
adjustments (Emigholz, 1996). By contrast, the
operators of modern industrial plants face different
challenges due to handling, analyzing, and inter-
preting large amounts of distributed information
simultaneously.

Although some advanced control techniques (e.g.,
dynamic matrix control, model algorithmic control)
had their origins in the industry from some enlight-
ened development groups (e.g., Shell, IDCOM), the
formalization and systemization of these techniques
was conceived, conducted, and finalized by academia
through a rather long incubation period (see Morari &
Lee [1999] for a detailed review). Eventually, starting
from the 1990s, the availability of robust software
environments and fast hardware, both reasonably
priced, allowed the seminal model-based techniques
(still too theoretical and simplified) to be transposed
into stable and complex algorithms, such as model
predictive control (MPC) and real-time optimization
(RTO; De Souza et al., 2010).

MPC and RTO enabled the industries to implement
models and solutions into their systems by optimizing
the process parameters to maximize the production
according to minimum energy usage, and/or minimum
raw materials consumption, and/or minimum environ-
mental impact. The growth and implementation of
these optimization techniques can be judged by a pre-
diction made by the ARC advisory group, that the
RTO market will reach more than US$1.5 billion in
2015 (Abel, 2011).

IMPACT ON OPERATORS’ COGNITIVE
WORK BY ADVANCED CONTROL
TECHNIQUES AND AUTOMATION

The last two decades have witnessed a large 
increase in the automation of industrial plants. 
With reference to an increase in systems for on-line 
control of chemical and petrochemical plants, 
mainly around the United States, Europe, and Asia-
Pacific areas (J€ams€a-Jounela, 2007), there has been a 
progressive introduction of advanced tools to moni-
tor, support, and enhance the operation and perfor-
mance of the process. After the introduction of 
automated control algorithms (1960s), deployment 
of distributed control systems (DCSs; 1970s), and 
the installation of seminal on-line optimization solu-
tions for chemical processes (1980s), the progressive 
availability of high-performing central processing units 
(CPUs) and robust operating systems, together with 
improved mathematical algorithms and routines, have 
been the prerequisites for the widespread diffusion of 
advanced solutions (1990s).

This technological advancement and automation 
has significantly changed the nature of work for 
industrial operators. Indeed, at the beginning of the 
automation era, the control loops operated directly 
in the field or were concentrated in local control 
rooms. Consequently, in the past, fewer and con-
centrated actions in the field were sufficient to 
gather the process information and to make process
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Contribution to Complexity
of MPC and RTO

MPC and RTO are means to achieve a continuous 
optimal production of industrial processes. MPC uses 
model-based algorithms, holistic controllers, and 
sophisticated optimization techniques to predict future 
dynamic behaviors of the process. RTO incorporates 
the maximization of a suitable economic objective 
function, where the degrees of freedom are composi-

tions, flow rates, efficiencies, and more general set-
points of operating conditions, which are optimized 
periodically in real time (De Souza et al., 2010).

If, on one hand, these automated algorithms and 
procedures seem to relieve the operator’s burden by 
running in the background, on the other hand, and in 
reality, they call for a higher level of mental representa-
tion, understanding, and awareness by the operator. 
The operator stands at the last level of the control/opti-
mization hierarchy. Consequently, he/she is responsi-
ble for the supervision of the process and the related 
control/optimization procedures. An industrial opera-
tor has to manage the automation and control loops 
on a more frequent and articulate basis than that of the 
pilot who has to understand the interconnections and 
control loops of a flight management system (FMS; 
Jamieson & Guerlian, 2000). Complex chemical plants 
can have several thousands of control loops where the 
corresponding controlled variables are affected by a 
proportional number of manipulated variables. The 
coupling and pairing of these process variables is quite 
intricate. These features call for an in-depth knowledge 
of the dynamic response of the system to either deter-
ministic modifications by manipulated variables or sto-
chastic variations by external disturbances.

Commercial producers of DCSs offer specific and 
customizable packages for MPC and RTO. These are 
seldom introduced into the fully automated control 
flow of the plant, but rather, have to be monitored 
actively, considered and checked, and finally imple-
mented by the human operator (i.e., the control room 
operators [CROPs]) to reduce the risks involved by a 
fully automated algorithm. Consequently, the need for 
the operator to understand the control loops of MPC 
is essential and affects his/her cognitive information 
processing resources (Jamieson & Guerlain, 2000). 
Interestingly, from a human factors perspective, as 
many as 60% of the automated control loops among 
the plants worldwide are either underperforming or

inefficient, because they are not well understood and 
handled by the operators (Thwaites, 2008). This result 
indicates the challenges in training operators to use 
advanced control techniques adequately.

Cognitive Requirements of CROP
as Challenged by Advanced
Control Techniques

As the CROPs acronym recalls, these operators work 
in control rooms and are required to observe, monitor, 
control, and optimize the process variables with the 
help of synoptic diagrams displayed on the DCS 
(Fig. 1).

To validate the results proposed by the MPC and 
RTO tools, operators draw on their mental models to 
integrate separate indications and account for the 
required data. To either anticipate future states of the 
plant or evaluate plant performance under various con-
figurations (Vicente et al., 2004), they need to:

� develop cause-and-effect relationships when explain-
ing plant behavior and indications,

� perform internal experiments (Rasmussen & Good-
stein, 1985),

� and “run” mental simulations of the plant.

Modern DCSs can comprise thousands of control 
variables organized into hundreds of synoptic views of 
the plant and divided into physical subsections. As dis-
cussed in the previous section, the intrinsic multidi-
mensionality of the DCS and of the related MPC/

FIGURE 1 Typical example of a CROP’s activity.



RTO solutions plays a challenging role where the activ-
ity of operators is concerned, because

� couplings and interconnections (Kluge, 2008;
Moray, 1997; Vicente, 2007; Wickens & Hollands,
2000) require the operator to simultaneously process the
interplay of cross-coupled variables to either assess a process
state or predict the dynamic evolution of the plant;

� dynamic effects (Kluge, 2008; Vicente, 1999;
Walker, Stanton, Salmon, Jenkins, & Rafferty, 2010)
require the operator to mentally process and envisage the
change rates of cross-coupled variables and to develop sensi-
tivity for the right timing of decisions to be successful;

� non-transparency (Funke, 2010; Kluge, 2014; Vice-
nte, 1999; Woods, Roth, Stubler, & Mumaw, 1990)
requires the operator to work with more or less abstract
visual cues that need to be composed into a mental repre-
sentation and need to be compared with the operator’s
mental model;

� multiple or conflicting goals (Brehmer & D€orner,
1993; Funke, 2010; Kluge, 2008; Reason, 2008; Ver-
schuur, Hudson, & Parker, 1996; Wickens & Hol-
lands, 2000) require the operators either to balance
management intentions or to decide on priorities in case of
goal conflicts in the decision-making process, e.g., which
course of actions to take;

� comprehension of MPC and RTO philosophies is
required, making sure that CROPs understand the
advanced control and optimization philosophies that are
at the basis of MPC and RTO, since they have to validate
the proposed results before accepting/rejecting their imple-
mentation in the on-line control strategy; and

� crew-coordination complexity (Kluge, 2014; Woods
et al., 1990) incorporates small crews, e.g., CROPs,
field operators (FOPs), and supervisors, that are
responsible for overall system operations (Reinartz,
1993; Reinartz & Reinartz, 1993; Carvallo et al.,
2005; Vicente et al., 2004) and calls for the operators to
concurrently interact with team members to orchestrate
individual actions into a coordinated flow of actions to
either assess the situation or choose a course of actions.

operations deviate from their normal operating condi-
tion (Kluge, 2014). Instead of assisting and de-loading
the CROP, alarm flooding takes the operators to
conditions of high “stress” and information overload
(Orasanu & Backer, 1996; Kontogiannis, 1999). In
turn, these conditions lead to a loss of cognitive
efficiency and strongly affect the capacity of CROPs to
organize well-thought-out decisions due to overabun-
dant information, sensory overload, ambiguity, time
pressure, and unpredictability (Moore et al., 2012).
The occurrence of abnormal situations in process
industry is not a rare event. In fact, a report by Honey-
well (Patrick et al., 2011) indicated that US$10 billion
is lost every year because of abnormal situations.
Among the attributes triggering these abnormal situa-
tions, the contribution of human errors was found to
be 50% (Patrick et al., 2011).

Reflecting common practice critically, DCS design-
ers seem to be focused strongly on improving and
enhancing the performance efficiency of their products
but without adequately addressing the cognitive con-
straints (Vicente, 1999), such as working memory
capacity. As outlined above, this is a major human fac-
tors challenge, because the information handling
required by the operators to assess the situation ade-
quately necessitates the simultaneous processing of the
interconnected variables, their dynamics, and side
effects. Specifically, simultaneous processing leads to:

� an increased demand in terms of mental workload to
correctly assess the situation, based on the operators’
mental model (Bainbridge, 1992; Kragt & Landweert,
1974; Vicente et al., 2004), to reach correct decisions
(contextual control model [COCOM] by Hollnagel
2007; Hollnagel & Woods 2005; Kluge, 2014); and

� high stress on the CROP in abnormal situations,
when uncertainties are introduced to the system
requiring non-routine decisions/actions, and when
alarm flooding distracts from or impedes a correct
decision-making process; consequently, risky deci-
sions are made, skilled performance declines, and
crucial information is ignored (Kontogiannis, 1996,
1999).

Task of FOP

Focus thus far has been on the CROP’s task, but 
CROPs are working in a crew with FOPs. As shown in 
Fig. 2, FOPs generally work at the plant site, in contact

Finally, another challenge that CROPs have to face 
is alarm flooding. Actually, the highly automated alarm 
management system may produce a large number of 
alarms close together in cases of abnormal situations, 
which may bring about undesired and impracticable 
cascades. In an abnormal situation, a disturbance or 
series of disturbances in a process make plant



with the equipment, where the real process is in opera-
tion. The main task of an FOP is interacting with physi-
cal devices that are distributed throughout the plant,
which can require the uses of different senses (i.e.,
sight, sound, and touch but seldom smell and very sel-
dom taste) to crosscheck the perception that is formed
by the interpretation of field data from sensors.

The challenges faced by FOPs are different from
those faced by CROPs. Because of their work outside
at the plant (e.g., to inspect the plant, observe malfunc-
tions or leakages in the field), FOPs have to cope with
challenges related to external factors that are mostly
out of their control, such as weather conditions (rain,
snow, wind, storms), shift timing (day or night), visibil-
ity conditions (fog, smokes, moisture, dust), different
noise conditions, vibrations, altitude (working on a dis-
tillation column whose height can be up to 175 feet),
odors (sometimes pungent), etc. The work of FOPs is
additionally hindered by the fact that they are required
to wear technical uniforms and protective equipment
during their working hours.

In case of abnormal situations, a set of process varia-
bles moves toward unsafe values. Consequently, FOPs
and CROPs have to coordinate and operate both indi-
vidually and as a distributed group to take the process
back to the safe domain. In these situations, the com-
munication between the CROPs and FOPs increases
significantly and covers both the information side
about plant conditions and the action side about
remote and in-the-field operations on valves, switches,
and levers.

In such abnormal situations, an essential prerequisite
for effective teamwork is shared cognition (Patrick &
Morgan, 2010; Nazir, Johnstone Sorensen, Øverga8 rd,
& Manca, 2015) to facilitate the FOP–CROP commu-
nication and coordination. For example, an abnormal
situation observed by an FOP in the field using his/her

physical senses must be coordinated with the CROP 
for necessary actions and instructions (Nazir et al., 
2012). This can be achieved by maintaining an ade-
quate distributed situation awareness (Salmon et al., 
2009). Operators are required to monitor recurrently 
the dynamics of the process without seeing directly 
what the other colleagues can perceive. This happens 
because operators are usually far from each other. Infor-
mation exchange and a mental representation of the 
process dynamics are required to make timely, correct 
decisions based on a mutual comprehension.

OPERATORS’ TASK PREPARATION

Common Practice
In many plants in the United Staes and Europe, it is 

common practice that CROPs worked as FOPs before 
being assigned to control room tasks. CROPs observed 
in a study by Yin and Laberge (2010) attributed much 
of their system and process knowledge, included in 
their mental model, to their many years of practical 
experience working as FOPs. This means that major 
sources for deriving and developing the CROPs mental 
models are the field experience, incidents, and upsets 
that have occurred (Yin & Laberge, 2010). These 
include, for instance, spatial knowledge about the line-
up, the layout of the plant, how the process works 
internally, why the equipment is at certain places, what 
is happening in/at each process unit, and what are the 
operating procedures. The preparation of FOPs in 
most industrial plants is accompanied by class-based 
preliminary formation with conventional written pro-
cedures and ex-cathedra lessons, the duration of which 
is often reduced to a few weeks before the FOP is 
placed alongside with experienced operators who, to 
some extent, play the role of on-the-job trainers (Manca 
et al., 2013a).

This kind of on-the-job experiential learning (Kolb, 
1984) in the field is assumed to be effective particularly 
for the acquisition, elaboration, and differentiation of 
a mental model, but it leaves the acquisition of an 
accurate mental model somewhat to chance, depend-
ing on the situations experienced in the field. This 
means that the ways in which FOPs are assumed to 
acquire a mental model, and which seems essential for 
their later work as a CROP, are quite diverse and rarely 
based on what is known in training science about how 
to develop training programs (e.g., based on a cognitiveFIGURE 2 FOP in the field.



design is also that recent literature on learning processes 
is not capitalized upon (Bell et al., 2008).

“New Problems Demand New 
Approaches”

Vicente (1999) suggested that “new problems 
demand new approaches” (p. 17) and raised doubts 
concerning human capacity to utilize effectively the 
above-discussed technology of DCSs, such as MPC 
and RTO, by asking, “Do we know how to use it?” (p. 
19). Here it is argued optimistically that the human 
operator is able to use the technology effectively but 
needs to be prepared and trained accordingly by prac-
tice-based training with respect to technical and crew-
coordination complexity. However, based on other 
results (e.g., Kluge et al., 2009), it must be conceded 
that many current information-based and demonstra-
tion-based training practices (Salas & Cannon-Bowers, 
1997) do not match yet the learning objectives derived 
from the above-outlined work demands and do not 
prepare operators as optimally as they could to handle 
complex systems based on learning theories. From this 
perspective, these current training arrangements ignore

� recent results from learning and training research
(e.g., Gonzales et al., 2003; Sun et al., 2005; Kluge,
2014) on how operators actually learn and acquire
mental models by experiential learning for handling
routine and stressful abnormal situations and

� crew-coordination complexity, as outlined above,
which results from the interconnectedness among
multiple agents through coordination requirements
(Roth & Woods, 1988; Waller et al., 2004;
Hagemann et al., 2012).

The following section refers to recent research to 
address the following question: How do operators 
actually learn and acquire mental models and skills to 
coordinate in a team?

Recent Results from Learning 
Research

Concerning the acquisition of a mental model, learn-
ing to control a complex system takes place through 
the accumulation of knowledge about so-called 
instances (Gilboa & Schmeidler, 2000; Logan, 2002;

task analysis; e.g., Cascio & Aguinis, 2011; Coultas 
et al., 2012). These deliberately designed training pro-
grams raise the likelihood of the acquisition of an ade-
quate mental model that aids the CROPs and FOPs in 
decision making under normal and abnormal situa-
tions. For instance, in some countries where vocational 
training is less formalized, FOPs with diverse educa-
tional backgrounds are trained mainly on the job and 
informally (Cheetham & Chivers, 2005) and with a 
rather short introductory course before they are 
allowed to work in the plant. In contrast, in countries 
with more formalized vocational training systems, 
refinery FOPs receive a very formalized 3.5 years of 
information-based and demonstration-based (Salas & 
Cannon-Bowers, 1997) vocational training after high 
school, which includes theory and practical work in a 
technical center.

As far as training of CROPs is concerned, it is com-
mon practice that operator training simulators (OTSs) 
are used (Kluge et al., 2009; Patle et al., 2014). An 
OTS includes a main process model and a simulated 
DCS that allows for performing a realistic hands-on 
training of normal operations, start-ups and shut-
downs, as well as upsets and emergency situations 
(Komulainen et al., 2012). These authors and several 
others (Reinig et al., 1997; Balaton et al., 2013; Patle & 
Ahmad, 2013; Vellaithurai et al., 2013) claim that to 
improve the skills of operators, OTSs have been widely 
applied since the 1990s (Patle et al., 2014). Neverthe-
less, from a human factors perspective, it is unclear 
what rationale is used to decide when, how, and how 
often to integrate the OTS in the training. Regrettably, 
nothing is said in the study by Komulainen et al.
(2012), or the recent review by Patle et al. (2014), about 
a possible rational training-course development 
referred to the design process (i.e., how these scenarios 
are selected and how the simulator-based learning expe-
rience is exploited to support the acquisition of an 
accurate mental model).

Missing in the literature is a necessary clear and 
explicit link (Salas et al., 2012) between a cognitive task 
analysis (e.g., Crandall et al., 2006; Roth, 2008), as 
listed above, and the selection and development of a 
scenario that deliberately supports the acquisition of 
knowledge, mental model, and cognitive skills to profi-
ciently execute these cognitive tasks. It is assumed that 
one reason for the missing link between the cognitive 
task analysis of CROP and FOP tasks and training



Gonzales et al., 2003; Gonzales, 2012). Instances are
situation-decision-utility (SDU) chunks, consisting
of environmental cues named the situation (S; for
example, indicators on the screen, alarms, warnings)
of a set of actions applicable to the situation named
decision (D; for example, a number of standardized
operating procedures [SOPs] required) and the eval-
uation of the goodness of a decision in that particu-
lar situation (U; Gonzales et al., 2003). The
acquisition of mental models accumulates only with
job experience or is substituted by practice-based
training (e.g., Kluge & Sch€uler, 2007; Nazir et al.,
2013a). Practice-based training allows learning about
situational cues, capturing the selected courses of
action, and enhancing the results accuracy in the
achievement of organizational goals (Kluge, 2014)
for later cue recognition based application of the
instance-based knowledge.

The perception of similarity among situations
increases with experience and practice-based training
on the task (Gonzales et al., 2003). This supports
attention management for relevant task cues (Kolod-
ner, 1983; Vicente et al., 2004), which is extremely
important in cases of alarm flooding and abnormal
situations. In summary, extensive practice-based
experiential training is the essential prerequisite for
initiating learning processes to prepare operators to
handle complex systems.

Thus, in common practice, in process industries the
following aspects of instance-based learning are lacking
and should include:

� the possibility to acquire instances (SDU chunks);
� the possibility to learn about the methods, algorithms,
and conceptual contents of MPC and RTO and to
integrate these insights into the mental model;

� the possibility to simulate a large number of unan-
ticipated/abnormal situations, to learn about situa-
tional cues, which prompt for the emergence of an
abnormal situation and the possibility to learn how to
handle stressors;

� the possibility to simulate accident events and
observe the possible consequences to acquire feedback
about the utility of a decision; and

� the possibility to be exposed to unexpected alarm
sequences and possibly to alarm flooding to learn to
focus attention on task-relevant aspects.

Concerning crew-coordination complexity in abnor-
mal situations, it is assumed that teamwork is also

learned through the accumulation of instances of
teamwork episodes (e.g., Rentsch et al., 1994; Rea-
gans et al., 2005; Edmondson et al., 2008; Mathieu
et al., 2008; Kluge, 2014). This is because most of
the things one knows about teamwork are proce-
dural and implicitly stored, and with everyday
experience and increasing job experience, explicit
and rule-based knowledge is extracted (Sun, Slusarz,
& Terry, 2005). By “doing” teamwork, it can be
assumed that team knowledge (Wildman et al.,
2012) also develops in a similar way to system
knowledge. Team knowledge (Wildman et al.,
2012) consists of task-related, team-related, process-
related, and goal-related static knowledge (task
knowledge, expertise location, teamwork mental
models, and shared vision) as well as dynamic
knowledge (e.g., distributed situation awareness, sit-
uation models). In recent literature (Rentsch et al.,
1994; Reagans et al., 2005; Edmondson et al.,
2008; Mathieu et al.; 2008), it is assumed that for
teamwork as well (in addition to task work), SDU
chunks are acquired and differentiated through
work experience and practice-based training.

Concerning the requirement of handling crew-
coordination complexity, current training arrange-
ments are lacking and should include such aspects
as

� the possibility to practice crew-coordination skills to
deal with concurrent task work and teamwork demands
that need to be interleaved;

� the possibility to learn to handle additional cognitive
demands caused by teamwork to achieve a smoothly
coordinated multi-agent workflow;

� the possibility of developing shared mental model-
ing/mapping among FOPs and CROPs to implicitly
coordinate multi-agent action steps; and

� the possibility to perform coordinated actions
among FOPs (where both CROPs and FOPs have to
perform their own actions in a timely coordinated
and consistent way) to practice the timing issues in
coordination.

After having summarized the current state-of-art
concerning learning theories, the next section gives an
idea of how cognitive and team task analysis results can
be linked to training methods to prepare CROPs and
FOPs for their work in highly technical and crew-coor-
dination complex environments.



rare occurrence of abnormal situations (Patle et al., 
2014), simulated practice-based training is suggested as 
a substitute for work experience to achieve the training 
objectives of FOPs and CROPs. For simulated practice-
based training, different learning environments can be 
employed, such as (i) OTSs as briefly introduced above 
and which already has a long history in training prac-
tice and (ii) virtual reality training simulators (VRTSs), 
which are new in training practice.

OTSs

As introduced above, OTSs have been widely 
deployed in the chemical industry since the 1990s. 
Typically, the OTS is a software tool that is able to sim-
ulate chemical processes in real time and is installed in 
a dedicated room that replicates the control room with 
all its necessary furniture and features. The synoptic 
panels of OTSs resemble/replicate process flow dia-
grams (PFDs) of the process, which allow the operator 
to understand and learn the process details and optimal 
operating conditions.

Focusing on the CROPs as the target group, the 
benefits of OTS include learning, understanding, and 
experiencing real DCSs, operating conditions, parame-
ters, interconnections among control loops, control 
algorithms (e.g., MPC, RTO) start-up and shut-down 
procedures, as well as simulated abnormal situations 
and alarm flooding. The control loops, algorithms, and 
tools are assumed to be well understood in this (2D) 
environment with the help of PFDs and the dynamic 
simulation performed by a conventional OTS, as they 
are exact replica of control rooms. This means that the 
OTS enables practice-based experiential learning and 
supports instance-based learning of the CROPs. The 
identical elements replicated between the control room 
and OTS provide the operator with exactly similar 
instances that he/she faces in real control room during 
normal operations and in abnormal situations (Kluge 
et al., 2009).

There are some limitations of OTSs, though, for 
achieving the above-derived training objective. The 
complexity of crew coordination between CROPs 
and FOPs is not considered in the conceptualization 
of an OTS. Nonetheless, both under conventional 
(e.g., start-ups, shut-downs) and abnormal situations 
(e.g., alarms, near misses, incidents, accidents), the 
intervention of FOPs is usually required at the plant 
site. In these situations, the automated control

Integration of Cognitive Requirement 
Analysis, Training Objectives, and 
Learning Theory

Table 1 presents a synopsis of what has been out-
lined so far in the first two sections. In the first column 
(from the left), aspects contributing to complexity, cog-
nitive requirements, and learning objectives are sum-

marized, as introduced in the first two sections. The 
column on training methods integrates the proposi-
tions of the second section and adds principles from 
experiential learning theory (see Fig. 3) by Kolb (1984). 
Due to the hazardous potential of experiential learning 
during normal operations and workers’ shifts, and the 
rare occurrence of abnormal situations (upon which to 
train), substantial simulated practice-based training is 
suggested as a substitute for work experience. This has 
the potential to enable workers to acquire instances 
and a mental model that incorporates knowledge about 
process dynamics, as well as the possibility to enable 
them to attain better attention management and to 
acquire situational cues and mental mapping.

The experiential learning approach consists of four 
elements and is compatible with instance-based learn-
ing (Gonzales et al., 2003) and theoretical assumptions 
about the CROPs tasks as outlined in the COCOM by 
Hollnagel (2007) and Hollnagel and Woods (2005). 
The learning process is initiated by carrying out a par-
ticular action, experiencing, and then seeing the effect 
of the action in this situation. The second element con-
sists of understanding these effects in a particular 
instance, to build up a mental model of the intercon-
nections, coupling, dynamic effects, etc., to form later 
a model-based mental expectation of what would fol-
low from a particular action (e.g., in predicting future 
states of the plant). According to the experiential learn-
ing circle, the subsequent elements consist of reflecting 
and understanding the general principle under which 
the particular instance falls and forming an abstract 
concept and mental representation of similarities and 
differences between experienced instances that allow 
for a flexible use to mentally envision and simulate the 
dynamics of the plant.

SELECTING THE MOST SUPPORTIVE 
LEARNING ENVIRONMENT

As denoted above, due to the hazardous potential of 
experiential learning during normal operations and the



TABLE 1 Linking cognitive requirements, learning objectives, training methods, and environments

Aspects contributing to

complexity

Cognitive requirements Learning objectives Training method derived from

learning theories

Couplings and

interconnections (Moray,

1997; Wickens & Hollands,

2000; Vicente, 2007;

Kluge, 2008)

Requires the operator to

simultaneously process

the interplay of cross-

coupled variables to

either assess a process

state or predict the

dynamic evolution of the

plant

Acquisition of instances

(SDU chunks); acquisition

of feedback about the

utility of a decision;

acquisition of situational

cues that prompt the

emergence of an

abnormal situation and

the possibility to learn

how to handle stressors

Experiencing accident events

and observing possible

consequences; experiencing

a large number of

unanticipated/abnormal

situations

Dynamic effects (Vicente,

1999; Kluge, 2008; Walker

et al., 2010)

Requires the operator to

mentally process and

envisage the change rates

of cross-coupled variables

and to develop a

sensitivity for the right

timing of decisions to be

successful

Acquisition of instances

(SDU chunks); acquisition

of feedback about the

utility of a decision;

acquisition of situational

cues that prompt the

emergence of an

abnormal situation and

the possibility to learn

how to handle stressors

Experiencing accident events

and observing possible

consequences; experiencing

a large number of

unanticipated/abnormal

situations

Non-transparency (Woods

et al., 1990; Vicente, 1999;

Funke, 2010; Kluge, 2014)

Requires the operator to

work with more or less

abstract visual cues that

need to be composed into

a mental representation

and need to be compared

with the operator’s

mental model

Acquisition of instances

(SDU chunks); acquisition

of feedback about the

utility of a decision;

acquisition of situational

cues that prompt the

emergence of an

abnormal situation and

the possibility to learn

how to handle stressors

Experiencing accident events

and observing possible

consequences; experiencing

a large number of

unanticipated/abnormal

situations

Multiple or conflicting goals

(Brehmer & D€orner, 1993;

Verschuur et al., 1996;

Wickens & Hollands, 2000;

Kluge, 2008; Reason,

2008; Funke, 2010)

Requires the operators

either to balance

management intentions

or to decide on priorities

in case of goal conflicts in

the decision-making

process (e.g., which course

of actions to take)

Acquisition of feedback

about the utility of a

decision

Experiencing situations with

conflicting goals

MPC and RTO

implementation

Requires CROPs to

understand advanced

control and optimization

methods that are the basis

of MPC and RTO since

they have to validate the

proposed results before

accepting/rejecting their

implementation in the on-

line control strategy

Knowledge acquisition of

methods, algorithms,

conceptual contents of

MPC and RTO; integration

of insights into the mental

model

Experiencing situations that

emphasize the aspects of

MPC and RTO; supported

reflection and abstract

conceptualization

(Continued on next page)



valves, which are generally operated remotely from 
the control room, are converted to be operated 
manually in the field. It is the responsibility of 
CROPs to suggest the FOPs to operate the field-
operated valves (FOVs) during these situations. A 
delay of few seconds or an error in selecting a spe-
cific valve can exacerbate the situation and lead to 
even worse conditions (Nazir et al., 2013a).

VRTSs

The concept of using virtual reality in training simu-
lators (VRTSs) has been discussed for several years (e.g., 
Dalgarno & Lee, 2010). Virtual reality is defined as “the

ability to augment, replace, create, and/or manage a
learner’s actual experience with the world by providing
realistic content and embedded instructional features”
(Cannon-Bowers & Bowers, 2010, p. 230). Training
simulators with virtual reality have been successfully
employed in medical and surgical scenarios (Aggarwal
et al., 2006), mechanical systems (Restivo et al., 2013),
aviation (Rupasinghe et al., 2011), and the military
(Lele, 2013). Adaption of virtual reality in training sim-
ulators for process industry can bring several benefits.
VRTSs in process control can allow operators to
become aware of the process units and understand their
features and geometrical, spatial, and steric layout for
future possible interventions in case of start-up, shut-
down, grade change, malfunctions, abnormal situa-
tions, alarms, and incident/accident events.

Since FOPs work in the field, training should be
capable of reproducing the spatial layout of the
plant, which can be achieved with the help of
VRTS. Some of the relevant advantages of VRTS
with regard to the present article are that they simu-
late hard-to-visit places, simulate physical environ-
ments containing entities with dynamic behaviors,
simulate dangerous or expensive environments for
skill practice, and provide a “sense of place” (Dal-
garno, 2002). A comparison of Figs. 4 and 5

TABLE 1 Linking cognitive requirements, learning objectives, training methods, and environments (Continued)

Aspects contributing to

complexity

Cognitive requirements Learning objectives Training method derived from

learning theories

Crew-coordination

complexity (D€orner, 1989/

2003; Woods et al., 1990;

Kluge, 2014)

Calls for operators to

concurrently interact with

teammembers to

orchestrate individual

actions into a coordinated

flow of actions to either

assess the situation or

choose a course of actions

Acquisition of teamwork skills

that support the

interleaving of concurrent

task work and teamwork

demands; acquisition of

skills to achieve a smoothly

coordinated multi-agent

workflow; acquisition of

skills to implicitly

coordinate multi-agent

action steps; aacquisition

of a shared mental model

among FOPs and CROPs

(for normal and possible

abnormal operating

conditions); acquisition of

skills to coordinate timing

issues

Practicing teamwork, team

training in intact teams;

practice to handle

additional cognitive

demands caused by

teamwork; reflection and

abstract conceptualization

of teamwork practice;

practice of coordinated

actions among FOPs (where

both CROPs and FOPs have

to perform their own actions

in a timely coordinated and

consistent way)

Alarm flooding Coping with alarm flooding

conditions of high “stress”

and information overload

Acquisition of skills to focus

attention on task-relevant

aspects

Practicing to copewith

unexpected alarm sequences

andpossibly to alarmflooding

FIGURE 3 Instance-based learning based on experiential 
learning circle, adapted from Kolb (1984).



exemplifies this concept, as it shows a 3D represen-
tation of a distillation column together with its aux-
iliary units, such as the reboiler, condenser, and
reflux drum. Figure 4 shows a conventional DCS
synoptic based on a standard 2D representation of a
distillation column. It is worth observing how the
schematic diagram of that unit reports the con-
denser at the top of the column, while a real con-
denser is usually installed at the ground for both
stability and maintenance reasons. In addition, the
simplified representation of Fig. 4 lacks the 3D
details and auxiliary devices, such as pumps, inspec-
tion holes, flanges, automatic and manual valves,
switches, pressure gauges, and flow-meters.

The detailed review on learning affordances of 3D
environments by Dalgarno and Lee (2010) highlighted
several empirical studies emphasizing the benefits for
learning related to virtual environments. Virtual envi-
ronments contribute to learning because they

� facilitate familiarization to inaccessible environments;
� facilitate learning tasks that lead to the development
of enhanced spatial knowledge representation;

� facilitate task mastery through practice of dangerous
or expensive tasks;

� improve transfer by situating learning in a realistic
context;

� facilitate learning from mistakes without any dam-
age/harm (Ko�zlak et al., 2013); and

� facilitate understanding of complex environments
(Dalgarno, 2002; Dalgarno & Lee, 2010; Hedberg,
Harper, & Dalgarno, 2002).

Training in a VRTS allows the operator to reach the
equipment closely, experience the spatial sounds
(which are associated with the equipment in process
industry and also with certain processes), and learn vari-
ous observable fault diagnoses (observable through the
naked eye or with the help of some simple devices). Fig-
ures 6(a) and 6(b) are taken from the 3D model and
show the visibility (which also means availability and
usability) of a pressure gauge in a crude oil refinery at
different hours of the day. It can be seen that visibility
of the gauge varies, which can be only experienced in
such scenarios. Any 2D representation of such gauges
cannot represent the change in visibility, which varies
dramatically with respect to the time of the day.

Sometimes the leakage of gases is in very small flow
rates (parts per million [ppm]), and therefore, it cannot
be inferred in the control room at all. In VRTS, the

FIGURE 4 Conventional DCS synoptic of distillation column.



FOPs can be provided with virtual detectors to perform
an analysis in the virtual field on a frequent basis to
practice the procedures to be performed at a high profi-
ciency level. The concept of VRTS in the process
industry has seen a development from theoretical back-
ground to a real training tool, such as in the form of
the plant simulator (Manca et al., 2013a, 2013b; Nazir

et al, 2013a). Figures 4 to 6 are snapshots taken from
the plant simulator. The technical details of coupling
process simulators into virtual environments were dis-
cussed in Manca et al. (2013a). Initial empirical evi-
dence indicates that training the FOPs in VRTS and
exposing them to some real stressors that they would
face in both normal and abnormal situations makes
achievement of the training objectives linked to han-
dling those events more likely (Nazir et al., 2013b).

Finally, concerning crew-coordination complexity,
VRTS allows the crew of operators to experience a
stressful situation and resolve it by working in teams,
replicating exactly the same working procedures
adapted in real plants (Kontogiannis, 1996; Driskell &
Johnston, 1998/2006; Kluge, 2014). In such a VRTS
training scenario, a crew of operators trains how to
communicate the abnormality, to weigh and analyze
the parameters, and to develop a shared mental model
to reach correct decisions capable of averting the
impact of the simulated accident under time pressure
(Nazir et al., 2013b).

In summary, several—regrettably unrelated—studies
have shown that the use of VRTS has advantages over
other training environments as listed above, but a com-
prehensive (e.g., meta-analytic) approach is missing,
and the field is still relatively young compared to the
use of OTS, which has existed for decades. Further
efforts to determine the long-term benefits of using
VRTS, as well as the impact on HF constructs of gen-
eral interest, are still needed.

As introduced in the section on OTS, there are
challenges in the use of VRTS as well. One is the
unclear benefits associated with this training method
at the managerial level. This lack of evidence may
lead to an inadequate use of VRTS without much
consideration of what has been learned about cognition,
factors affecting the learning process, and how to best
support skills acquisition effectively (Salas et al., 1998).
Although some advantages were highlighted, the learn-
ing process has to be carefully designed based on what
is known about the cognitive load (Wickens, 1992;
Sweller, 2006) that might be imposed on the learner
while learning in the VRTS and which is detrimental to
an efficient acquisition of skill (Wickens, 1992; Sebok
et al., 2002). Thus, it is not simply VR technology that
contributes to effective learning (Sebok et al., 2002) but
the comprehensive application of principles that under-
lie the science of training (Salas & Cannon-Bowers,
1997), such as guided versus non-guided training, and

FIGURE 5 3D representation of a distillation column (vertical

cylinder on right) and of auxiliary process units, such as reboiler,

condenser, and reflux drum (i.e., the three horizontal cylinders

from left-bottom corner to center of figure).

FIGURE 6 Pressure gauge in a crude oil refinery appears to be 
different: (a) at midday and (b) at sunset.



active versus passive learning and presence (Sebok et al., 
2002; Frank & Kluge, 2014). Additionally, the VRTS 
environment might be used, or even misused, if not 
properly designed for integrating with many training 
objectives at the same time, such as the acquisition of a 
mental model, reducing the mental workload, and 
enhancing the distributed situation awareness. VRTS 
incorporates the possibilities to achieve the objectives 
listed in Table 1, but training sessions need to be pur-
posefully and subsequently designed such that learners 
are not overwhelmed by too many tasks to be managed 
in parallel.

In that respect, operators need to be pre-trained, 
for example, to become familiar with the use of the 
interactivity, immersivity, and spatial features. In 
studies conducted by Nazir et al. (2013b, 2014), 
where VRTS was used, most participants indicated 
that a more extensive pre-training session for interac-
tivity might have improved their performance and 
associated learning benefits. The issues raised indi-
cated that the use of VRTS does not “guarantee” a 
valid training per se but depends on several consid-
erations, such as balancing the cognitive load of the 
learning task in relation to the learner’s prior experi-
ence. This requires, for example, the use of scenario 
design parameters that support psychological fidel-
ity, which is the extent to which the training envi-
ronment prompts the essential underlying 
psychological processes relevant to key performance 
characteristics in the real-world setting (Kozlowski & 
DeShon, 2004) but without putting too much stress 
on the learner. A balanced integration between exist-
ing OTS and modern VRTS has yet to be developed 
that can facilitate the training objectives highlighted 
in this work without over-demanding the cognitive 
resources of the trainees.

Thus, OTS and VRTS have associated advantages 
and disadvantages in light of the learning theories and 
arguments aforementioned, and it is not easy to recom-
mend either of these as the ultimate training solution 
to fill the void between training affordances and opera-
tor’s demands.

CONCLUSIONS

The purpose of this article was to point out the miss-
ing link between training needs of industrial operators, 
existing learning theories, and current training practice,

as well as to highlight possible resolutions. A “one-size-
fits-all” approach is not the solution for training in the
process industry, as there are several parameters/factors
to consider before determining the optimal training for
operators that face dynamic and complex tasks. It is
proposed that the significant advancement in the appli-
cations of process control techniques calls for a new
mindset in terms of training industrial operators.
Advanced training methods and environments can be
one way of helping the operator. This article may stim-
ulate further research on these topics that can lead to
answers to some of the research questions concerning
the best compromise between OTS and VRTS. This
compromise should be framed in terms of optimal
operator preparation and reduction of mental workload
to understand and operate both MPC and RTO. An
optimal integration between OTS and VRTS would
allow improving the quality of operator training with
respect to a number of intrinsic features of plants/pro-
cesses, such as of variables coupling, dynamic effects,
non-transparency, conflicting goals, and crew coordina-
tion in both normal and abnormal situations.

Salas and Cannon-Bowers (1997) posed the question
“Why should organizations care about the science of
training?” (p. 75). Their answer was that training is a
key component in building and maintaining an effec-
tive employee workforce, which, in turn, drives various
metrics of corporate well-being. They concluded that
much is known about training individuals and teams
and that links effective training to improving perfor-
mance, reducing errors, saving lives, and enhancing
safety. Hopefully valuable arguments have been pre-
sented for implementing the science of training in the
training practice of operators in process industries to
help improve performance, reduce error, and enhance
safety.
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