxiality versus PEEQ (a) and Lode angle versus PEEQ (b) evolution curves for all the tests.

Table 3
MMC calibrated parameters.

A [MPa] n εe C1 [dimensionless] C2 [MPa] C3 [dimensionless]

1470 0.1659 0.06376 0.04123 706.86 0.9339

Fig. 7. MMC fracture surface with a superimposed error bar between the average 
points and the fitted surface.

For a plane stress load condition a unique relation between the 
triaxiality and the Lode angle parameter, see Eq. (14), can be 
determined and thus the strain at failure can be described as a 
function of only the triaxiality. This relation is described by the 
light purple straight line in Fig. 7.



4.3. Calibration of the CDM model

Exploiting nMAT_104 in LS-DYNA, Lemaitre's damage model
has three parameters (εth,S,Dcr) which have to be calibrated for
each material:

� εth is the threshold strain. Damage starts when this value is
reached.

� Dcr is the critical value of damage. Failure occurs when damage
is equal to this value.

� S is a parameter related to the evolution of damage.

When adopting the MMC approach, in order to be consistent 
with the model assumptions, it is necessary to adopt a power law 
to describe plasticity. When adopting the CDM framework this 
limitation is no longer present. Indeed, the authors decided to 
adopt a hardening plastic constitutive law with the general form 
described by Eq. (15)

σ ¼ σy0þQ1 1�exp �C1εp
� �� �þQ2 1�exp �C2εp

� �� �
: ð15Þ

It is worth remembering that the CDM is a coupled approach to 
damage hence there are interactions between the plasticity 
behavior and failure. In total, there are eight parameters to define: 
five are derived from plasticity and three come from failure. An 
inverse method has been used to calibrate Lemaitre's model. 
Smooth round specimens have been chosen as the reference 
calibration experiment. The specimen geometry is shown in Fig. 8.

The method applied in this paper, has been previously used also 
by other authors including Li et al. [38]. The fitting procedure has 
been performed by initially developing the FE model of the tensile 
test on the smooth specimen using the commercial non-linear 
software Ls-Dyna and then by means of its optimization 
environment Ls-Opt. Ls-Opt adopts an optimization scheme based 
on the minimization of the mean square error between FE and 
experimental load–displacement curves. It is important to remark 
that the calibration takes the simultaneous effect of the para-
meters on both plasticity and failure into account. Table 4 shows 
the obtained parameters for the model after the calibration. Fig. 9 
shows a comparison between the experimental load–displace-
ment data and the numerical results (if the round smooth speci-
men), which has been obtained from the calibrated models for the 
CDM and MMC. The adoption of the calibrated parameters leads to 
good agreement between the numerical and experimental load–
displacement curves with regards to the plastic behavior and the 
displacement at failure in the CDM model. However, due to the fact 
that the MMC model has been calibrated using different 
experimental data, some differences between the experimental 
data and numerical results obtained from the MMC are considered 
reasonable.

Fig. 8. Geometry of the round smooth specimen.

5. Results and discussion

5.1. Evaluation of the experiments based on the stress triaxiality and 
lode angle

Triaxiality versus PEEQ and Lode angle versus PEEQ has been 
shown in Fig. 6 in Section 4.2. These data have been obtained in the 
FE models analyzing the critical element with the highest PEEQ. An 
effective summary of the average values of triaxiality and Lode 
angle for each test is reported in Fig. 10. This figure is very 
important because it immediately shows the distribution of the 
tested configuration in terms of Lode angle and triaxiality. It is 
evident that every test, excluding the tensile ones on round 
specimen, correctly belongs to the plane stress curve (solid light 
blue line in Fig. 10, evaluated by Eq. (14)). This conclusion is 
obvious for flat specimen but it also applies to round specimen 
subjected to multi-axial loads. In these specimens, a crack starts 
from the outer surface due to the nature of the load, which consists 
of a superimposed axial constant load followed by an incremental 
torque, and hence it again represents a plane stress state (there is 
no external pressure applied).

The average triaxiality and the Lode angle for each test are 
distributed over a large area, as shown in Fig. 10, demonstrating 
that the experimental program covers a very wide field of stress

Table 4
Material model parameters for Lemaitre's model.

Plasticity Damage

σy0 [MPa] Q1 [MPa] C1 Q2 [MPa] C2 εth S [MPa] Dcr

912.712 499.715 3.627 103.215 146.212 0.2 25 0.1356

Fig. 9. Comparison between the experimental and numerical (CDM and MMC)
load–displacement curves for the smooth specimen adopted for the CDM
calibration.



states. Further evidence of the accuracy of the modeling regards the 
pure torsion and the shear test of the flat specimen, whose values 
of triaxiality and Lode angle are almost zero as expected from the 
theory concerning the shear dominant failure.

Scanning electron microscope (SEM) images of the failure 
surface of the specimens (Fig. 11) have been acquired to evaluate 
the possible effect of the abovementioned different stress states on 
the specimen fracture surface. In the notched flat specimens, many 
dimples of varying size and secondary cracks are present on the 
failure surface of the specimens, see Fig. 11c–e. This surface 
morphology is typical of a mostly ductile fracture and hence it is 
possible to state that the flat notched specimens have a ductile 
fracture. However, in some cases the fracture surface exhibits also 
some partially brittle ruptures even if the fracture is mainly ductile. 
Among the notched flat specimens, the specimen with a 20 mm 
notch radius (no. 1, Table 2), which has the smallest triaxiality 
value, has a more ductile failure surface with less micro cracks 
present on the failure surface. The failure surface of the flat 
specimen with a hole (no. ) is quite similar to the notched flat 
specimens, see Fig. 11(b). Also in this case micro cracks are 
detectable on the failure surface. However, it seems that the failure 
mechanism is more ductile compared with the notched flat 
specimens (the triaxiality is lower for the flat specimen with a hole, 
see Fig. 10). The failure surface of the shear specimen (no. 5) is 
different from the other flat specimens, see Fig. 11(a). The average 
triaxiality and Lode angle values are close to zero in the shear 
specimen and are therefore very distant from the other tested flat 
configurations. The shear morphology area is deformed by shear 
stresses and is stretched along the applied load, with no detectable 
cracks present on the failure surface.

In the torsionþtension tests (Bþ20 kN, Bþ30 kN and Bþ40 kN), 
see Fig. 11(g,h) the value of triaxiality is higher than for the pure 
torsion test and increases for the higher tensile load (triaxiality 
spacing between 0 and 0.2, Fig. 10) due to the existence of a constant 
tensile preload. In the multiaxial torsion tests, failure is characterized 
by several dimples on the failure surface. No micro-cracks exist on the 
surface and the dimples are relatively uniform in size without the 
presence of particularly large dimples. The overall size of the surface 
dimples is smaller in these test specimens compared with flat notched 
specimens. Sliding effects of the surfaces caused by shear are also 
evident on the failure surface of the multiaxial torsion tests

and it is evident comparing the different surfaces shown in Fig. 11 
(g) and (h). The round notched specimen (no. 7) has a medium high 
triaxiality (around 1), see Fig. 11(f). The failure is ductile with a typical 
dimple rupture, which indicates that tensile stress is dominant. Many 
small dimples surrounded by larger ones are clearly visible.

5.2. Comparison of the experimental and numerical results

The capability of the damage models to correctly predict the 
displacement (rotation) at failure and the failure location in the 
specimens has been investigated comparing numerical results 
with experimental ones. Figs. 12 and 13 show the load–displace-
ment (torque–rotation) data obtained from the experiments and 
the numerical simulations adopting both MMC and CDM damage 
models. It is worth to underline that such type of assessment is not 
a real validation (as it has not been performed with independent 
data from the calibration) but is a very effective indicator of the 
goodness of the models (formulations and parameters). The 
performance of the present models (calibrated with very few 
parameters), in replicating very different loading conditions (13 
different loading conditions for triaxility and load angle) is a good 
indicator of their capabilities in replicaring the physical phenom-
ena under investigation, see Figs. 9, 12 and 13 and Table 5.

According to the von Mises yield stress criterion (adopted for 
the all the reported analysis), the hydrostatic stress (first invariant 
of the stress tensor, J1) and the third invariant of the stress deviator 
(Lode parameter, J3) are assumed to have no effect on plasticity. 
However, research has shown that a variation of the stress triaxi-
ality and the Lode angle can affect the plastic behavior of some 
materials [47–50]. In order to produce accurate load–displacement 
data for each test in the plastic region, it should be necessary to use 
a specifically calibrated plastic law for each test. The visible 
difference in Figs. 12 and 13 between the experimental and the 
numerical load–displacement results in the plastic region is hence 
due to the adoption of an individually calibrated plastic 
constitutive law which does not perfectly fit the material plastic 
behavior and is not related to the damage models themselves. Table 
5 summarizes the average error in the plastic region between the 
experimental and numerical load–displacement/torque–rotation 
data. The error has been calculated as the perceptual average 
difference between the numerical and the experimental curve, up 
to the failure point.

Fig. 10. Average triaxiality–lode angle in the experiments. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)



Figs. 12 and 13 clearly show that neither the MMC nor the CDM 
model predictions for the failure displacement are perfectly in 
agreement with the experimental results. A change of the geometry 
affects the damage model parameter calibration. However, this

difference between the numerical and experimental failure displa-
cement/rotation, which has been summarized also in Table 5, has 
two different causes in the MMC and CDM models. In the MMC 
model it is due to the fact that all experimental results have been

Fig. 11. SEM photos of the failure surface of specimens: (a) flat shear 150� , (b) flat hole 650� , (c) flat notched 10 mm 1200� , (d) flat notched 6.67 mm 600� , (e) flat
notched 20 mm 1290� , (f) round notched 1000� , (g) border area and (h) center area of the torsionþ30 kN 1000� .



used for the calibration (more detailed information about the 
calibration process can be found in Section 4.2), but the fracture 
surface is defined by minimizing the error among all the estimated 
failure points. The MMC fracture has a fixed equation for fracture 
based on just three constants. The model hence has a limited 
flexibility to fit data. The final fracture surface is thus a compromise 
leading to the minimum global error even if for some tests the error 
can potentially reach a relevant value. In the CDM model, only the 
smooth specimen has been used for the calibration (see Section 4.3) 
and the error between the predictions of the FE model and the 
experimental results is only due to the fact that one calibration in a 
specific loading condition does not exactly fit all the other loading 
conditions. It is interesting to highlight that in the presence of an 
important discrepancy between the results obtained by the MMC 
model, a similar relevant discrepancy is also evident in the CDM 
model results.

Fig. 14 shows the error on the estimation of the displacement/
rotation at failure versus the triaxiality and Lode angle for the MMC 
and the CDM models according to Table 5. The red line in these 
figures indicates a 20% error limit. The error value for both the 
MMC and CDM models is in most cases less than 20%, see Fig. 14, 
and therefore guaranties a reasonable accuracy for the different 
loading conditions. In some cases, the models predict the failure 
displacement/rotation with very high accuracy (less than 5% error). 
However, in two regions of triaxiality (quite low and very high 
triaxiality) both models fail to provide appropriate predictions and 
the error is above 20%, and in some cases reaches 50%. In the 
literature, the loading condition is commonly described using 
triaxiality rather than the Lode angle and therefore, also in this 
paper, the results are discussed mostly on the basis of 
triaxiality. The error is high in the triaxiality region of 0.15–0.35. 
The CDM model predictions show the highest error of 35% for the 
multiaxial test with a superimposed tension of 40 kN (average 
triaxiality of 0.164). Also, the two experimental points which are

close to this critical point show a relatively high error (17.5 and 
21.7%), as can be seen in Fig. 14(a). The transition of the failure 
mechanism from a shear dominant failure to a failure driven 
mainly by tension is potentially the cause of this error. As 
mentioned in Section 5, SEM photos also demonstrate that the 
failure surface for the multiaxial specimens is different compared 
with the surface of uniaxial test specimens. Lemaitre's model is 
based on the creation and evolution of dimples inside the material 
and dimple fracture is considered the main failure mechanism. 
Therefore, when the failure phenomenon is different, the model 
can produce errors.

At very high triaxiality (around 1), which is related to the tensile 
test of the round notch specimen B, both models show a relevant 
error (higher than 20%) in the prediction of the failure 
displacement/rotation. The MMC and CDM models respectively 
reproduce such a test with a 52.17% and 31.25% error. This error is 
potentially linked to the experimental test data used to calibrate 
the MMC and CDM models. As already reported, the fracture locus 
for the MMC model is a surface, which has been obtained by curve 
fitting of the experimental data. Therefore, experimental points, 
which have been chosen for the fitting procedure, play an 
important role in the final shape of the fracture locus and affect the 
predictions of the model. If the experimental data focus on some 
localized regions, the fracture surface obtained is very accurate for 
the loading conditions close to this region but in other areas, the 
error is potentially very high. As can be seen in Fig. 10, most of the 
experimental points which have been used in this research for the 
calibration of the MMC model are far from the very medium-high 
triaxiality region which is related to the tensile test of the round 
notched specimen B. Therefore, it is reasonable that the MMC 
model predicts this experiment with less accuracy compared 
with the other experiments. The reason for the high error of 
the CDM model it is also related to the calibration. As it has 
been explained in Section 4.2, a tensile test of the round

Fig. 12. Comparison of the experimental and numerical torque–rotation curves for the multiaxial torsion tests: (a) pure torsion, (b) torsionþ20 kN tension,
(c) torsionþ30KN tension, and (d) torsionþ40 kN tension.



smooth specimen has been used for the calibration of the CDM
specimen. Again in this case, the high triaxiality value in the
notched round specimen B is far from the calibration point
potentially causing this error in the model's prediction.

The discussion about the error trend for both models highlights
that when moving to practical applications of the damage models,
also the design of the experimental program plays a critical role.
Hence, it is important to remark that damage models should be

Fig. 13. Comparison of the experimental and numerical load–displacement graphs in the tension tests (a) round notched specimen B, (b) flat notched radius 20 mm, (c) flat
notched radius 10 mm, (d) flat notched radius 6.67 mm, (e) flat with hole, and (f) flat shear.

Table 5
Average errors of numerical simulations compared with experimental data.

Specimen number Average triaxiality Average lode angle Failure displacement Plasticity

MMC error [%] CDM error [%] MMC error [%] CDM error [%]

Flat specimen no. 1 0.459 0.62 6.31 8.42 2.1246 9.1665
Flat specimen no. 2 0.528 0.425 17.54 21.05 0.9746 6.0407
Flat specimen no. 3 0.537 0.348 1.67 0.83 6.5676 0.3191
Flat specimen no. 4 0.334 0.964 34.784 21.74 4.5772 7.1518
Flat specimen no. 5 0.0015 0.022 30.774 14.61 2.9941 2.0467
Pure Torsion (no. 6) 0.00219 0.0067 2.13 1.42 1.7668 7.9924
Torsionþ20 kN tension (no. 6) 0.0577 0.163 3.33 0.95 1.7713 9.3204
Torsionþ30 kN tension (no. 6) 0.0983 0.278 8.75 17.5 2.8987 9.1287
Torsionþ40 kN tension (no. 6) 0.164 0.4608 20 35 6.1768 26.1328
Tension test (no. ) 1.049 0.9998 52.17 31.52 5.8622 0.9387



used very attentively when applied to describe scenarios far from 
the calibration conditions.

5.3. Evaluation of the damage initiation location

The prediction capacity of both the MMC and the CDM models 
with regards to the damage initiation point has also been eval-
uated. In the torsion tests, both models estimate a point on the 
outer surface in the middle cross section of the specimen as the 
failure initiation location. Similarly to the experimental results, a 
crack is predicted to start from this area and to then propagate 
towards the center of the specimen. In the tensile tests using flat 
specimens (except the shear specimen) both models predict that 
failure occurs in the middle cross section, which has the minimum 
surface area. The initial point of the damage is the center/core of 
the section and damage evolves from the core outwards. This 
behavior has been confirmed experimentally in the present work 
and in the work by Dunand and Mohr [51]. They performed some 
experimental tests on similar flat specimens made from TRIP780 
steel and verified that cracks started from the center of the 
specimen. The shear specimen shows a different fracture initiation 
location compared with the other flat specimen. For this specimen 
both models predict that the critical point is located at the edge of 
the specimen in the shear region and not in the center. Also Li et al. 
[38] reported the same phenomenon on similar specimens made 
from Al6061. Fig. 15 shows the shear specimen and critical region 
before and after failure obtained adopting the CDM model.

6. A more complex application: three point bending test

So far, the material calibration has been discussed but finally in 
the following sections its accuracy in an application characterized 
by a high stress/strain gradient is assessed: a three point bending 
test on a sharp notched specimen (see Section 2.3). The FE model 
has been based on solid 3D elements with a reduced integration 
scheme and quasi static explicit analyses have been carried out to 
reproduce the non-linear phenomena taking place during the test. 
Numerical and experimental load–displacement curve have been 
compared and different mesh sizes have been tested. Table 6 shows 
the error of the predictions of both models for the failure 
displacement in the three point bending test obtained from the 
finite element models with different mesh sizes.

The results of both models highlight two particular aspects 
concerning the overall accuracy and a strong mesh size effect in 
the simulations. Mesh dependence is a well-known effect of the 
application of ductile damage criterion in the presence of a sharp 
notch. It results in the estimation of the displacement at failure 
without a convergence value: decreasing the mesh size always 
leads to an earlier displacement at failure. This topic has been 
highlighted in [11] for the simulation of a fracture toughness test 
on an Al6061-T6 CT specimen, and Kim et al. [52] and Kim et al.

[53]. It is evident that neither the calibrated MMC and nor the 
CDM model can satisfactorily reproduce the TPBT fracture. It is 
necessary to more carefully analyze the stress state of the TPBT in 
order have a clearer image of the possible sources of these 
discrepancies.

The stress state for the TPBT varies greatly depending if it is 
considered for a region very close to the notch or for a region a little 
bit further inside the specimen (0.3 mm), Fig. 16. It is evident that 
near the notch, the stress state is more similar to the flat specimen 
with a 6.6 mm radius notch but moving away from the notch the 
stress state tends to become more similar to the round tensile test 
on the notched specimen (geometry B). In any case, the predicted 
TPBT lies within a region quite far from the experi-mental point. 
The fracture surface in this area, according to the MMC theory, is 
simply an extrapolation based on the calibration equation. As 
already mentioned in Section 5.2, the calibration procedure for the 
MMC model evidently leads to a fracture locus which guarantees 
good results especially in the area where a lot of experimental data 
is located. So knowing that the TPBT stress state is closer to flat and 
round tensile tests rather than to multiaxial tests, therefore, the 
pure torsion, the multiaxial and the shear test have been neglected 
and a new calibration has been performed, Fig. 16. Data of the new 
calibration are reported in Table 7 labeled as optimal calibration. 
Table 7 also contains a second calibration based on all the 
experimental data including the TPBT. The idea is to check the 
sensibility of the calibration adding one single point. Very small 
differences between the original calibration and the one including 
TPBT are visible. These differences are related to the number of 
points evaluated for the calibration: the base calibra-tion is 
obtained using 13 tests thus adding one single point (TPBT) does 
not significantly affect the calibrated fracture surface (see 
coefficients of the second and fourth column of Table 7).

The subsequent simulation of the TPBT has been carried out 
adopting the optimal calibration for TPBT and the results are 
shown in Fig. 17. Again, the mesh size effect is evident (it is not 
avoidable) but the results are in much better accordance with the 
experimental data. The error on the estimation of the displace-
ment at failure using the new calibration is reported in Table 9.

Also the CDM calibration can be improved to have a material 
model which describes the TPBT load scenario more accurately. 
Following a trial and error approach, a new series of damage model 
parameters has been chosen for the CDM model. Table 8 shows the 
new CDM damage model parameter values. Changing the threshold 
strain ðεthÞ strongly affects the behavior of Lemaitre's damage 
model. Physically, εth indicates the value of the strain at which 
damage starts. Generally, the value of the failure strain decreases 
with the increment of the triaxiality. According to this fact, the 
value of the threshold strain has been reduced in the new model 
parameters, to 0.1. The value of the parameter S has also been 
reduced according to the reduction of εth. The aim of this new 
calibration is to show that, with the appropriate parameters, also 
Lemaitre's model is able to accurately predict the failure point

Fig. 14. (a) Error on the displacement/rotation at failure versus triaxiality and (b) error on the displacement/rotation at failure versus Lode angle for both the MMC and the
CDM models.



in the three point bending test. This discussion is however
emphasizes that the geometrical transferability of the CDM para-
meters
is not guaranteed for Ti–6Al–4V: the direct application of the
calibration obtained using just the smooth specimen leads to

inaccurate results if applied to the TPBT. The experimental and 
numerical load–displacement curves obtained with the new 
damage model parameters are shown in Fig. 18 while the error

Fig. 15. Damage contour in the shear specimen (CDM).

Fig. 16. Summary of all the experimental tests including the TPBT (triangular marks). In the red ellipse the TPBT values have been evaluated at various distances away from
the notch. In the blue ellipse, the experimental points have been neglected for the new calibration. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 6
Error of numerical prediction compared with experimental results for the simula-
tion of the three point bending test (original calibration) using the CDM and the
MMC framework.

MMC CDM

Mesh size [mm] 0.05 0.1 0.5 0.075 0.1 0.2
Error [%] 50 90 200 90 110 290

Table7
New MMC calibration data.

Parameters Base
calibration

Optimal calibration
for the TPBT

Base calibration
including the TPBT

A [MPa] 1470 1470 1470
n 0.1659 0.1659 0.1659
εe 0.06376 0.06376 0.06376
C1 0.04123 0.17562 0.05343
C2 706.86 865.96 719.71
C3 0.9339 0.99892 0.9493

Fig. 17. Comparison between the numerical and the experimental load–displace-
ment curves for the TPBT, adopting the newly calibrated MMC criterion.

Table 8
New calibration of CDM model parameters.

εth S [MPa] Dcr

0.1 7.5 0.1356



on the estimation of the displacement at failure using the new 
calibration is reported in Table 9.

With the new calibration of both the MMC and CDM models, the 
numerical results fit the experimental load–displacement curve 
well. In accordance with the previous discussion, it is important to 
clearly comment on the possible consequences of adopting an 
MMC or a CDM ductile criterion. First of all, scholars should be 
aware of the mesh dependence in case of a sharp notch. Instead, if 
there is a round notch the mesh effect is negligible. The second 
aspect to take into account regards the dependence of the fracture 
surface on the available experimental points for the calibration of 
the MMC model. Indeed, from an experimental point of view it is 
difficult to have data spaced on a homogeneous grid. It is clear that 
the calibration is much more accurate in a region where a higher 
number of test results are located. For the CDM model it is 
important to remark that only one test is necessary to completely 
assess the material parameters but its correct choice is 
fundamental. A calibration test, which is relatively close to the real 
application stress state, is much more trustworthy as it reduces 
errors linked to the geometrical transferability.

7. Conclusion

The modified Mohr Coulomb and Lemaitre's damage models
have been calibrated for the widely used Ti–6Al–4V titanium alloy.
A large experimental program has been carried out and the
calibrated material models have been implemented into finite
element analyses. Comparisons of the numerical and experimental
results demonstrate that both the MMC and the CDM models are
able to predict the failure displacement in most of the experiments
with an error of less than 20%. In general, whenever the MMC
prediction results in large errors, the CDM also fails to provide
appropriate predictions for the failure displacement. For the stress
triaxiality values around 0.2 and larger than 1, both models
overestimate the failure displacement by an error of more than
20%. This demonstrates that for practical applications, special
attention has to be paid when the loading condition is close to
either the high or the low triaxiality region.

It is very difficult to define a unique set of MMC and CDM
parameters unless some discrepancies are accepted. The avail-
ability of a large number of data determines the accuracy of the
MMC, allowing the definition of a more precise fracture locus. This
approach cannot always be followed in an industrial scenario
where in order to reduce costs and time, only the minimum
number of tests has to be performed. Therefore, a preliminary
evaluation of the stress state of the application object of the study
is recommended. The following calibration should be based on
tests having a triaxiality/Lode angle not too different compared
with the application. Concerning the CDM model, it can be
calibrated using one straightforward experiment, however it is
worth mentioning that when the loading condition is far from the
calibration, additional errors can occur in the prediction of
Lemaitre's model because the geometrical transferability is not
always fully guaranteed. From a practical point of view, it is better
to choose the calibration test close to the real application loading
condition to guarantee appropriate accuracy of the results.

Concluding, the present research wants to show the advantages
of the adoption of the MMC and the CDM approaches in numeri-
cally reproducing ductile fracture. Among the positive points, it is
worth mentioning that the evaluated models are based on very
few parameters, a limited number of experimental tests and their
algorithms are already implemented in many FE commercial
software. On the other hand, such models have also various critical
weak aspects. For instance in case of the simulation of sharp-
notched specimen, a strong mesh size effect without a clear
convergence threshold level exists. Moreover, the accuracy of the
simulations for a general application strongly depends on the
initial calibration program because the geometrical transferability
is not straightforward. However, drawing a final balance between
advantages and disadvantages, the authors believe that the CDM
and the MMC are the most promising and effective ductile damage
criteria currently available.
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