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Abstract

A technique aimed at neutralizing the presence of free-play effects in a control surface actuation chain is presented. It

is based on an adaptive inversion of a function approximating such a nonlinearity. A simple, yet robust, on-line adaptive

algorithm is proposed to identify the free-play parameters, i.e. free-play width, the equivalent control stiffness and friction.
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The procedure is then coupled to an Immersion and Invariance control law to drastically reduce possible residual

closed loop limit cycle oscillations due to the free-play nonlinearity. Within such a framework, the so chosen compensation

technique can be interpreted as a control augmentation, easily extendable to multiple control surfaces.

The methodology is then verified on a four degree-of-freedom airfoil in transonic regime, characterized by highly

nonlinear unsteady aerodynamic loads, producing significant shock motions and large limit cycles, at a relatively high

frequency. The presence of both aerodynamic and structural nonlinearities makes such a system bistable, leading to complex

responses dependent on the initial conditions and the input used to excite the system. The effective suppression of these

auto-induced vibrations becomes even more challenging because the limit cycle oscillations generated by different sources

are characterized by differing amplitudes and frequencies.
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Nomenclature

xa Aerodynamic state

xs Structural dynamics state

A, Ba, Bc, Cy State space matrices implemented in the controller

Ar, Ba,r, Bm,r, Bc,r, Cy,r State space matrices of the verification model

zβ , zm, zact Sensors output

Aae, Bae, Cae, Dae, Eae, Fae Aerodynamic reduced order model matrices

φ (xa) Nonlinear terms of the aerodynamic reduced order model

q∞ =
1

2
ρ∞U2

∞ Dynamic pressure

h, θ Plunge and pitch degrees of freedom

βLE, βTE Leading and trailing edge control surfaces deflection

Na Number of aerodynamic states, size of xa

Nin Number of control input, size of βc

ω Natural frequency, rad/s

V∞,bif Bifurcation speed, m/s

fbif Bifurcation frequency, Hz

qs Generalized structural degrees of freedom

fa Generalized aerodynamic loads

mβ ,mf Hinge and friction torque, Nm

kβ , βFP Free-play parameters

Δβ Aileron dynamic response, rad
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m̂f Friction amplitude, Nm

βc Control input, rad

t Control design target

ỹ Controlled performance

H Performance output matrix

Λ,Ct, μ, γCon, ηCon Parameters of the Immersion and Invariance controller

z Off-the-manifold variable

χ̂ Immersion and invariance uncertain parameter vector

ψ Immersion and invariance controller regressor

δ Immersion and invariance shaping function

θ Approximate hinge torque parameters

ηGD Learning rate of the free-play compensation algorithm

ξ Damping ratio

Subscript

o Variable reconstructed by the observer

f Filtered quantity

r Real system

1. Introduction

The study of nonlinearities in control surface actuation systems is more and more relevant in active aeroelastic control

design. Therefore, an earlier introduction of nonlinear effects may lead to improved and less expensive products (Karpel

et al. 2013).

Free-play nonlinearities are not only encountered in aeroservoelasticity, e.g. see the works of Karpel (Karpel et al. 2013,

Gold & Karpel 2008) and Vasconcellos (Vasconcellos et al. 2014) regarding the modeling of nonlinear actuators and the

series of tests recently carried out by Kholodar (Kholodar 2014). In fact they must be studied, modeled and compensated

in most electro-fluid-mechanical applications (Nordin & Gutman 2002, Tao 2003, Selmic & Lewis 2000, Aghababa &

Aghababa 2014, Boulkroune & M’saad 2012, Chung-Chun et al. 2008). A significant improved comprehension of free-

play phenomena in control surface mechanisms can be found in the researches carried out at Duke University by Conner

et al. (Conner et al. 1997b, 1996, 1997a)., similar studies being still underway on more complex models (Tang & Dowell

2013). Limit Cycle Oscillations (LCO) induced by a control surface free-play have also been studied on an F-16 aeroelastic
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model (Chen & Lee 2008), simulating the effects of various free-play angles and different maneuver conditions. The same

type of problems has also been experienced on real aircraft, as witnessed by (Croft 27 August 2001)

Nevertheless, the above mentioned works aimed mainly at the analysis of such peculiar nonlinear behaviors, often

without addressing the possibility of compensating it. It is well known that the presence of free-play can significatively

alter the stability characteristics of an aeroservoelastic system, both in open and closed loop (Gold & Karpel 2008, Huang

et al. 2013). In particular, several studies have shown that the presence of such a nonlinearity can jeopardize the properties

of a control law designed without accounting for it, thus leading to closed loop responses characterized by residual LCOs

(Huang et al. 2013, Bae et al. 2002, Dimitriadis & Cooper 2000, Frampton & Clark 2000). Therefore, the presence of

free-play often worsen the performance of aeroelastic control systems, possibly leading to multistable behaviors as in the

test case considered in this work.

Following the work presented in (Mannarino & Mantegazza 2014a), the problem of the compensation of control surfaces

free-play is here addressed. At first, the proposed approach designs an adaptive control law, based on the Immersion and

Invariance (I&I) methodology (Astolfi et al. 2008a,b, Lee & Singh 2009), on the ideal system, i.e. by neglecting the

presence of the free-play. Then, an additional adaptive control based on the nonlinear inversion approach (Tao 2003) is

applied in order to compute the variation of the control input required to avoid being caught within the free-play range. To

obtain such a beneficial behavior, the additional measures required are the control surface deflection, the applied torque and

the actuators position, which are added to the accelerometric measures used to reconstruct the entire state by means of a

sliding mode observer (Drakunov & Utkin 1995, Mannarino & Mantegazza 2014a). Within such an approach, the free-play

parameters are assumed as unknown and a real time approximator can be trained on-line to estimate their values in discrete

time, so to obtain a digital compensation scheme to be directly applied to realistic control problems. The proposed method

will be tested on a four degrees of freedom airfoil, including strong transonic nonlinearities, taken into account through a

Computational Fluid Dynamics (CFD)-based reduced order model (Mannarino & Mantegazza 2014b). This case is thus

characterized by highly nonlinear unsteady aerodynamic loads, producing significant shock motions and large amplitude

LCOs at a relatively high frequency, which, being coupled to a nonlinear actuation servo-system, can result in a challenging

test for the proposed approach.

This work takes the basic ideas from (Mannarino 2015), but the approach is extended here to the suppression of

instabilities with multiple control surfaces. As shown in Section 4, the I&I control methodology for multiple-input multiple-

output systems differs significantly with respect to its single-input counterpart. Additional original contributions of this

work are the introduction of a simple estimator of the possible friction torque acting on the control surfaces hinge, which

further helps the reduction of the residual limit cycle oscillations, and an in-depth analysis of the influence of the actuators

bandwidth on the controller performance. Furthermore, the presence of both aerodynamic and structural nonlinearities

makes the system bistable, leading to complex responses dependent on the initial conditions and the input used to excite

the system. To the authors’ knowledge, this is one of the first studies of bistable behavior for this kind of aeroelastic and
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aeroservoelastic system, even if investigations about this phenomenon were already carried out in the field of mechanics

(Daynes et al. 2009) and control (Johnson et al. 2014). It makes the design of the flutter suppression system more challenging,

because of the presence of different nonlinear sources, which leads to the suppression of responses characterized by a wide

range of amplitudes. Although beyond the scope of this paper, a complete study of such bistable behavior is currently under

investigation by the authors.

Therefore, the goal of the present paper is to demonstrate a simple yet effective method for compensating free-play

nonlinearities in control systems, while also considering other kinds of nonlinear effects, e.g. shock wave aerodynamics

and structural friction. In what follows, several analyses are carried out considering different values of free-play amplitudes

and other key parameters, showing significant changes of the system response when they are varied. The adaptive control

law is further tested against significantly modified structural parameters, highlighting a few interesting results.

2. Aeroservoelastic modeling

An aeroservoelastic system is typically composed by three interconnected parts: structure, aerodynamics and control,

and, depending on specific analysis and design needs, different model fidelities can be used in the various stages of its

development.

Let us breakdown our design approach, describing the design and verification models separately.

2.1. Design model

Following a standard approach, a generic linear(ized) structural model, can be discretized into the classical multi-degrees

of freedom scheme:

Msq̈s +Csq̇s +Ksqs = q∞fa +TT
βmh (1)

where: Ms, Cs, Ks are the structural mass, damping and stiffness matrices, qs the generalized structural coordinates,

whose physical meaning is determined by the assumed discretization and fa the external generalized aerodynamic forces,

scaled by the asymptotic dynamic pressure q∞.

To explain the term TT
βmh in the above formula, it is remarked that the degree of freedom of any control surface is

typically embedded inqs, so to be easily interfaced to the aerodynamic subsystem in the very same way as any other structural

motion. Therefore, control surface rotations, β, will be defined by β = Tβqs, Tβ being an appropriate kinematic linking

matrix, which linearly combines the generalized coordinates qs to extract the physical rotation of the movable surfaces.

Through the principal of virtual work, the generalized hinge moments, mh, associated to the external control moments mβ

and to its friction mf , will be given by mh = TT
β (mβ +mf ). In general, the friction torque will depend on the control

surface control moments and rotation rates β̇, i.e. mf = mf

(
mβ ,Tβ̇β̇

)
.
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A sample free-play behavior is shown in Figure 1. The related mathematical model for each control surface can be

described as follows:

mβ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kβ (Δβ + βFP) for Δβ < −βFP

0 for |Δβ| < βFP

kβ (Δβ − βFP) for Δβ > βFP

Δβ = βext + βc − β

(2)

The variable Δβ is often referred as aileron dynamic response (Gold & Karpel 2008) and it can be decomposed into three

contributions: βext is the applied external command, βc the command computed by some control logic and β the effective

aileron deflection. In addition, kβ is the equivalent stiffness connecting the pilot command to the control surface and βFP is

the semi-width of the free-play, here assumed symmetric. As clarified in the following, the friction torque will be modeled

Δβ [deg]

Fig. 1. Comparison between ideal and actual hinge moment

differently in the computational model used by the controller and in the actual plant under control. In fact, as it will be

seen later on, the controller considers a simple averaged Coloumb like approximation, of the kind mf = m̂f sign
(
β̇
)

,

m̂f being a percentage of the maximum torque transmitted by the actuator, while a more elaborate Stribeck formulation

(Ferretti et al. 2003) will be used for a more accurate system simulation.

In view of the need of modeling the transfer function of the accelerometer based measures required by the state observer, the

related acceleration output, at assigned locations, will be given bya = Taq̈s,Ta being a suitable displacement interpolation

matrix, which linearly combines the accelerations of the generalized degrees of freedom to obtain the accelerations at any

point of the structure. Therefore, after defining withD(v) the diagonal matrix associated to a vectorv, the related transducer

dynamics is approximated through:

z̈acc +D(2ξaccωacc)żacc +D(ω2
acc)zacc = D(ω2

acc)a = D(ω2
acc)Taq̈s (3)
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Similarly, the measures of control surfaces deflection and applied torques are simulated by means of second order transfer

functions:

z̈β +D(2ξsensωsens)żβ +D(ω2
sens)zβ = D(ω2

sens)β = D(ω2
sens)Tβqs (4a)

z̈m +D(2ξsensωsens)żm +D(ω2
sens)zm = D(ω2

sens) (mβ +mf ) (4b)

It should be remarked from Eq. 4b that the hinge torque measure cannot separate the contributions of free-play and friction.

Finally, a generic formulation of a nonlinear unsteady aerodynamic system is written as:

⎧⎪⎪⎨
⎪⎪⎩
ẋa = fxa

(xa,qs, q̇s)

fa = fa (xa,qs, q̇s)

(5)

where xa is the aerodynamic state, which can be either a physical entity, as in the case of a raw CFD model, or a generically

abstract reduced order state.

Defining the extended servo-elasto-mechanical degrees of freedom q = [qs zacc zβ zm]
T

and the corresponding state

x = [q q̇]
T
= [qs zacc zβ zm q̇s żacc żβ żm]

T
, putting together all of what above, the following nonlinear, strictly proper,

state space formulation is obtained:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax+ q∞Ba fa (xa,qs, q̇s) +Bcmf +Bcmβ

ẋa = fxa
(xa,qs, q̇s)

y = Cyx

(6)

where y is the system output and the other terms are defined through the following intermediate vectors and matrices:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ms 0 0 0

−D(ω2
acc)Ta I 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Cs 0 0 0

0 D(2ξaccωacc) 0 0

0 0 D(2ξsensωsens) 0

0 0 0 D(2ξsensωsens)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ks 0 0 0

0 D(ω2
acc) 0 0

−D(ω2
sens)Tβ 0 D(ω2

sens) 0

0 0 0 D(ω2
sens)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Baq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Bcq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

TT
β

0

0

D(ω2
sens)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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so that it is possible to set the following final compact elements of Eq. 6:

A =

⎡
⎢⎣ 0 I

−M−1K −M−1C

⎤
⎥⎦ Ba =

⎡
⎢⎣ 0

M−1Baq

⎤
⎥⎦ Bc =

⎡
⎢⎣ 0

M−1Bcq

⎤
⎥⎦ (9)

Cy =

⎡
⎢⎢⎢⎢⎣
0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (10)

2.2. A comment on the design of the flutter suppression system

It should be remarked from now that the baseline I&I controller, responsible of the suppression of large amplitude limit

cycle oscillations, is designed on the ideal system only, i.e. βFP = 0, and considers a slightly different model than Eq. 6.

In fact, discarding the free-play effect, the ideal system dynamics is governed by:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax+ q∞Ba fa (xa,qs, q̇s) +Bdmf +BcI&I
βc

ẋa = fxa (xa,qs, q̇s)

y = Cyx

(11)

where the matrix Bd has the same definition of Bc in Eq. 9, while BcI&I
is defined as:

BcI&I
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

M−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

TT
βD(kβ)

0

0

D(ω2
sens)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Therefore the ideal controller will be designed directly on the control surfaces deflections. The vector kβ in Eq. 12 contains

the nominal stiffness at each aileron hinge. With the formulation of Eq. 11, a design based directly on the controlled surface

deflections βc will be possible, and this result will be used as baseline by the proposed free-play compensation.

2.3. Verification model

It is important to remark that the actuator dynamics should be neglected in the controller computational model, because,

as shown in Section 5, its presence would not permit the explicit inversion of the free-play nonlinearity. Nevertheless,

suitable actuator models are included in the controlled system during the simulation of the controller gains tuning, thus

better matching the true closed loop operation in flight.
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Therefore, the often used second order transfer function (Brenner 1996) of the following type will be adopted:

z̈act +D(2ξactωact)żact +D(ω2
act)zact = D(ω2

act)βc (13)

The true free-play is thus experienced between the actual actuator and aileron positions, i.e. βc has to be substituted with

zact in Eq. 2. The real aeroservoelastic system under control is thus described by a set of ordinary differential equations,

similar to Eq. 6, albeit with a different internal structure because of the accounted the actuator dynamics. Defining the real

servoelastic state xr = [q q̇]
T
= [qs zacc zβ zm zact q̇s żacc żβ żm żact]

T
, the final set of equations describing the system

dynamics is so modified:

Mr =

⎡
⎢⎣M 0

0 I

⎤
⎥⎦ Cr =

⎡
⎢⎣C 0

0 D(2ξactωact)

⎤
⎥⎦ Kr =

⎡
⎢⎣K 0

0 D(ω2
act)

⎤
⎥⎦ (14)

Baq,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bmq,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

TT
β

0

0

D(ω2
sens)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bcq,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

D(ω2
act)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Ar =

⎡
⎢⎣ 0 I

−M−1
r Kr −M−1

r Cr

⎤
⎥⎦ Ba,r =

⎡
⎢⎣ 0

M−1
r Baq,r

⎤
⎥⎦ Bm,r =

⎡
⎢⎣ 0

M−1
r Bmq,r

⎤
⎥⎦ Bc,r =

⎡
⎢⎣ 0

M−1
r Bcq,r

⎤
⎥⎦ (16)

Leading to the following dynamic system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋr = Arxr + q∞Ba,r fa (xa,qs, q̇s) +Bm,rmf +Bm,rmβ +Bc,rβc

ẋa = fxa (xa,qs, q̇s)

yr = Cy,rxr

(17)

with the output equation now including also the measure of the actuator position:

Cy,r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 0 0 0 0 0 0 0

0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0

0 0 0 0 I 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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Finally, it should also be remarked that when high fidelity aerodynamic models are taken into account, xa can be

very large, so that the system size can be limited substantially only by using a compact description of the aerodynamics.

Therefore, whenever a high fidelity aerodynamic implies tens to hundreds of thousands states, the controller will be designed

on the base of a significantly more favourable reduced order model size.

3. A few details of the aerodynamic models

Since aerodynamic phenomena will strongly affect the presented results, some details about their formulation are provided

here.

3.1. CFD modeling

The aerodynamic sub-system is modeled through a cell centered finite volume scheme, using the aerodynamic code

AeroFoam, developed at Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano (Romanelli et al.

2010). AeroFoam is a density-based compressible Unsteady Euler/Reynolds-Averaged-Navier-Stokes solver, the Euler

option being selected in this work. Among its features there is an aeroelastic interfacing scheme, based on a moving

least square interpolation strategy, providing all the needed functionalities to set the appropriate aerodynamic boundary

conditions imposed by a deforming structure, while driving a connected hierarchical mesh deformation within an Arbitrary

Lagrangian Eulerian formulation. An extended illustration of its aeroelastic capabilities can be found in (Romanelli et al.

2012). In this work any of AeroFoam aerodynamic formulations can be synthesized in the form of Eq. 5, with xa being

the physical state associated to the cell centers, i.e. density, momentum, energy and the turbulence model own state. The

generalized aerodynamic loads are computed through the integration of the pressure and viscous stresses at the body surface.

The high number of states (from tens of thousands to millions) required for an accurate approximation implies highly time

demanding CFD-based analyses. Consequently, such simulations are mostly restricted to the verification phase of a design.

3.2. Reduced order modeling

For classical linear(ized) flows, mostly based on the solution of an integral equation, linear identification methods can be

exploited to provide a reduced order state space representation, see (Ripepi & Mantegazza 2013) and references therein.

Even when the flow is nonlinear, e.g. Euler-based CFD codes, linear load identification methods can be adopted for small

motions around a steady trimmed solution (Hall et al. 2000). Nevertheless, when the structural system undergoes large

enough motions, causing significant changes of the flow field, e.g. moving shocks, an unsteady, nonlinear aerodynamic

model of the type previously described is required. As already remarked, it can provide a high level of fidelity only at the cost

of a significantly fine discretization, with the related demand of computational power and time consuming simulations. This

fact limits its applicability to control designs, sensitivity studies and system optimization, for which Reduced Order Models
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(ROMs) are almost compulsory (Lucia et al. 2004). Different approaches for the determination of nonlinear aerodynamic

ROMs are available in the literature (Lucia et al. 2004, Hall et al. 2000).

In this work it has been chosen to exploit a continuous time recurrent neural network (Mannarino & Mantegazza 2014b)

to identify compactly unsteady, nonlinear relations between the structural motion and the aerodynamic loads. After defining

the structural dynamics state as xs = [qs q̇s]
T, the related stable aerodynamic ROM can be appropriately defined with the

following set of ordinary differential equations:

⎧⎪⎪⎨
⎪⎪⎩
ẋa = Aaexa +Baexs +Eaeφ (xa)

fa/q∞ = Caexa +Daexs + Faeφ (xa)

(19)

where xa and xs are the aerodynamic and structural dynamics state, Aae,Bae,Cae,Dae,Eae,Fae are the ROM parameters,

fa are the aerodynamic loads and q∞ is the flight dynamic pressure. The vectors φ (xa) are the nonlinear contributions to

the ROM dynamics, where each component is an hyperbolic tangent function of the input, i.e. φi (xa,i) = tanh (xa,i). The

problem is formulated in the continuous time domain in order to permit variations in the integration time step depending

on the analysis under consideration: for example, the time discretization can be modified during the design of a control law

where the effect of different sampling times on the closed-loop system may be of interest. Such a variable-time-step feature

could also be exploited in the searching of limit cycle oscillation solutions, as reported in (Mannarino & Mantegazza

2014b). As a matter of fact, Eq. 19 represents a nonlinear model in state space form, where the input is the structural

dynamics state xs while the output is the generalized aerodynamic load fa. An aerodynamic state is introduced to represent

the intrinsic memory the dynamic model: in general it does not have any particular physical meaning. Nonlinear functions

like the one employed in this case have already proven their potential in system identification (Haykin 2008).

The training of the reduced order model is addressed in two main stages: the first identifies the linear sub-part, i.e.

matrices Aae, Bae, Cae, Dae, with a classical linear subspace projection technique (Van Overschee & De Moor 1994).

The second stage refines the reduced order model response adding the nonlinear terms to the optimization procedure,

i.e. matrices Eae and Fae. Because of the intrinsic nonlinearity of the model, a generalized optimization method, i.e.

Levenberg-Marquardt (LM) (Marquardt 1963), is employed.

The training signals are generated within the previously described CFD solver. Random-like signals are given in input

to all the structural degrees of freedom simultaneously. Amplitude and frequency ranges to be excited are chosen by running

a few open loop CFD-based aeroelastic simulations.

4. Flutter Suppression by Immersion and Invariance Control

The basic idea of an Immersion and Invariance (I&I) controller is to achieve a stabilization by immersing the plant dynamics

into a stable target system, possibly described by a reduced number of states. Then, by introducing appropriate adaptive
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terms in the related controller, it is possible to achieve the invariance of the manifold containing such a target (Astolfi et al.

2008b). The related theory can be found in (Astolfi et al. 2008a), while various applications to aeroelastic systems are

reported in (Lee & Singh 2009, 2010a,b, Mannarino & Mantegazza 2014a). The I&I controller presented here is used as a

baseline logic to compensate limit cycle oscillations in the ideal system, i.e. with no free-play and actuator dynamics. The

computed control effort will then be corrected by the proposed free-play compensation method.

The following strategy is developed by extending to multiple control surfaces the work presented in (Mannarino &

Mantegazza 2014a). As will be highlighted, the multi-input formulation of the present controller is different from the single

input algorithm detailed in the cited work.

In fact, the designs of the target dynamics, the parameters estimator and the control law are intrinsically coupled, as

will be shown in proving the closed-loop stability through Lyapunov function analysis. Therefore, to highlight the peculiar

points of the control law development, the design of the I&I controller must be explicitly detailed.

4.1. Design of the target dynamics

The previously mentioned target system t is here represented by Eq. 20, where Λ is a strictly positive matrix, here assumed

as diagonal for sake of simplicity, with positive tunable design parameters Λi,i, while ỹ is the controlled performance,

which can be any linear combination of the system state components:

t = ˙̃y +Λỹ (20)

Anticipating that only the displacement at key points of the structure will be taken into account, such a performance can

be written as:

ỹ = Hx =

[
Hq 0

]⎧⎪⎨
⎪⎩
q

q̇

⎫⎪⎬
⎪⎭ = Hqq (21)

with H and Hq defining the appropriate performance output matrix, specified on a case by case basis to define the desired

ỹ. Since the performance dynamics must be asymptotically stable over the manifold t = 0, it is sufficient to develop a

control law driving t to the origin. As stated in both Section 1 and 2, this control law is designed for the ideal system

without free-play effect, i.e. βFP = 0. As will be revealed shortly, this approach permits one to compute directly the control

surface deflection required to stabilize the ideal system.

By differentiating Eq. 20, the dynamics of t is driven by the following equation:

ṫ = ¨̃y +Λ ˙̃y (22)
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where the required ỹ derivatives can be explicitly defined exploiting Eq. 11:

˙̃y = HAx+ q∞HBafa +HBdmf +HBcI&I
βc = HAx = Hqq̇

¨̃y = HA2x+ q∞HABafa +HABdmf +HABcI&I
βc

(23)

The omission of the terms containing Ba, Bd and BcI&I
in the first equation above can be trivially inferred by looking at

their definitions against that of H. Therefore Eq. 22 becomes:

ṫ = HA2x+ q∞HABafa +HABdmf +HABcI&I
βc +ΛHqq̇

= αx+ q∞ωfa + γmf + B̂βc +ΛHqq̇

(24)

with: α =
(
HA2

)
, ω = (HABa), γ = (HABd) and B̂ = HABcI&I

, being unknown constant matrices.

Following the approach proposed in (Lee & Singh 2010b, Tao 2003), the SDU decomposition of B̂ is computed. According

to (Tao 2003), S is a positive definite symmetric matrix, D a diagonal matrix and U an upper triangular matrix whose

diagonal elements are unitary. Once again, S, D and U are unknown matrices, while the elements of D are assumed to

be not null, with their sign being known. In practice, D can be rewritten as D = ηConD̂, being ηCon the control gain to be

tuned during the design. Equation 24 is then rewritten in the following form:

ṫ = αx+ q∞ωfa + γmf + SDUβc +ΛHqq̇ (25)

Then, after defining the strictly positive matrixCt, whose elements are design parameters, an asymptotically stable manifold

is enforced by adding and subtracting the term Ctt to Eq. 25, thus obtaining:

ṫ = −Ctt+αx+ q∞ωfa + γmf + SDUβc +ΛHqq̇+Ctt

= −Ctt+ S
[
DUβc + S−1αx+ q∞S−1ωfa + S−1γmf + S−1 (ΛHqq̇+Ctt)

] (26)

Basically Ct is introduced to guarantee the asymptotic stability of the target dynamics once the control law is designed to

compensate all the other terms in the previous equation.

Exploiting the structure of D and U, the product DUβc can be decomposed in DUβc = Dβc + Ûβc, where Û is the

strict upper triangular part of U, i.e. U with all the diagonal entries set to zero. Equation 26 can be rewritten in a much

more compact form:

ṫ = −Ctt+ S (Dβc +ψχ̂) (27)

Where the matrix ψ is a block diagonal matrix of Nin rows, where each block has the following structure:

i-th block of ψ =
[
xT, q∞fT

a , mT
f , (ΛHqq̇+Ctt)

T
, βT

c (i+ 1 : Nin)
]

i = 1, ..., Nin − 1 (28a)
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Last block of ψ =
[
xT, q∞fT

a , mT
f , (ΛHqq̇+Ctt)

T
]

(28b)

Where the notation v (i : j) means that all the elements of v from position i to position j, are included. The elements of

S−1α, S−1ω, S−1γ and S−1 are arranged accordingly to the structure of ψ in χ̂. In fact, from the stabilization point of

view, the order with which the elements of χ̂ are arranged has no importance. At first sight, the main difference of Eq. 27

with the single input controller of Ref. (Mannarino & Mantegazza 2014a, Lee & Singh 2009) is the dependence of ψ on

the control effort.

In order to somewhat simplify the I&I design procedure presented in Ref. (Astolfi et al. 2008a), t = Hq (q̇+Λq), ψ

and βc are low pass filtered and attenuated (Seo & Akella 2008, 2009, Lee & Singh 2010a) through with the following

equations:

ṫf = −μtf +Hq (q̇+Λq) (29a)

ψ̇f = −μψf +ψ (29b)

β̇c,f = −μβc,f + βc (29c)

where μ is a further positive design parameter. Given that the proposed linear filters are asymptotically stable, it can be

shown (Lee & Singh 2010b) that the following ordinary differential equation is satisfied asymptotically:

ṫf = −Cttf + S
(
Dβc,f +ψf χ̂

)
(30)

4.2. Design of the parameters estimator

Since the parameters vector χ̂ is unknown, I&I approximates it through the aid of shaping terms which will force the stable

manifold to be invariant. Within such a view, the off-the-manifold variable z (Astolfi et al. 2008a) is defined as:

z = (χ+ δ)− χ̂ (31)

Such a variable is basically a measure of the distance between the estimated parameters (χ+ δ) and the real, unknown

ones χ̂, with δ(tf ,ψf ) being a yet to be chosen shaping function, so that, defining a control law of the form βc,f =

−D−1ψf (z+ χ̂), it is possible to cancel the unknown constant parameter vector χ̂ of Eq. 30, which becomes:

ṫf = −Cttf − SψT
fz (32)

As a side note it is remarked that for δ = 0 Eq. 31 recovers the classical formulation of a certainty-equivalent adaptive

controller (Slotine & Li 1991). Because of Eq. 31 we have also βc,f = −D−1ψf (χ+ δ), so that, recalling Eq. 29b and

˙̂χ = 0, β̇c,f = μD−1ψf (χ+ δ)−D−1ψ (χ+ δ)−D−1ψf ż. Therefore, using Eq. 29c the control lawβc = μβc,f+β̇c,f
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can be written as:

βc = −D−1ψ (χ+ δ)−D−1ψf ż (33a)

or

βc = −D−1ψ (χ+ δ)−D−1ψf

(
χ̇+ δ̇

)
(33b)

thus making βc,f useless.

In view of ensuring the asymptotic stability of z, let us choose the following shape function: δ = γConψ
T
ftf , with γCon

being a positive design parameter. The time derivative of the off-the-manifold variable can now be computed:

ż = χ̇+ γCon

(−μψT
f +ψT

)
tf + γConψ

T
f

(−Cttf − Sψfz
)

(34)

so that, imposing the following adaptive definition of χ:

χ̇ = −γCon

(
ψT − μψT

f −ψT
fCt

)
tf (35)

the dynamics of z is given by:

ż = −γConψ
T
fSψfz (36)

At this point, defining Vz =
1

2
zTz we have:

V̇z = zTż = −γConz
TψT

fSψfz

≤ −γConλS,min||ψfz||2
(37)

whereλS,min is the smallest eigenvalue ofS.. Therefore, z = 0 is an uniformly stable equilibrium point, with z ∈ L∞(0,∞).

Moreover, integrating V̇z the following result is obtained:

Vz(∞)− Vz(0) ≤ −γCon λS,min

∫ ∞

0

||ψfz||2 dt (38)

therefore ||ψfz|| ∈ L2(0,∞). Having obtained the proof of stability for z, we are now able to determine the asymptotic

behavior of tf defined by Eq. 32. Similarly to the previous calculation, defining Vt =
1

2
tf

Ttf we have:

V̇t = −tT
fCttf − tT

fSψfz ≤ λCt,min||tf ||2 + λS,max||tf ||||ψfz|| (39)
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being λCt,min the smallest element of Ct and λS,max the greatest eigenvalue of S. Exploiting Young’s inequality, we obtain:

V̇t ≤ −λCt,min

2
||tf ||2 +

λ2
S,max

2λCt,min

||ψfz||2 (40)

Therefore, since ||ψfz|| ∈ L2 (0,∞), we have also ||tf || ∈ L2 (0,∞), thus proving the asymptotic stability of tf .

4.3. Final control law and proof of stability

At this point, putting together Eqs. 33a and 36, we can explicitly define the control effort βc computed through the I&I

logic:

βc = −D−1ψχ+ γConD
−1

[−ψfψ
T
ft+

(
μψfψ

T
f −ψψT

f −ψfψ
T
fCt

)
tf
]

(41)

As the reader can note from Eq. 41, βc seems to be defined in an implicit way, becauseψ andψf depend on it. But thanks

to the structure of ψ, shown in Eq. 28, it should be clear that βc is unique, since it does not depend on βc,1. In this way,

starting from the last line of Eq. 41, the component βc,Nin
can be evaluated explicitly, so that, all the elements βc,i can be

backward computed up to βc,1.

The nonlinear adaptive compensator and its control command are then resumed by Eqs. 29a, 29b, 35 and 41, which are

summarized here below for the reader’s convenience:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṫf = −μtf +Hq (q̇o +Λqo)

ψ̇f = −μψf +ψ

χ̇ = −γCon

(
ψT − μψT

f −ψT
fCt

)
tf

βc = −D−1ψχ+ γConD
−1

[−ψfψ
T
fHq (q̇o +Λqo) +

(
μψfψ

T
f −ψψT

f −ψfψ
T
fCt

)
tf
]

(42)

with the suffix o indicating that the related quantities are computed using the values that will be provided by a sliding

observer, whose implementation details can be found in (Mannarino & Mantegazza 2014a).

To demonstrate the asymptotic stability of the whole control system, we resort to a third Lyapunov function:W (tf , z) =

Vt + Vz , so that, being:

Ẇ ≤ −λCt,min

2
||tf ||2 −

(
γConλS,min − λS,max

2λCt,min

)
||ψfz||2 (43)

it can be inferred that the pair (tf , z) ∈ L∞(0,∞), if γCon ≥ 1/ (2λCt,min)κ (S), where κ (S) is the conditioning number

of S, ratio between its maximum and minimum eigenvalues. In practice, the following inequality will be imposed:

γCon ≥ bd

2λCt,min

κ (S) (44)
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with bd being an assigned design bound. Given that the linear filters in Eq. 29 are all asymptotically stable, if tf is bounded

also t and, consequently, ỹ are bounded. Then, the whole state will be bounded and, since W is uniformly continuous, the

convergence toward the origin can be proved by using Barbalat’s lemma (Slotine & Li 1991).

The meaning of the design parameters Λ, Ct, μ, γCon and ηCon should be quite clear: Λ drives the performance to zero

when the target manifold is reached, Ct modulates the convergence toward the stable manifold, μ determines the filtering

level of the controller, γCon is the learning rate of the adaptive law and ηCon is the control gain.

5. Free-play and Friction Compensation by Nonlinearity Inversion

A general adaptive approach for controlling systems with actuator free-play nonlinearities and friction is presented here.

Such a methodology is employed to neutralize the related nonlinear effects of the actuation control system, so that there

is no need to account for such nonlinearities during the controller design. The structural free-play and friction models are

assumed to be unknown, and an on-line process will update a set of parameters in order to estimate the free-play semi-width

βFP, the equivalent control chain stiffness kβ of each control surface and a rough value for the friction amplitude m̂f .

The algorithm here proposed is based on some basic ideas from (Tao 2003), but adopts a different parametrization of

the hinge moment, which permits one to identify the unknown parameters separately. Furthermore, differently than (Tao

2003), the problem is formulated in a discrete time framework, thus achieving an immediate digital implementation.

A first version of the present approach was proposed in (Mannarino 2015). Here, the same controller structure is

maintained, but the additional feature of the friction torque estimation is included. As will be shown in Section 6.3, such

a supplementary estimation further helps the reduction of the closed loop limit cycle oscillations due to the presence of

free-play.

The analysis is presented here for a single control surface, because it is assumed that the actuation of a control surface

is independent from any other, so it is straightforward to integrate such a control correction for each control surface. The

control torque of Eq. 1 can be rewritten in the following form:

mh = mβ +mf + w = kβ (Δβ + βFP) νl + kβ (Δβ − βFP) νr + m̂f sign
(
β̇
)
+ w (45)

where Δβ = zact − β, w is the assumed measurement noise while:

νl =

⎧⎪⎪⎨
⎪⎪⎩
1 for Δβ < −βFP

0 otherwise

(46a)
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and

νr =

⎧⎪⎪⎨
⎪⎪⎩
1 for Δβ > βFP

0 otherwise

(46b)

Since kβ , βFP and m̂f in Eq. 45 are assumed to be unknown, they can be collected in the unknown vector θ = {θ1 θ2 θ3} =
{kβ βFP m̂f}. Eq. 45 can then be rewritten as:

mh = θ1 (Δβ + θ2) νl + θ1 (Δβ − θ2) νr + θ3sign
(
β̇
)
+ w (47)

where of course the variable βFP is substituted by θ2 in the definition of νl and νr in Eqs. 46.

The vector θ is updated at each sampling instant by means of a simple gradient descent algorithm (Haykin 2008):

θn+1 = θn − ηGD ∂en
∂θn

(48)

where ηGD is the classical learning rate, while en is the instantaneous output error, defined as:

en = mmeas
h,n −mh,n

= mmeas
h,n − θ1,n (Δβn + θ2,n) νl,n − θ1,n (Δβ − θ2,n) νr,n − θ3,nsign

(
β̇n

)
+ w

(49)

mmeas
h,n is the torque output of Eq. 6. Since the derivative ∂en

∂θn
is required by Eq. 48, it is provided here by its explicit

definition, which can be directly obtained from Eq. 49:

∂en
∂θ1,n

= − (Δβn + θ2,n) νl,n − (Δβ − θ2,n) νr,n = −Δβn (νl,n + νr,n) + θ2,n (νr,n − νl,n)

∂en
∂θ2,n

= −θ1,nνl,n + θ1,nνr,n = θ1,n (νr,n − νl,n)

∂en
∂θ3,n

= −sign
(
β̇n

)
(50)

Following the approach proposed in (Tao 2003), the desired hinge moment can be computed as:

mdes
h,n = θ1,nΔβideal

n (51)

where Δβideal
n is the ideal aileron dynamic response, i.e. βFP = 0, resulting in Δβideal

n = βext,n + βI&I
c,n − βn, where βI&I

c,n is

the outcome of the Immersion and Invariance control logic defined by Eq. 41. Having a law available which minimizes the
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output error of Eq. 49, the free-play nonlinearity can now be inverted to obtain the desired aileron motion:

Δβdes
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

mdes
β,n − θ1,nθ2,n − θ3,nsign

(
β̇
)

θ1,n
for mdes

β,n < 0

0 for mdes
β,n = 0

mdes
β,n + θ1,nθ2,n − θ3,nsign

(
β̇
)

θ1,n
for mdes

β,n > 0

(52)

with the new control input computed as:

βc,n = Δβdes
n − βext,n + βn (53)

So making explicit the input to Eq. 17. Such a control law should be able to "jump" across the free-play range, neutralizing

its nonlinear effect. Within such a framework, the proposed compensation technique can be interpreted as a control

augmentation algorithm which can be easily exported to any control logic.

Summarizing, the whole compensation strategy can be described in two main points:

• An Immersion and Invariance-based control law is designed to stabilize the ideal system, i.e. βFP = 0, as explained in

Section 4,

• A correction to the control input, required to neutralize the free-play effect, is calculated by means of the algorithm

presented in this Section.

As it is clear, the measurements required to implement what was just presented are usually available within any actual

control surface servo-system employed in aeronautical applications. Thus it is worth stressing that by encompassing a

reasonable friction, the identified hinge moment needs not to be close to the true value associated with the inertia and

aerodynamic control loads. Therefore, by way of example, in an hydraulic servo it would suffice to know just the net

pressure acting on the ram piston and the rotation of the control surface, which would be used to evaluate the related inertia

forces through finite differences. Moreover, even if the identified friction load is somewhat approximate, it is important to

take into account that its value must provide just a support to a better inversion of the free-play. Furthermore the considered

application will show that the adopted identification approach is robust enough to allow embedding the hinge friction

within the unstructured noise, w, without a substantial detrimental effect. In fact it has been verified that even a priori

precise estimates of the free-play and stiffness, such as those measurable on the ground on the actual flying aircraft, would

provide a substantial compensation of a residual, free-play induced limit cycle. Despite that, since it allows to maintain

good performance against long term usage, eventual wear, changing environmental conditions and loads, the most effective

on-line identification should always be preferred.
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6. A Sample Application

The previously presented technique is applied to a plunging and pitching NACA 0012 airfoil, flying at M∞ = 0.8 in air.

The airfoil is equipped with fully unbalanced leading and trailing edge controls, whose hinges are placed at 15% and 80%

of the chord respectively. A schematic representation of the system is given in Fig. 2a, while the related structural data can

be found in the Appendix. After a convergence analysis based on static aerodynamic data of a simply pitching airfoil, a

C-type topology mesh is discretized with 32000 elements, increasing the cells density near the control surfaces hinges, in

order to track the local surface motion with an higher accuracy, as shown in Fig. 2b.

(a) Mechanical model.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.5

0

0.5

x/c [−]

z/
c 

[−
]

(b) Computational mesh - close up.

Fig. 2. Four degrees of freedom typical section model.

6.1. Reduced order modeling and simulations

Once the full order system is defined, we can extract reduced order models from it. The input-output pair used in the training

stage is shown in Fig. 3. From a linearized analysis of the high fidelity model, the flutter eigenmode and frequency are

available. We use this information to compute the training signal: all the degrees of freedom are excited simultaneously

by a random-like motion. The frequency content of the signal is evaluated through its Fast Fourier Transform (FFT), so it

can be designed to present a peak of its FFT around the flutter frequency, which is fbif = 9.3 Hz. The flutter eigenmode

provides a rough estimate of the motion amplitudes at the flutter point. This information is used to assign the root mean

square value of the training signal. Such a training signal is generated by feeding the structural motion input depicted in

Fig. 3a to the CFD solver, which computes the load history of Fig. 3b. The time required to compute this input-output

relation is about 12 hours on 4 CPU units. The simulation is run with a physical time step ΔtCFD = 10−3 seconds, using

a 5th order accurate Runge-Kutta scheme, setting the CFL number to a value of 3. The convergence between time steps is

accelerated by multigrid and dual time stepping methods. A series of ROMs are then computed considering an increasing

number of aerodynamic states Na, from 5 to 12. The average training time required to compute the matrices entries of

the ROM is about 6 hours. Such a convergence analysis is carried out assuming as target value the bifurcation velocity
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Fig. 3. Training signal.

of the system, usually available from linearized analyses, resulting in V∞,bif = 160.68 m/s. A comparison between CFD

and ROM based results is provided in Fig. 4. It is evident that increasing the number of states leads to a better matching

between CFD and ROM-based results. However, it is interesting to note how the results with Na = 6 present the same

trend of the CFD, slightly shifted to the left. By contrast, the results with Na = 12, although showing a smaller overall

error, exhibit a local trend slope quite different from the reference data. From a design point of view, the results obtained

with Na = 6 would be preferred, because, by exhibiting a lower bifurcation speed, they are conservative and closer to the

shape of the reference curve. Nevertheless, in the control law design the model with Na = 12 will be employed, showing

that the proposed strategy is robust enough to deal with this kind of modeling error. Once trained, the ROM permits us to
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(a) Plunge LCO amplitude versus flight speed.
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(b) LCO frequency versus flight speed.

Fig. 4. Sample of LCO amplitude and frequency trends.

carry out design simulations at a faster pace than with CFD based aerodynamics. In fact, a CFD model would take an hour

to calculate what the ROM provides in 2 seconds, with no significant loss of accuracy.
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At this point, structural free-play and a Stribeck modeled friction are introduced in the control surface actuation

systems, and the effects of these nonlinearities on the LCO response are evaluated. The free-play semi-width considered

in the following analyses is βFP = 0.15 deg for both the leading and trailing edge control surfaces. These values should be

considered rather high, since aircraft certification standards require very tight control surface free-play limits (a fraction of

a degree) (Kholodar 2014). The related results are shown in Fig. 5. The system is excited with different pulses introduced

by the trailing edge control surfaces. It is clear that as the amplitude of the pulse is varied, the system behavior changes

radically: if the pulse is sufficiently strong and the flight speed is sufficiently high, then aerodynamically induced LCOs

would be activated. Instead, at lower flight speeds with weaker perturbations, self-excited oscillations are governed by

the free-play effect, resulting in much smaller amplitudes. It is thus clear that ’hard’ nonlinearities, such as free-play

and friction, lead to a stronger dependence of the system response on the type of perturbation used. The results are also

compared with the ideal trends, i.e. without free-play. The corresponding switching points are further moved ahead as the

free-play width is increased: as it will be shown later on, at the same flight speed it is possible to experience either a large

amplitude, aerodynamically driven LCO when the free-play width is small enough, or a small amplitude, free-play driven

LCO when the mentioned width is increased. A further comparison is also provided through a slowdown test: the system is

perturbed and left free to reach a large amplitude LCO, then the velocity is gradually reduced and the oscillation amplitude

is tracked. As witnessed by the black dash-dotted curve in Fig. 5, an hysteretic cycle is present in the response, whereas

large oscillations are experienced even at low speeds. With respect to the work presented in (Mannarino & Mantegazza

2014a), the presence of the free-play in the control surface actuation system leads to a bistable behavior which makes the

analysis of this problem interesting. Therefore the aeroelastic system is able to produce both aerodynamically or free-play

driven limit cycle oscillations, depending on the initial condition and on the type of input used to excite the system. This

behavior requires a deeper investigation and it is currently under study by the authors.

6.2. Control system settings

After several open loop simulations, the sensors parameters are set to ξ = 1 and ωacc, ωsens = 220 rad/s. Such values are

mostly dictated by the assumption of a second order anti-aliasing filter for the digital implementation, whose bandwidth is

significantly below the one of the related sensor.

It is recalled that the presented results are related to the real system, i.e. the one including the servo dynamics, while

the control law is designed without considering it. It must however be stressed that, even if the actuator dynamics does not

appear in the I&I control law formulation, its effect is fully taken into account, i.e. see Eq. 17, during the controller tuning,

because, as proved in (Mannarino & Mantegazza 2014a), a basic modeling of the actuation system is required to achieve a

good level of robustness of the adaptive law against variations of the actuator bandwidth. Thus, the controller will be tuned

on the system including such additional elements, verifying in this way also the strength of the proposed method against

unmodeled dynamics. In what follows, the nominal value of the actuators parameters is set to ξact = 0.65 and ωact = 107
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(c) Leading edge oscillation amplitude trends.
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Fig. 5. Comparison of the LCO trends with and without free-play.

rad/s. The actuators saturate in position at 15 deg and in rate at 45 deg/s. As it will be seen in the following results, such

a bandwidth is not sufficient to guarantee a complete removal of the residual LCOs from the closed loop response. Even

if the assumed bandwidth is a somewhat conservative specification, being clearly more demanding than what is strictly

needed to suppress a simple flutter (Mannarino & Mantegazza 2014a), a higher performance is required when dealing

with free-plays, because they require a sort of fast ’jump’ between the limits of the deadzone band, thus requiring a very

quick actuator response to follow the computed control effort. In fact, it is anticipated that sensitivity analyses will assess

the influence of the actuator bandwidth on the compensation performance of the controller, showing, as expected, that the

faster an actuator is, the better results can be achieved.

The controller design could have been carried out either interactively or through a numerical optimization which,

because of the relatively low system order and smooth dependence on a small number of parameters, could have been based

on an efficient gradient free optimizer, e.g. (Rios & Sahinidis 2013, Powell 2006). The former option has been preferred. In

fact, as verified in (Mannarino & Mantegazza 2014a), such an approach requires no further coding and can be easily guided
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by following a simple heuristic procedure, based on the previously hinted physical understanding of the design parameters.

The filter parameter μ is typically chosen in relation to the maximum frequency of the open loop response, estimated by

Fourier transforming a few time histories. Then, after verifying that a tentative Ct = diag (1) can be a suitable choice, γCon

is computed accordingly to Eq. 44, followed by a few analyses carried out by maintaining Λ = diag (1), while determining

appropriately the values of Ct, γCon and ηCon leading to a reasonable maximum control effort, eventually increasing the

value of diagonal elements of Λ until a desired settling time is achieved. A value of bd = 2 proved sufficient to achieve an

adequate level of robustness.

To assure the system adaptivity and stability over a wide range of operating conditions, the controller parameters are

tuned over various flight speeds, combined with different type of simulations, such as the response to large initial conditions,

to input pulses, and evaluating the controller adaption speed when its compensator is switched off-on during a simulation,

eventually considering various free-play widths and friction models.

All the tuned designs and verifications have been determined by using an explicit Runge-Kutta integrator with adaptive

step control, providing a precision adequate to allow an exact matching of the so called ’hard’ nonlinearities, i.e. free-play,

friction and saturations in the actuators output, which are present in all the simulations. Moreover a realistic digital imple-

mentation of the proposed controller has been taken into account. Through some preliminary continuous designs, it has

been possible to verify that the sampled behavior of the continuous compensator can be adequately matched at a frequency

of 180 Hz, with the related discretization based on a fix step Heun integration scheme. Moreover it has been preferred

to envisage a somewhat more realistic implementation, where the free-play cancellation is embedded within the control

surface servos, which are mostly self contained black boxes with their own independently digitalized realization. Thus, in

order to provide a negligible phase shift against deflection commands, provided at a different (in general lower) rate, the

control servos are mostly run at a higher sampling rate, which will be here assumed to be 400 Hz. To simulate correctly such

a digitalization there is the need to care for the processing delay (input-calculation-output), associated with the chosen data

acquisition system and control computer, in this case set to 1.7 ms. As described in Sections 1 and 5, an equivalent average

Coloumb like approximation of structural friction is identified by the control law. Instead, the actual plant is characterized

by a more realistic Stribeck model (Ferretti et al. 2003), whose parameters are tuned to give a maximum friction torque

comparable to the one computed by the simpler model.

A substantial set of simulations has been carried out for various ROM and finely discretized aerodynamic models,

measurement noise, disturbances and large changes of the free-play parameters.

6.3. Discussion of the main results

After being validated in the previous section, the reduced order aeroservoelastic model is here employed in the design of

the control law. The total number of states of the compacted model is 32: 8 structural, 12 aerodynamic, 8 for the sensors
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and 4 for the actuators. The total number of states required to describe the high fidelity, CFD-based system is equal to

128020, showing once again that a design carried out on such a model would have been impractical.

The following results are so organized: first it will be shown that even an I&I controller designed on the ideal system

is able to suppress the main limit cycle behavior of the system, yet does not remove the residual LCO due to the control

surface free-play. Then the results related to the design model with active free-play compensation system will be presented.

Finally, a few verification tests where the aerodynamic sub-system is simulated by a full CFD solver will be discussed.

To achieve good adaptive performances against pulse perturbations applied through the trailing edge control surface,

different flight speeds, up to 25% higher than V∞,bif, are taken into account to tune the controller parameters. The target

performances of Eq. 21 are the plunge and pitch of the typical section. Two accelerometers are placed at the 20% and at

the 70% of the chord respectively, maximizing in this way the signal to noise ratio and thus making the reconstruction of

the structural state easier.

Carrying out the design on the ideal system, i.e. βFP = 0, with the interactive procedure previously described, the control

parameters of Table 1 are obtained:

γObs Λ Ct μ γCon ηCon

0.5 diag(150) diag(50) 750 0.1 100

Table 1: Controller parameters.

Being κ (S) = 1, the inequality of Eq. 44 is satisfied, guaranteeing the stability and robustness of the controller. A

comparison of open and closed loop responses for the ideal system with the parameters of Table 1 is shown in Figure 6.

All the coefficients are tuned considering responses to input pulses of the trailing edge control surface, over flight speeds

ranging from V∞,bif to 1.15 V∞,bif. As can be seen, the system is efficiently stabilized by the designed controller. At this

point free-play and friction are introduced into the system model. Computing a few open loop responses due to input

pulses, the amplitude of friction torque on both hinges has been set to 20% of the actual torque transmitted by the actuator.

Introducing the free-play nonlinearity in the control surface actuation, the closed loop response is partially deteriorated,

as witnessed by Figure 7. The designed control law is still able to reduce the amplitude of the limit cycle oscillations,

but residual vibrations due to the presence of the control surface free-play show up, making the closed loop response

unacceptable. The free-play compensation is then introduced, with the aim of further reducing the residual LCO in the

closed loop response. The only parameter that should be set in this case is the learning rate ηGD of Eq. 48. As a rule of

thumb, the designer should start with a fairly low value, e.g. 0.01, then increase it until a sufficiently fast convergence rate

of the free-play parameters is obtained. Following this simple procedure, in the present case the best results are obtained

with ηGD = 1.25. From authors’ experience, low values of ηGD lead to stable but slowly converging results, while for values

of ηGD too high, e.g. 2, the training process of Eq. 48 can become unstable. The initial value for the unknown free-play

parameters of Eq. 47 has been chosen through some guided trials: their value is not known, but their rough estimate can
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Fig. 6. Ideal system response to an input pulse, V∞ = 188 m/s.
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Fig. 7. System response to an input pulse, free-play present but not compensated, V∞ = 188 m/s.

be easily assumed. With this idea in mind, we set randomly the initial value for the free-play parameters, oscillating from

−50% to +50% of their true value. The closed loop response with the free-play compensator maintained active during

the simulation is shown in Figure 8: the free-play effect is reduced to a remarkably low level, with almost no residual

oscillations. The convergence history of the unknown free-play parameters can be tracked, their history being shown in
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Fig. 8. System response to an input pulse with compensated free-play, V∞ = 188 m/s.

Figure 9. A fairly small final error has been obtained, and this can be considered a very good result for two main reasons.

First: for each control surface, we are trying to estimate three different parameters starting from only a single error measure,

which combines them. Second: the system is not "persistently excited" (Tao 2003, Slotine & Li 1991) and this may have

led to inaccurate identification results. For better appreciating the compensation effect of the proposed control law a phase

space plot of the control surfaces deflection is shown in Figure 10. As a verification of the results obtained with the design

model, the compensator is tested on a system excited by aerodynamic loads computed directly by using a fine Euler-based

CFD solution. In this test the system is left free to reach an LCO condition. Then the control law is activated, eventually

driving the response to zero. This kind of test can be useful for assessing possible dynamics that have not been captured

by the reduced order model. Furthermore, switching on the controller only after the LCO has been reached permits one

to evaluate its robustness in a case where the system nonlinearities are completely developed. To make the test even more

challenging, a random disturbance with a root mean square of 0.1 deg is directly applied to the trailing edge control surface

and the free-play of both control surfaces is set to βFP = 0.2 deg. The response obtained is shown in Figure 11, where

the control law is activated after four seconds of simulation. It should be noted that the control law is still able to stabilize

the response, even if a small residual LCO is still present, as witnessed by Figure 12. A further verification is carried out
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Fig. 9. Convergence history for the unknown parameters of the free-play model.
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Fig. 10. Phase space plots of the control surfaces deflection.
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Fig. 11. Verification response to off/on control, V∞ = 205 m/s.
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Fig. 12. Phase space plots of the control surfaces deflection, V∞ = 205 m/s.

considering larger values of the free-play width, now set to βFP = 0.25 deg for each control surface and a 30% reduction

of their stiffness. As evidenced by Figure 13, now the open loop LCO is driven by the free-play nonlinearity, leading to

much smaller motion amplitudes. It is therefore interesting to observe how the designed controller is also able to adapt

and stabilize the system in such very different circumstances. Furthermore, as shown in Figures 13c and 13d, a sizeable

free-play reduction can be otained by discarding the friction torque from the identification procedure, even if the estimation

of its average effect helps to further reduce the residual LCOs in closed loop. The free-play induced LCO is reduced to

a fairly low amplitude even if the free-play width is relatively large in this case, proving once again the effectiveness of

the proposed compensator. In addition, the proposed controller is quite insensitive even with a not so precise modeling of

the friction torque, nevertheless identifying a comparable averaged value of its amplitude in any performed simulation,

thus helping in the compensation of the nonlinearities present in the actuation system. The robustness of the compensation

system is now verified in face of variations of the actuators bandwidth, while the flight speed is maintained constant at

V∞ = 195 m/s. The results are shown in Figure 14, where the bandwidth is varied from 32 to 8 Hz. As expected, a

reduction of the bandwidth results in a reduction of the control system effectiveness. For frequencies lower than 15 Hz,
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Fig. 13. Verification response with large free-play width, V∞ = 205 m/s.

usually sufficient in classical flutter stabilizations (Waszak 1997, Mannarino & Mantegazza 2014a), the residual LCOs in

closed loop are comparable to the one experienced in open loop. It is therefore clear that the suppression of control surfaces

free-play requires higher performance servos.
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Fig. 14. Sensitivity of the LCO compensation effectiveness versus the actuators bandwidth.

Finally, the ability of the controller to widen the flutter-free flight range is investigated. Several simulations with increasing



31

velocities are carried out. As seen in Figure 15, the flutter point is moved forward to 57% of its initial value. This result is

obtained by considering off/on simulations, which have proven to be the most challenging tests for the presented controller.

Now, considering pulse perturbations with different amplitudes, indicated by β̄ in the figure, the flutter-free envelope is

widened even more, moving back to the off/on results as the pulse amplitude is increased. It is also interesting to see how

the flutter trends change with the presence of the controller: while the open loop system shows a range where the LCO

amplitudes gradually increase with the flight speed, the closed loop envelope presents a sort of ’linear’ instability point,

beyond which the system produces very large oscillations, as for the unstable response of a linear system. Analyzing again

Figure 15, it is clear that going towards the bifurcation point the basin of attraction of the stable solution is shrinking, so

LCOs are obtained for smaller and smaller perturbations. Again, this fact should be studied more in depth, but is beyond

the scope of the present paper.
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Fig. 15. Closed loop flutter envelopes, each one obtained considering different perturbations.

7. Conclusions

This work has presented an adaptive control strategy for compensating the effect of free-play and friction in a nonlinear

servo actuator for active flutter suppression. The approach uses a controller designed in two stages, where the first one is

devoted to the stabilization of the flutter at flight speeds beyond the stability boundary, while a second controller compensates

residual limit cycle oscillations due to the presence of free-play and friction in the control surface mechanism. The resulting

control logic is a combination of an Immersion and Invariance and a nonlinearity inversion approach. Differently from

the approaches previously found in the literature, such an inversion method is formulated here in a way that enables an

independent identification of the free-play parameters and an averaged friction amplitude. Even though only numerical

simulations are considered in this work, the presented results can be considered encouraging and could constitute a basis for

a realistic implementation of the algorithms here described. Because of the small number of design parameters, the adopted

interactive design procedure, based on well-reasoned and physically understood simulations, it has been verified to be an

adequate design method. In fact, the resulting adaptive controller provided fairly robust stabilization properties against



32 Journal name xxx(xx)

differing flow conditions, disturbances, model orders and parameter variations. As a further development of the present

results, one could focus on more complex and realistic applications, e.g., (1) deformable, free-flying aircraft, (2) extending

the proposed methodology to the context of load alleviation, (3) integrating true design specifications related to stability

and response performances, while (4) trying also to make the tuning process automatic through the use of optimization

techniques.

A. Model Data

Ms =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m Shθ ShβLE
ShβTE

Jθ 0 0

sym.
JβLE

0

JβTE

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Cs = 4πξ diag (mfh, Jθfθ, 0, 0) Ks = 4π2 diag
(
mf2

h , Jθf
2
θ , 0, 0

)

m Jθ JβLE
JβTE

Shθ ShβLE
ShβTE

fh fθ ξ kβLE
kβTE

[kg] [kgm2] [kgm2] [kgm2] [kgm] [kgm] [kgm] [Hz] [Hz] [-] [Nm] [Nm]

43.41 8.14 1.221 1.628 5.43 0.814 1.0853 4.65 9.3 0.001 23330 31107

Table 2: Structural model data
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