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ABSTRACT. The two-dimensional semiconductor MoS2 in its mono- and few-layer form is 

expected to have a significant exciton binding energy of several 100 meV, leading to the 
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consensus that excitons are the primary photoexcited species. Nevertheless, even single layers 

show a strong photovoltaic effect and work as the active material in high sensitivity 

photodetectors, thus indicating efficient charge carrier photogeneration (CPG). Here we use 

continuous wave photomodulation spectroscopy to identify the optical signature of long-lived 

charge carriers and femtosecond pump-probe spectroscopy to follow the CPG dynamics. We find 

that intitial photoexcitation yields a branching between excitons and charge carriers, followed by 

excitation energy dependent hot exciton dissociation as an additional CPG mechanism. Based on 

these findings, we make simple suggestions for the design of more efficient MoS2 photovoltaic 

and photodetector devices. 

 

 

Recent progress in the exfoliation of layered materials1,2 and the nanofabrication of functional 

structures has revived the interest in two-dimensional materials with properties complementary 

to graphene, in particular transition metal dichalcogenides3,4 (TMDs) such as MoS2. Depending 

on the metal atoms’ coordination and oxidation state, TMDs can be metallic, semimetallic, or 

semiconducting. Additionally, some TMDs show superconductivity5, charge-density waves6 and 

hidden electronically ordered phases7. Their potential for electronics has become evident by the 

realization of a field effect transistor8 (FET) and a logic circuit device9 based on a single flake of 

monolayer MoS2. 

The optical absorption of MoS2 in the visible spectral range shows four excitonic resonances10, 

commonly labeled (see Figure 1a) A to D at 1.9, 2.1, 2.7, and 2.9 eV. The spectral positions of 

these resonances are almost independent of the number of layers, while the indirect band gap is 

at 1.2 eV in the bulk and grows progressively as the number of layers is reduced, even exceeding 
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the energy of the A exciton resonance for the monolayer. Hence the monolayer, contrary to bi- 

and multilayers, behaves like a direct gap semiconductor and shows significant fluorescence11, 12. 

The exciton binding energy for bulk MoS2 has been determined to be 45 meV and 130 meV for 

the A and B excitons, respectively13. Both exciton binding energies increase upon decreasing the 

sample thickness, with estimates for monolayers14-16 ranging from 0.4 to 0.9 eV. Despite this 

high exciton binding energy, monolayer MoS2 shows a strong photovoltaic effect17 and potential 

for high sensitivity photodetectors18. Both findings require efficient charge carrier 

photogeneration (CPG), either via direct excitation of mobile carriers or via exciton dissociation. 

The spectral signature of charge carriers has been identified by absorption and fluorescence 

spectroscopy of MoS2, where the charge concentration is varied either via the gate voltage in a 

FET geometry19 or via adsorption20 or substrate doping21. The absorption peaks of charges are 

red-shifted by about 40 meV compared to the ground state absorption into the A and B excitons 

and have been attributed to optical transitions from a charged ground state to a charged exciton 

(trion). The possibility of alternative interpretations, such as polarons22,23 or Stark effect in the 

local electric field of the charges24-26 does not compromise the identification of these absorption 

peaks as belonging to charges. 

Here we use continuous wave (cw) photomodulation (PM) and femtosecond pump-probe 

spectroscopy to identify the spectral features of photogenerated charges and trace their dynamics, 

starting with their generation either by direct impulsive excitation into the charge continuum or 

via exciton dissociation. We exfoliated MoS2 in ethanol, following the protocol in Ref 1. The 

dispersion was dried and the obtained few-layer flakes were re-dispersed in a solution of PMMA, 

a transparent and electronically inert polymer. This dispersion was spin-cast onto a quartz 

substrate, yielding a macroscopic PMMA film with a homogenous greenish-yellow color 
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characteristic of thin MoS2 films27 (see Fig. 1a). PMMA in this sample serves as a matrix that 

holds an ensemble of flakes with lateral size1 of few-hundred nm. More details about the sample 

preparation are found in the Methods section. The distance  between the two Raman peaks 

around 400 cm-1 is generally viewed as the most robust measure of the flake thickness28. From 

the Raman spectra in Fig 1b we obtain = 23 cm-1 for excitation at 633 nm and =25 cm-1 at 

488 nm. Within the distribution, various thicknesses contribute differently at the two excitation 

wavelengths29. Overall, the Raman spectra indicate a flake thickness distribution that is 

dominated by three- to six-layer flakes.  

The advantages of this kind of sample compared to individual flakes are the ease of fabrication 

and handling and the possibility to use any spectroscopic technique without the need for high-

resolution optical microscopy. MoS2 flakes embedded in PMMA are in a slightly different 

environment than mono- or few layer flakes on dielectric substrates used in previous 

femtosecond studies30,31. However, as our results will show, the spectra and the relaxation times 

of the signal are very similar to those obtained on individual few-layer flakes. Hence the present 

study directly extends existing knowledge on the femtosecond behavior of few-layer MoS2. 

 

Results and Discussion 

The absorption spectrum in Fig. 1a shows the characteristic A and B exciton resonances, which 

are broader and red-shifted compared to undoped MoS2, as is typical of commercial MoS2 of 

mineral origin32, which is doped due to dislocations induced by the exfoliation and due to 

(mostly metallic) impurities. Hence, each of the two absorption peaks is actually an overlap of at 

least two contributions: neutral ground state to exciton absorption at the higher energy side of 
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each peak and lowest charged state to excited charged state at the lower energy side. For the A 

peak, an even lower energy contribution has been identified32, which has alternatively been 

ascribed to a surface trapped exciton33, an edge state34, or a plasmon resonance35, so that peak A 

actually arises from the overlap of three peaks. Similar to the notation in Refs 19, 20, and 32, we 

will use the labels L, A-, and A0 for the low energy peak, charge peak and exciton peak of the A 

resonance, and B- and B0 for the charged and neutral contributions to the B resonance. Please 

note that, contrary to electrical or chemical doping, photoexcitation generates charges in pairs of 

opposite polarities. However, although we expect the signatures of the corresponding positive 

charges at the same spectral positions, we know only those of the negative charges, hence our 

labeling. 

To identify long lived photoexcitations we performed cw PM spectroscopy. Here, a cw laser 

with 3.1 eV photon energy used for exciting the sample is periodically modulated via a 

mechanical chopper. The relative change T/T of the transmitted light from a halogen lamp is 

measured via phase sensitive detection (see Methods section for details). Those photoexcitations 

whose population changes significantly over the modulation cycle (i.e. their lifetime is long 

enough to build up sufficient population while the laser is on and short enough to sufficiently 

reduce their population while it is off) are identified in the cw PM spectrum via their 

photoinduced absorption (negative T/T) transitions to higher excited states. Concomitantly with 

the increase of photoexcited populations, the ground state population and its associated 

absorption is reduced (photobleaching, positive T/T). The cw PM spectrum at room temperature 

upon excitation at 3.1 eV, above the C and D exciton resonances, is shown in Fig. 2a. The signal 

is largely in phase with the modulation of the photoexcitation, with a negligible quadrature 

contribution. This means that the populations at the origin of the signal can easily follow the 
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modulation at 245 Hz, implying that the lifetimes of the respective photogenerated species are 

much shorter than the modulation period of ~4 ms. The main features of the spectrum are three 

positive (photobleaching) and two negative (photoinduced absorption) peaks. We fit the 

spectrum using five overlapping Gaussians (see Fig 2b), which represent the thermal and 

disorder-induced (in particular by polydispersity of flake thickness) broadening of the electronic 

resonances. The strong overlap between neighboring peaks makes them appear narrower than 

their actual lineshape and connected by an almost straight line, masking the inflection points 

characteristic of isolated Gaussian peaks. The spectral positions of the five peaks correspond 

very well with the three neutral and two charge peaks discussed in References 19, 20, and 32. 

Assuming the same origin for the peaks in the PM spectrum, we obtain a straightforward 

interpretation. Upon photoexcitation, the number of electrons in the neutral ground state is 

reduced, and the number of charge carriers is increased. Hence the absorption features L, A0, and 

B0 from transitions between neutral states are reduced, resulting in a positive T/T 

(photobleaching), while the absorption features A- and B- from charges are increased, yielding a 

negative T/T (photoinduced absorption). 

Alternatively, one could interpret the PM spectrum based on its resemblance of a derivative 

lineshape. A photoinduced blue shift of the absorption spectrum would result in a T/T 

contribution that follows the first derivative of the absorption spectrum (or a negative first 

derivative for a red shift); a photoinduced broadening of the absorption peaks would contribute a 

negative second derivative. If we interpreted our spectrum in terms of derivative lineshapes, it 

would be dominated by a positive second derivative, which indicates a photoinduced line 

narrowing. We are not aware of any such mechanism. However, the A peak is composed of the 

three overlapping narrower peaks L, A-, and A0 (no equivalent to the L peak has yet been 
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identified for the B peak, but we may extrapolate our reasoning also to B). In our proposed 

scenario photoexcitation generates charges and the middle peak A- increases at the expense of 

the other two, which decreases the overall width of the A peak. Hence, CPG leads to an apparent 

photoinduced line narrowing, which explains the positive second derivative lineshape. 

To investigate CPG in real time, we now turn to femtosecond optical pump-probe 

spectroscopy. Like cw PM, this technique measures the relative change in transmission T/T. 

However, rather than continuously, the sample is photoexcited at a well-defined point in time by 

a fs laser pulse (the pump) and the transmission spectrum is measured with a second fs laser 

pulse (the probe) at a well-defined delay after the pump. Scanning the pump-probe delay allows 

to follow the evolution of the photoexcitated states’ populations (see details in the Methods 

section). We start by comparing the T/T signal for excitation at 3.1 eV at long pump-probe 

delay (300 ps ) with the cw PM (see Fig. 3a). The two normalized spectra are very similar, with 

three important differences: the L peak is absent, there is an additional broad photoinduced 

absorption feature peaking around 2.45 eV, and the whole spectrum is red shifted. The red shift 

of the whole spectrum is more pronounced at higher pump intensities (see Fig 3b) and shorter 

pump-probe delays (see Figs 3c and d). Both these correlations suggest that the red shift is 

stronger for higher concentration of a certain species of excited states. The most intuitive 

interpretations are Stark effect due to the local field of photogenerated charges, as has been 

observed in semiconductor nanocrystals24, organic semiconductors25, and carbon nanotubes26,36, 

inter-excitonic interaction37 or band gap renormalization, as has been found in semiconducting 

quantum wells upon photoexcitation38 and inferred in recent works on semiconducting 

TMDs39,40. This intensity dependent red-shift also explains how the non-linear optical properties 

of MoS2 can change from saturable absorption (i.e. photobleaching) to optical limiting (i.e. 
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photoinduced absorption) as a function of pump intensity41. After approximately 3 ps, the 

spectrum decays without any significant shifts or changes of shape, through a dominant process 

with a time constant of approximately 500 ps (see Fig. 3e), as previously obtained on few-layer 

MoS2 supported on a dielectric substrate30. 

In addition to the previously identified A-, A0, B-, and B0 peaks, we note an additional broad 

absorption peak and a further positive peak at higher probe energies. Due to its position, we 

straightforwardly assign the positive peak to bleaching of the C exciton and label it C0. The 

absorption peak shows a formation similar to A- and B- (see next paragraph), and is similarly 

long lived, hence it should belong to a charge population. Like the C exciton bleaching, it is 

absent in cw PM, and strongly reduced for excitation energies below the C exciton resonance, 

see (Fig 3f), hence we ascribe it to a charge associated with the C exciton, labeled C-. The C 

exciton is ascribed either to excitation from a band below the valence band, or between the 

valence and conduction bands in a region of the bands nesting slightly off the  point42. In both 

scenarios it is plausible that the C0 and C- feature do not appear in the cw experiment, which 

probes populations that have relaxed towards the edges of the band gap. 

During the first 3 ps the T/T spectrum undergoes a characteristic change of shape: the 

positive signal components are formed during the instrumental resolution and decay 

monotonically, while the main photoinduced absorption features, associated to charges A-, B- 

and C-, show an initial instrument-limited rise followed by a delayed rise component after the 

pump pulse and by a slower decay. We can interpret this dynamics by assuming that the pump 

pulse creates an ensemble of excitons and charges with a combined spectrum S1(E). During the 

first 3 ps, this ensemble evolves into one with less excitons and more charges, with a combined 
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spectrum S2(E). Subsequently, the exciton and charge populations decay with very little further 

change of shape, meaning that either the decay times of excitons and charges are very similar 

(either by coincidence or due an interdependent relaxation mechanism), or that the population 

after 3 ps is already dominated by charges. The latter hypothesis is corroborated by the similarity 

between the fs T/T spectrum at longer delays and the cw PM spectrum, which should not show 

any exciton contribution. In the simplest possible case, the ensemble with the spectrum S1(E) 

evolves into the one with the spectrum S2(E) with only one characteristic sub-picosecond 

relaxation time 1. Hence we propose the simple scheme of the underlying photoexcitation 

dynamics shown in Fig. 4a: The pump pulse generates a mixed population of charge carriers and 

excitons. Subsequently a certain fraction of the excitons dissociates into charges. 

The evolution of the photoexcited states’ population according to Fig. 4a is best fitted with a 

characteristic time 1 = 680 fs. The assumption of only one common time constant 1 for the 

dissociation of the A, B, and C excitons may be a gross simplification, but it describes the data 

remarkably well (Figs 4b+c). The spectra S1 and S2 in Figs. 4d and e can be fitted with 

overlapping Gaussians analogously to the cw PM spectrum. Besides the six already identified 

charge absorption and exciton bleaching features, there are two additional peaks, which we label 

X and Y. Since they do not show the delayed formation characteristic of charges, we assign them 

to photoinduced absorption by one of the exciton populations. 

Comparing the relative contributions of the X and Y peaks to the S1 and S2 spectra, we can 

deduce that after 3 ps approximately the exciton population is somewhat decreased (by 

approximately a factor of 2). On the other hand, if the exciton population followed a curve ~ 

exp(-t/1), the remaining exciton population would be only 1%. Hence, 1 is not the time constant 
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of the exciton dissociation, but rather the characteristic time with which the dissociation rate 

diminishes. Besides its time dependent rate, the exciton dissociation yield depends also on the 

energy of the exciting photons. This is expressed in Fig. 4a as a rate constant kd(E. t) that 

depends on the pump energy and on time. Fig 3f shows that the ratio between the absorption 

peaks due to charges and the respective bleaching peaks is higher for higher photon energy. This 

is consistent with the lower PL quantum yield for higher excitation energy, which has also been 

ascribed to charge separation42. 

Detailed studies of the CPG dynamics exist for carbon nanotubes and conjugated polymers, 

which are materials with exciton binding energies similar to MoS2. In carbon nanotubes, there is 

an initial branching between mostly excitons and 1-2% directly excited charges36, with a higher 

charge yield for higher excitation energy. In conjugated polymers, there is a similar initial 

branching, followed by additional CPG via dissociation of “hot” excitons during the first few 

picoseconds43. Elaborate models describe how the surplus energy of hot excitons increases their 

dissociation probability44,45. The relaxation of the electron and hole to the lowest exciton state 

are typically faster than our observed 680 fs46-48; however electron-phonon coupling creates a 

phonon heat bath that can live on for a few ps49. Additionally, exciton migration, which is 

facilitated by the extra energy and comes to a halt when the exciton reaches a local energy 

minimum, increases the probability that the exciton reaches a site where its dissociation is 

facilitated. In MoS2 flakes, such sites could be surface defects, flake edges, metallic inclusions, 

crystal faults or small islands of an extra MoS2 layer. We therefore conclude that the exciton 

dissociation probability is high while the excitons are hot and mobile and decreases as they reach 

their energetic minima. CPG in few-layer MoS2 is a combination of two processes, both which 
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have increased efficiency for higher exciting photon energy: direct excitation of charge pairs 

(within the 50-100 fs instrument resolution of our experiment) and hot exciton dissociation. 

Before we discuss the implications of time- and pump energy dependent hot exciton 

dissociation, we review how our findings compare to previous femtosecond work on TMDs. 

Intervalley scattering50,51 requires circular polarization and is not probed in our experiment, 

because all our laser polarizations are linear. On a time scale of 1 ps to 500 ps, Shi et al. obtained 

results very similar to ours in few layer flakes deposited on a dielectric substrate30, but they do 

not discuss the temporal change of shape of the spectrum, which is crucial in understanding 

exciton dissociation and charge generation. They estimate that for excitation fluences similar to 

ours, the sample temperature should change by only 0.1 K, thus dismissing sample heating as a 

possible source of the signal. In our samples, due to the low heat conductivity of PMMA52, 

heating could be a bit stronger. However, a signal due to heating would not change its shape with 

time and, most crucially, its shape would not depend on the excitation photon energy. In Fig 3f, 

there is a small C- signal even for excitation below the C exciton resonance. This contribution, 

which at any delay is 20% or less compared to the spectrum for excitation above the C 

resonance, may originate from heating or any other mechanism that changes the overall 

lineshapes and/or peak positions, such as Stark effect or band gap renormalization. Hence, for 

the combination of all such processes including heating, we estimate an upper boundary of 20% 

contribution. Any such mechanism is less important in the cw PM experiment, where no 

appreciable C- signal is found. Therefore, both the femtosecond and the cw signals are dominated 

by changes in excited and ground state populations, not pure lineshape/shift mechanisms. 

Considering further lineshape/shift mechanisms, inter-exciton interaction is expected to result 

in a red-shift37 and line broadening. However, we observe an apparent line narrowing (see 
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discussion of the cw PM spectrum) due to the increase of the central A- peak at the expense of its 

neighbors on either side. The Burrstein-Moss effect, which has been observed in substitutionally 

doped MoS2 fullerenes53 should lead to a blue shift with increasing excited state population. Our 

contrasting observation implies that any Burrstein-Moss contribution is overwhelmed by one or 

more red-shifting mechanisms.  

 

Conclusion and outlook 

We have shown that charge carrier photogeneration in few layer MoS2 arises from two 

different processes. First, there is a branching into excitons and charge carriers as the primary 

photoexcited species. Additionally, there is an increased, excitation energy dependent charge 

carrier yield from hot exciton dissociation during the first few ps. For monolayer MoS2, due to 

the higher exciton binding energy14, we can expect both CPG processes to have a lower yield. 

According to our findings, the efficiency of MoS2 photovoltaic17 and photodetector18 devices 

depends significantly on the excitation wavelength and can be strongly increased, especially in 

monolayer devices, by facilitating exciton dissociation, e. g. via a strong built-in field using 

appropriate electrode materials, by engineering a p-n junction54,55, or by combining MoS2 with a 

second material56-58 so one of them acts as electron donor and the other as acceptor in a 

heterojunction. 

 

Methods:  
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MoS2 sample preparation: 1 mg of MoS2 in water/ethanol mixture (Graphene Supermarket) was 

extracted by flocculation with the addition of KCl (Potassium Chloride ≥99.0 %; Sigma) into a 

solution. Obtained flocculates were repeatedly washed with a fresh water/ethanol (1:1) mixture 

to remove any salt residues. Solvent mixture of water and ethanol was then replaced by the 

absolute ethanol only. Sedimented MoS2 was extracted from the bottom with a minimum amount 

of solvent and redispersed in 2ml of chlorobenzene in ultrasonic bath. 40 mg of PMMA 

(Poly(methyl methacrylate) avg. MW~350,000; Aldrich) was added into a solution of MoS2 and 

sonicated at 50 °C for 30 min. 30 μl of the obtained stable solution was drop-casted onto a quartz 

substrate and left to dry in air. 

All spectroscopic investigations were performed at room temperature. Raman spectroscopic 

characterization of MoS2 was performed with an NT-MDT NTEGRA SPECTRA confocal 

Raman microscope in backscattering geometry with spectral resolution of 0.7 cm-1. We used the 

excitation lines at 488 nm (Argon ion laser) and 632.8 nm (He-Ne laser) and a 100× objective 

(NA 0.9) to focus onto a spot size of 3microns. The Raman signals were detected with a CCD 

array at -70 °C. We used a laser power below 3 mW to avoid damage of the sample. 

The probe used in the cw PM experiment is a halogen lamp (ASB-W-30 from Spectral 

Products) filtered by a monochromator (CM 112 from Spectral Products with 0.3 mm slits). 

Excitation is provided by diode laser at 405 nm (3.1 eV) with a power of 85 mW, focused onto a 

spot of 8 mm diameter, mechanically modulated by a chopper (MC 1000A Optical Chopper 

System from Thorlabs). 

Ultrafast spectroscopy: the femtosecond pump-probe spectroscopy setup is driven by an 

amplified Ti:sapphire laser (Coherent Libra) producing 4-mJ, 100-fs, 1.55-eV pulses at 1-kHz 
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repetition rate. A fraction of the pulse energy is used to drive a second-harmonic (SH) pumped 

OPA, generating 70-fs pulses tunable from 1.65 to 2.5 eV; the pump pulses are provided either 

by the OPA or by the SH of Ti:sapphire. Another fraction of the pulse energy is focused in a 3-

mm-thick sapphire plate to generate a single-filament white light continuum used as a probe. 

Pump and probe are non-collinearly focused on the sample and the transmitted probe spectrum is 

detected by a spectrometer working at the full 1-kHz repetition rate of the laser. T/T spectra are 

recorded with a time resolution of 100-fs and a sensitivity of 1210-5. 
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Figure 1. (a) Absorption spectrum of the sample of MoS2 in PMMA. Inset shows a photograph 

(the dark area has a diameter of approximately 7-8 mm). (b) Raman spectra for two excitation 

wavelengths at 633 nm (red line) and 488 nm (blue line).  
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Figure 2. (a) cw photoinduced absorption spectrum of MoS2 in PMMA at room temperature for 

excitation at 3.1 eV. In-phase (blue) and quadrature (green) signal components are shown for a 

modulation frequency of 245 Hz. (b) Five Gaussian fits (red) whose sum (blue) fits the 

normalized in-phase spectrum (open squares). 
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Figure 3. (a) Normalized cw photomodulation spectrum of MoS2 in PMMA (blue) compared to 

the fs transient spectrum at 300 ps pump-probe (black) delay for 2 1014 cm-2 excitation fluence, 

3.1 eV pump photon energy (b) pump-probe spectra at 300 ps normalized to the B exciton peak 

for different pump fluences at 3.1 eV pump photon energy: 2 (black), 3(red), 6 (green), 20 (blue), 

40 (cyan) and 80 1014 cm-2 (c) absolute and (d) normalized (to the B exciton peak) pump-probe 

spectra for 4 1015 cm-2 pump fluence at delays 300 fs (black), 1 ps (orange), 3 ps (red), 10 ps 

(purple), 30 ps (green), 100 ps (dark cyan), and 300 ps (blue) (e) normalized time traces for 

different probe energies: 2.48 (black), 2.25 (red), 2.07 (green), 1.94 (blue) and 1.80 eV (dark 

cyan) (f) normalized spectra at 300 ps pump-probe delay for different pump photon energies: 

3.10 (purple), 2.48 (blue), 2.34 (dark cyan) and 2.25 eV (green).  
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Figure 4. (a) Scheme of the photoexcitation dynamics of excitons and charges. (b) contour plot 

of the fitted T/T (in %) (c) contour plot of the measured T/T (in %) (d) spectrum S1 described 

in the text (black) and fit to eight Gaussian peaks (photoinduced absorption from charges: red, 

photoinduced absorption from excitons: blue, photobleaching: green) and their sum (dark cyan) 

(e) spectrum S2 described in the text with the same color coding as (d). 
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