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 

Abstract— Unmanned Aerial Vehicles (UAVs) are becoming a 

reliable and useful instrument in monitoring and diagnostic 

services in the energy field. Operation and maintenance is a 

crucial factor for PV plant inspection and control activities which 

currently are quite hard to be performed due to manual and 

dispersive procedures. The automation of the monitoring 

techniques will become in future an essential task in this market 

and Unmanned Aerial System (UAS) technology can play a role 

in it. This paper proposes a novel, comprehensive and innovative 

approach in order to automate the inspection and prognostic 

procedure by means of designing a control system in order to 

provide accurate information on operating conditions of PV 

plants. The system is able to perform PV systems’ monitoring, 

diagnosis, defects and failures reconnaissance, data processing 

and to propose remedial actions. In current experimental 

research, only IR sensor imaging was examined to evaluate 

thermographic behavior of the PV modules and to build the 

related image processing algorithm. However, it is possible to 

easily extend such a procedure in order to manage a larger 

amount of data. First results of this work have proven that the 

proposed procedure is very promising being fast, cost effective 

and adaptable to large PV plants which can be controlled during 

their entire lifetime. 

 
Index Terms— UAVs (Unmanned Aerial Vehicles), PV system 

diagnosis, Control systems, Automated IR analysis, image 

processing, PV plant monitoring. 

 

I. INTRODUCTION 

n the last two decades a growing interest in generating  

electricity by using renewable energy sources (RES) have 

been observed. In recent years, the implementation of PV 

plants expanded due to various merit aspects of using solar 

energy besides the generous government subsidies.  

However, the access to reliable information about PV 
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systems in terms of technical, design, planning and monitoring 

data in operating conditions leads to develop control 

techniques useful to their prognosis and evaluation of future 

energy performance. 

Typically there are various tests to recognize the defects and 

failures on the PV modules or cells. In fact most of the defects 

and failures are related to intrinsic properties of cells 

fabrication process [1]. 

However, the scientists and researchers are exploring 

reasons and occurring mechanism of these defects and failures 

on modules in order to improve also reliability of inspection 

methods. One of the main factors for reducing the costs of PV 

systems is to enhance the lifetime of the PV modules. For this 

purpose, the first stage of the analysis is to understand the 

failures and degradations’ characteristics on the modules their 

selves.  

Therefore, accurate measuring and monitoring methods are 

required to identify PV module’s failures in outdoor 

applications [2]. Furthermore, fast detection of PV module 

failures can guarantee to extend PV system lifetime and 

performance [3], [4].  

In many countries outside Europe great financial sources 

are still invested on PV plants projects by both private and 

governmental corporations. Therefore, productivity and profits 

must be assured in the market over the entire PV plant life. 

The inspection of PV plants by UAS technology is a quite 

novel application to detect PV modules status and failures. 

There is still scarce information in this research area and more 

efforts are needed to develop innovative and effective 

inspection methods. In addition, the best way to make them 

cost effective and reliable, is to expand practical investigation 

monitoring various aspects of PV systems by UAVs. In fact, 

there is a large potential of this novel inspection technology in 

solar energy equipment which can be further explored by 

researchers [5], [6].  

Traditional visual monitoring process of PV system was 

dependent just on human capabilities. This responsibility was 

always repetitive and boring for the inspector, and most of the 

time was affected by error in recognizing origin of PV 

systems’ failures. In general, the usual inspection methods 

require long time to be performed. Moreover, current methods 

of PV inspection are not able to provide on-line information 

about failures in the monitored plants and most of them use 

quite time just for the data acquisition task without further 

analysis steps. On the contrary, the UAVs can carry out the 
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defect detection of modules in shorter time due to their large 

area coverage, high flexibility, light weight and high speed 

[7]. 

In this experimental research, an innovative and complete 

system is suggested to fill the gap between data collection of 

PV plant, data processing, post-processing analysis and final 

decision making. In this light, the inspection approach is 

represented by an automated system designed to integrate the 

whole steps of inspection in a near real-time monitoring 

procedure for small and large scale PV plants’ maintenance 

operations. Furthermore an image processing technique has 

been used in this monitoring system to automatically 

recognize specific modules with defects or failures, since 

image processing techniques can provide precise information 

about degradation of PV modules [8]. Section II reports 

typical methods for failure detection, Section III explains the 

core procedure here proposed, while Section IV and V report 

first experimental results drawing relative conclusion. 

II. TYPICAL METHODS FOR DEFECTS AND FAILURES 

DETECTION ON PV MODULES 

Generally, any effect on PV module which decreases the 

performance of the module, or even influences on the module 

characteristics, is considered as a failure. Whereas, a defect 

can be defined as an unexpected or unusual thing which has 

not been observed before on the module. However, defects 

often are not the cause of power losses in the PV fields [5].  

There are many different diagnosis tools and methods to 

explore the defects and failures on the PV modules (e.g. I-V 

characteristics, visual inspection, thermographic analysis and 

photoluminescence) [9].  

Recently other new methods like electroluminescence and 

UltraViolet (UV) fluorescence techniques have become more 

interesting for detection of PV modules’ defects and failures 

which consequently cause decrease in the revenue of PV plant 

owners. Investigation about novel monitoring methods is 

again a crucial issue in the solar energy market growth [10]. 

A. Visual Assessment 

The first step of the PV module monitoring is inspection by 

sight. The visual assessment is a very simple method to detect 

some failures or defects. In fact, visual monitoring allows to 

observe the most external stresses on the PV modules. In 

addition, this method can give an overview of PV systems 

condition. The most visible defects and failures are bubbles, 

delamination, yellowing, browning, bended, breakage, burned, 

oxidized, scratched, broken or cracked cells, corrosion, 

discoloring, anti-reflection, misaligned, loose, brittle fracture 

and detachment. Visual assessment should be carried out 

before and after module’s installation to evaluate effect 

percentage of electrical, mechanical and environmental 

stresses on the PV module [11]. 

B. Thermographic Assessment 

Thermographic inspection is a popular method that can 

provide enriched data about PV module status. Typically, it is 

carried out by infrared radiation (IR) imaging sensor. Thermal 

vision assessment is a harmless and contactless monitoring 

technique and it can diagnose some of the defects and failures 

on the PV modules. Furthermore, this method can be 

performed during normal operation of PV systems and it does 

not need to shut down the plant. The main task of 

thermographic measurement is to find the defects or failures 

under temperature distribution of module surface [10]. 

Generally, the IR imaging camera works in a wavelength 

range between 8 and 14 µm, and test procedure must be 

performed in low external temperature, wind and under clear 

sky with at least irradiation of 700 W/m2 on the modules. It 

should be taken into account that during the measurement test, 

the inspector must be aware about reflection, shadowing and 

self-radiation of sensor. The best position of IR imaging 

camera is in a perpendicular position with respect to the target 

module [12], [13]. Commonly, the thermographic assessment 

is carried out to identify open circuited modules, bypass diode 

problem, internal short circuits, potential induced degradation, 

delamination, complete or partial shadowing, invisible cracks 

or micro-cracks, broken cell and hot spots [14], [15].  

C. PV Parameter Performance Assessment 

The main measurement parameters of PV modules is 

comprised of open-circuit voltage, short-circuit current, fill 

factor and maximum power point. I-V measurement curve 

gives sufficient information about PV module condition. 

Normally, the I-V curves are measured under standard test 

condition (Cell temperature = 25°C, Irradiance=1000 W/m², 

spectral distribution of irradiance air mass=1.5, wind speed=0 

m/s) they can be used as an ideal reference for comparison of 

the PV modules in different conditions [16].  

Series and shunt resistances (Rs, Rsh) can have influence on 

the slope of I-V characteristics and other parameters of PV 

module. With this regards, values of Rs and Rsh can be 

extracted from steep slope of I-V curve on the open-circuit 

voltage (Voc) and short-circuit current (Isc). Therefore, I-V 

characteristic behavior of the module depends on variations of 

Rs and Rsh [17].  

D. Photoluminescence, Electroluminescence and UV 

Fluorescence Techniques  

Photoluminescence (PL) and Electroluminescence (EL) are 

recent measurement methods which evaluates PV modules by 

luminescence images. In fact, the PL and EL measure the 

irradiative recombination of photons since carriers are excited 

into the solar cells. In PL technique [9], the carriers are 

generated by light, and then they are accumulated in defects or 

impurities parts of cell region. Therefore, the luminous regions 

present higher minority carriers and dark regions show the 

defect concentration on the solar cell. EL is very similar to PL 

technique with the difference that the carriers are injected to 

the solar cell junctions using an applied voltage in forward 

bias [18], [19].  

Initially, UV fluorescence (FL) imaging technique was 

performed to detect EVA (Ethylene Vinyl Acetate) 

degradation. The most common reason is due to the UV light 

of solar irradiation, it decomposes the PV modules’ 
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encapsulant. In this technique, the emission spectrum can be 

received from a scanning of the specific excitation wavelength 

less than 350 nm, later on the same way is done for a specific 

fluorescent wavelength of the excitation light.  

However, all of these measurement tests are non-destructive 

methods for PV module monitoring [20].  

III. METHOD AND EXPERIMENTAL SETUP 

The performance analysis of a PV-plant, with the aim of 

identifying and recognizing defects or failures, can be 

achieved by using electrical measurements (voltage, current, 

power and energy), visual inspection and thermographic 

analysis during normal operation. All these retrieved data 

together with captured images have to be linked to weather 

conditions and other external conditions such as shading, 

service interruption due to maintenance activities, and so on. 

Regarding the electrical measurements, there are many 

monitoring systems now used in medium-large size PV power 

plant (nominal power higher than 100kW). Such systems can 

give us useful information about general performance of the 

PV plant, detailed information about the working status of 

inverters, transformers, PV arrays and switches [21]. On the 

other hand, these systems are not able to detect problems 

related to single module faults and sometimes neither to a 

series of modules. The visual and IR analysis instead can be 

referred to a single component and in particular to the single 

PV module. Nevertheless, manned inspection usually takes 

time and the data analysis complexity naturally increases with 

the PV system size.  

In this research, a novel method has been developed in 

order to set up an integrated inspection system for PV plants. 

Such a system is able to perform detection, recognition, 

analysis and post-processing of various defects and failures on 

modules in short time and as well, it is able to provide reliable 

and accurate information of PV plant condition on-line. In this 

regards, UAV platform [22] was employed to monitor PV 

modules conditions by using special visual and thermography 

sensors mounted on the UAV to scan the defects and failures 

and send them to the ground center station for analysis. In the 

following sections particular attention is focused both on IR 

analysis and the automatic procedure set up. 

A. Novel Approach Description  

Punctual inspection of PV systems leads to identify defects 

and failures related to module degradation. Briefly, rapidity of 

monitoring procedures can prevent to waste time in the 

recognizing and analyzing defects and consequently, it leads 

to propose an effective solution for PV field operators. 

Fig. 1 illustrates a schematic view of the proposed system 

for the monitoring of the PV plants using UAV technology. 

The proposed smart monitoring system is used to explore the 

defects or failures on PV modules and it can propose an 

appropriate solution for each affected PV module. In this 

concept, the monitoring system is integrated with inspection, 

recognition of the problem, processing and decision making. 

Therefore, all the requirements for operation and maintenance 

are associated in such a system. 

Fig. 1. Schematic of the smart monitoring system for PV plants. 

As it is shown in Fig. 1, the thermographic assessment is 

carried out by mounted infrared imaging sensor on the UAV. 

Then, automatically the images captured are transferred to the 

Ground Control Station (GCS) by RF channel. Later on the 

classified data are sent by the GCS to the database for the 

following processing. 

After software analysis of the received images, all the 

processed information are transferred to the decision support 

system for appropriate future actions to be taken. In this phase, 

the system evaluates the information in order to detect the 

specific defect or failure on the PV modules. Regarding to this 

identification, the decision support system propose the best 

solution for particular affected PV module, according to the 

specific strategy implemented by the O&M service.  

In the database, there are comprehensive information about 

PV modules condition based on the previous experimental 

tests and datasheets. Therefore, this smart monitoring system 

can perceive the characteristics of all of the PV module’s 

defects or failures and track them during time.  

All these procedures can be performed in parallel hence 

entire inspection of PV systems can be accomplished in few 

hours also for a large plant. 

The capability of this automated inspection system is higher 

than the human inspector and other traditional methods. The 

time duration of monitoring procedure and decision making 

for the proper solution is faster than previous inspection 

methods and the system can provide a reliable information for 

owner of PV plant in very short time. Accuracy of the system 

is high and it can identify not only defects or failures but also 

location of the specific degraded module in the PV plant since 

images captured by the UAV have GPS metadata inside. The 

system can record all the monitoring information related to the 

PV module failures on the database for future actions based on 

the history of the plant, its track-record and current 

performance. Moreover, the system is compatible with other 

common methods for defects and failure detection, not only IR 

(e.g. visual assessment, thermographic analysis, etc.). 

B. Image processing application in PV module monitoring 

Digital Image Processing (DIP) technique is commonly used 

in fields of electrical and computer engineering. In fact, it is 

possible to apply image processing on analog and optical 

areas. Typically, input of image processing is an image taken 

from video frames or other photographs but the output of 

image processing technique is not just an image, it can be also 

a group of some parameters or characteristics data related to 
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primary image. Fundamentally, digital image processing is 

defined as the use of computer algorithms to apply image 

processing techniques on the digital image or video frames 

and it can be useful also in PV system applications [23].  

The main task of image processing techniques is to treat the 

images by applying proper signal processing techniques [24].  

Digital images and videos from visible light and IR to 

gamma rays and beyond are used in thousands of industrial 

applications. The digital image processing is the ability to 

process these images as signals, in order to manage 

information for many reasons like, for example, removal of 

degradation, enhancement, compression, and so on. It is 

beyond the scope of this paper explain in depth fundamentals 

of this discipline which deal with the mathematical framework 

to describe and analyze such images as two or three-

dimensional signals in the spatial, spatio-temporal, or 

frequency domains. 

Many DIP techniques based on the EM spectrum have been 

developed. Linear translation, convolution, 2D and 3D Fourier 

transform [25], noise filtering, edge detection, sparsity-based 

and others [26], but her we use.  

Thus image processing is a useful tool to distinguish the 

defective parts from the healthy ones on the PV modules. 

Image processing is used not only for defects’ or failures’ 

detection on the PV modules, but it is helpful to determine 

also degradation percentage of affected modules and as well 

classifying the specific defects or failures. Obviously, only a 

sufficient number of pixels can give us reliable data about PV 

module status, so the use of appropriate sensors is mandatory. 

In this research, the captured infrared pictures of the PV 

modules were analyzed by image processing technique. 

Initially, the thermography images were filtered using some 

filters in Matlab environment [27], [28].  

Fig. 2 illustrates the procedure of defect detection on the PV 

modules. In the proposed algorithm, the first step is devoted to 

transform the color images into grayscale images since the 

latter is clearer than the original one. This step is carried out in 

order to determine the luminance on the PV module surface. 

In the digital color image each pixel is characterized by three 

bytes which are associated with luminance of the main basic 

colors (Red, Green, and Blue). The grays are defined instead 

in the interval range [0; 255], 0 for black and 255 for white 

areas, thus the luminance of a pixel is usually described by 1 

single Byte which correspond to 256 levels [29]. 

Later on, the image needs to be smoothed and noise effect 

should be eliminated (e.g. due to smear/dust or other dirties on 

the PV modules related to outdoor environment). Therefore, 

the images should be filtered to eliminate or decrease the 

noises’ effect of different elements on the images, following 

different steps: 

1) Grayscale. The gray scale picture is read in digital 

format: hence the luminance of each pixel is saved in a matrix. 

2) Spectrum in Fourier. The picture’s “spectrum” is 

calculated by mean of the 2D Fast Fourier Transform (FFT). 

In the space domain, applying a filter h(x,y) to a function f(x,y) 

corresponds to the convolution: 

 

     , ', ' ', ' ' 'FILTf x y h x x y y f x y dx dy     (1) 

 

In the Fourier domain, instead, it is sufficient to multiply 

together the spectra H(kx, ky) and F(kx, ky) respectively: 

 

( , ) ( , ) ( , )FILT x y x y x yF k k H k k F k k   (2) 

 

where kx and ky are the wavenumbers for the directions x and 

y. Usually this operation is much faster than calculating the 

convolution in the space domain. 

3) Filtering function. A filter function is applied to the 

picture’s spectrum in the Fourier domain (also known as 

“wavevector domain” for spatial transformation).  

In the follows we report synthetically the expression of some 

filter functions in the 2D Spatial Fourier domain. 

 Gaussian filter: 
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22

2 2
0 0
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, exp
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x y

x y
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 Rectangular Average filter: 

 

  00

0 0

sin( / )sin( / )
,

( / ) ( / )

y yx x
x y

x x y y

k kk k
H k k

k k k k



 
   (4) 

 

 Rectangular Ideal filter: 

 

     0 0, | | | |x y x x y yH k k k k k k     (5) 

 

where k0x, k0y are arbitrary parameters: conceptually they 

correspond to the inverse of the cut-lengths for the filter. If k0x 

and k0y are small, the image will be strongly smoothed since 

high frequency components will be reduced. 

4) Anti-transforming. The filtered spectrum is anti-

transformed back from the Fourier domain. The final result is 

the filtered image.  

The filtering step can eliminate certain noise effects but it 

may cause blurred vision on the edge of image. Gaussian filter 

helps to reduce the image sharpening, decrease noises and also 

it can highlight the boundaries of PV panels in order to make 

easier the number of panels’ recognition for counting and 

statistical evaluation of data.  

In the defects detection procedure, the most crucial issue is 

to specify the average luminance and threshold in terms of the 

number of standard deviation. Nevertheless, both steps which 

involve filtering and estimation of stains luminance can be 

performed in parallel. In general, hot spot, white spot, cracks 

and other defects influence the temperature of PV modules’ 

surface. Therefore, affected PV modules do not have uniform 

thermal surface. Thus, using a typical binary method to 

distinguish defective regions from healthy parts, the image is 

separated in black and white areas. The luminance of hot 

portions are higher than the cold portions, which are indicated 

by 1 (white) and 0 (black) respectively.  
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Fig. 2.  Algorithm of defect and failure reconnaissance in PV module. 

 

In fact, binary image [25] is one of the basic methods for 

region segmentation in the image processing. Thus, stain and 

normal parts of images can be separated to white and black 

completely. It distinguishes the image to 0 and 1 divisions. In 

addition, it senses the threshold value of stained parts as 

significant zones from the total image area. With this process 

it is easier to automatically evaluate the spot/defect areas 

(typical shape and extension) and to make possible first 

hypothesis on the defect categorization.  

In this step (see again Fig. 2), if the luminance (Lum) of 

white stains is five standard deviation higher than average 

luminance (LumAVG), then that part of the module has some 

defects. The other part of the module is healthy. 

Black and white images for hot areas are defined as follow: 

 

 ( , ) 5

 & ( , ) 1

 & ( , ) 0

AVGIF Lum x y Lum

THEN Black White x y

ELSE Black White x y

 





 (6) 

 

While black and white images for cold areas are also defined 

as follow:  

 
 ( , ) 1

 & ( , ) 0

 & ( , ) 1

AVGIF Lum x y Lum

THEN Black White x y

ELSE Black White x y

 





 (7) 

 

In this experimental test, the chosen value of luminance was 

just computed based on trial and error method. It means that 

many different pictures were examined in order to obtain the 

best luminance value for identification of defects on the 

modules. 

It should be noted that the 5 and -1 thresholds were 

found through a heuristic procedure: we compared different 

groups of pictures, distinguishing among those containing 

either healthy modules or defective ones. We then calculated 

the statistical indices and luminance distribution for each 

pictures, observing that for defective modules the distributions 

have fat tails for luminance major than 5 over the average 

(see Fig. 3). We should highlight that 5 is not a definitive 

value; in fact it could depend on the characteristics of the IR 

camera used to shoot the pictures. Moreover, luminance 

distributions for different pictures can have quite variable 

shapes, depending on which objects are actually shown in the 

image, for example see Fig. 3a and 3b, related to the images 

reported in Fig. 4a and 4b respectively. The second picture 

(Fig. 3b) shows a more Gaussian distribution since it contains 

just PV modules (no grass inside) with a roughly mono-modal 

luminance behavior. On the contrary Fig. 3a presents a more 

heterogeneous content due to the presence of terrain elements 

in a relevant part of the picture; thus, as shown, this sort of 

terrain sideband significantly modifies the average luminance 

distribution beyond five standard deviations. However, as long 

as we could test, the 5-threshold criteria revealed to be 

practical and robust in order to detect defective areas. 

The area of the defective portion gives some indications on 

the reliability of the PV module. In fact, it is an index to  
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Fig. 3. Example of luminance distribution for two different modules: (a) a 

healthy module and (b) a defective module. In the histograms, the average  

(green dashed line) and the upper threshold  (red pointed line) are 

shown. 
 

clarify rate of degradation. The damage percentage of PV 

module is calculated from the equation below:  

 

_
% 100

_ ( _ )

White area
Degradation

Total Area PV Module
   (8) 

 

According to our estimation, as better explained later on in 

Section IV, if the damage percentage is higher than 5% then 

the module is affected by some defects and it needs deeply 

investigation. This degradation percentage threshold is 

obtained with many trials and errors on the different PV 

modules and fields. 

The last part of the procedure is based on the Laplace 

model. It is useful, in particular, to highlight the border of 

modules [25] in order to count number of monitored modules. 

Instead of the other filters previously mentioned, the Laplace 

operator acts locally with no need for convolutions, and its 

general expression is: 

 
2 2

2

2 2
( , ) ( , )

f f
L x y f x y

x y

 
   

 

 (9) 

 

In a discrete 2D space the Laplacian of a function f(x,y) can be 

calculated directly on a point (xi, yj) as: 

 

1, 1, , , 1 , 1 ,

2 2

2 2
( , )

i j i j i j i j i j i j

i j

f f f f f f
L x y

x y 

      
   (10) 

 

where x and y are the pixel’s sizes (usually they are set 

equal to 1), while fi,j= f(xi, yj) is the function’s value calculated 

on point (xi, yj). 

It should be noted that the Laplace operator is not sensible 

to the absolute luminance, but to its rapid variation, so it can 

be used to detect the contours of the objects inside the image. 

However, it is also sensible to high frequency noise, so the 

picture should be filtered first. 

After image analyses, all the information are transferred to 

the decision support center in order to evaluate the defect and 

failure kind, then proposing the best solution for the specific 

plant, comparing actual performance and its monitored 

history. The recognition of the defect is finally confirmed in 

the decision support center by comparison with previous 

measurements and datasheet stored in the database. 

IV. EXPERIMENTAL ANALYSIS AND RESULTS 

In this research, a thermographic assessment has been 

performed for PV modules in SolarTech Lab using mounted 

IR imaging camera (FLIR A35) on a light UAV (PLP610 

Nimbus platform). The main features of the used UAV are 

reported in [5], furthermore it can operate at constant wind 

speed of 5 m/s, up to 10 m/s of wind gusts and light rain 

condition. 

The following Table I indicates the technical specification 

of the IR imaging camera. 
TABLE I 

THE IR-IMAGING CAMERA PROPERTIES 

IMAGING & OPTICAL 

DATA DESCRIPTION 

IR resolution 320 x 256 pixels 

Spatial resolution (IFOV) 

48° (H) x 39° (V) with 9 mm lens 25° (H) x 

19° (V) with 19 mm lens. Lenses are not 

interchangeable and need to be specified at 
time of order. 

Object temperature range 
-25°C to +135°C (-13 to 275°F) / –40°C to 

+550°C (-40 to 1022°F) 

Thermal 

sensitivity/NETD 
< 0.05°C @ +30°C (+86°F) / 50 mK 

 

In this experimental test, it should be considered that 

identification of defects is not directly dependent to spatial 

resolution of the IR sensor since the UAS flies at different 

altitudes in order to recognize defects with various 

dimensions. In addition, the best Noise Equivalent 

Temperature Difference (NETD) of IR imaging camera was 

recorded between 30mK and 40mK in order to display the IR 

images in high quality and to emphasize failures on modules. 

In the performed experimental test, the emissivity (𝜀) was set 

to 0.85 based on the surface characteristic of modules [28, 29]. 

In accordance with the proposed automated system, the 

images captured by the thermal camera mounted on-board, are 

sent to the ground control station and then transferred to an ad-

hoc PC for further analysis with the described algorithm. At 

this stage the GCS responsible for UAV flight control has not 

yet been modified for this particular experiment. However it is 

trivial to conceive an additional processing unit to be added to 

GCS, without compromise the control functionality, and thus 

not interfering with legal procedure to obtain Permit to Fly 

certification by the civil Aviation Authority (e.g. ENAC for 

the Italian case). 

In this regards, the images are processed by means of the 

 
(a) 

 
(b) 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 

7 

program described in Section III to recognize defects and 

failures of the PV modules. Later on the processed images are 

transferred to the decision support center (the PV laboratory in 

our experiment) where production data are available in order 

to be able to perform further evaluation and correction action, 

or propose intervention if required.  

The inspection has been performed by the proposed smart 

system which is able to automatically recognize affected PV 

modules which require more accurate analysis in SolarTech 

Lab or an equivalent center. All the affected modules has been 

thus identified and can be sent to the decision support center. 

In our view in fact if the module presents a serious percentage 

of degradation (e.g. >5%) it needs further investigation: the 

module should be first analyzed directly on site where 

technicians can try to recover some kind of faults (e.g. bypass 

diode, misconnections, etc.) and – if required - replace or send 

to the laboratory for a more in depth tests. Furthermore, we 

can decide of course to set different alert thresholds, for 

example between 3 and 5%, to tag the module as “keep it 

under control” increasing burden for the overall procedure. 

Nevertheless, if the O&M is performed over time, the smart 

inspection system does not consider a defect or a failure for a 

specific module before a previous comparison in the historic 

database has been executed. 

 
(a) 

 
(b) 

Fig. 4.  Original images of (a) a healthy module sample and (b) a recognized 

defective module sample. 
 

In the present first experimental work, we have selected 

only a few samples among all the obtained results to 

demonstrate the capability and reliability of this automated 

remote inspection system. 

For comparison, the selected samples were chosen based on 

their conditions. One of this modules is faulty while the other 

module is a healthy one. In addition, it should be taken into 

account that the original image of healthy module sample is 

brighter that the affected module due to the high irradiation of 

sunlight during the inspection procedure and also position of 

sensor toward the module. The original images of the affected 

and healthy PV module are shown in Fig. 4. 
 

 
(a) 

 
(b) 

Fig. 5.  Filtered images of (a) a healthy module sample (b) a defective module 

sample. 

 

The images then have been transformed to grayscale, as 

already explained, and the filtering lead to improve quality of 

images making the image smoothed. Moreover, it enhances 

the quality of white areas (stains) on the images making the 

reconnaissance operation of defects facilitated. In this 

intelligent monitoring system, the Gaussian filter have been 

used to eliminate a certain impact of noise in the images. The 

filtered images of affected and healthy modules are reported in 

Fig. 5. 

The binary images obtained by the method described in 

Section III are illustrated in Fig. 6. 

In Fig. 6b, the parts affected by defect or degradation appear 

as white areas on the PV modules whereas the black areas 

represent the normal parts without any problem. 

Fig. 6a shows the image of a healthy module. It should be 

noticed that the white stain part located on top of the image in 

Fig. 6a is due to the reflection of sunlight (it can be seen from 

the daylight image) and the other white stain is related to 
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junction box of PV module which has a normal higher 

temperature.  

 
(a) 

 
(b) 

Fig. 6.  Binary Images of (a) a healthy module sample and (b) a defective one. 

 

This is why in the proposed method we decide to set a 

threshold at least higher than 3% to have an alert: in fact, we 

can consider the size of a junction box rather similar to one 

cell size. Furthermore in some cases in correspondence of the 

supporting structure IR sensors can detect additional 

differences in temperature [30], [31]. Therefore, the authors 

consider a reasonable threshold of 5% to avoid high rates of 

false positives in order to identify not all but almost every 

significant defect in the PV plant. A similar approach is 

proposed by [32], [33] where the authors classify the severity 

of faults in three different degrees, namely minor, medium and 

heavy faults. In this last case part of a module is typically 

shorted by a bypass diode as an outcome of, for examples, 

mismatch, cell cracking, partial shading, and increased 

internal resistance [8]. 

However it is not easy to find a direct correlations between 

the identified areas and the degradation of the module in terms 

of power, especially under working condition. Some very 

interesting reference value in this context can be found again 

[8]. 

Our threshold model determines the boundary areas of the 

PV module frames which can be used for recognizing frames 

problems. Threshold model of images of affected and healthy 

model is represented in Fig. 7. 

As it can be seen from Fig. 7, the frames are indicated by 

black color which is colder than other areas of the module. 

The white color parts show warmer areas on the module (Fig. 

7a) which is very uniform due to the integration of 

temperature on the module’s surface. Whereas, in Fig. 7b the 

white parts with hotter temperature are more inhomogeneous. 

 

 
(a) 

 
(b) 

Fig. 7.  Threshold Model of Binary images for (a) a healthy module sample 

and (b) a defective module sample. 

 

Fig. 8 displays the final Laplace analysis of the images 

which were extracted from original images to represent a 

depth grasping of defect characteristics on the modules. 

The Laplace model not only gives an overview of PV 

module condition, but also it can highlight the border of 

modules in order to count number of monitored modules. It is 

also useful for the monitoring system in aerial photography by 

UAV or to develop further services like mosaicking or photo 

mapping.  

In the last step of this PV module monitoring system, as 

already mentioned, the entire of processed image data are 

transferred to the decision support center for further analysis 

based on multiple information (plant performance, data 

history, IR and visible pictures, electric data, previous 

maintenance reports, etc.). Decision makers realize for 

example that those stains on this specific PV module (Fig. 4b) 

are related to a shunt hot spot defect. Possible reason can be 

represented in that case by full or partial shading. In any case 

the system can suggest to use a bypass diode for affected cells 

to neutralize the impact of hot spot on the PV module. With 

regards to the previous experimental test for this specific 

module further solution can be recommended by the system. 

In addition, this smart system is able to compute percentage 

of damage and degradation, statistics on number of affected 

panels out of the total number in the plant, and so on. 

According to equation (8), the calculated percentage of 
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damaged area is equal to 15.8% for PV module shown in Fig. 

8b which is higher than the minimum acceptable degradation 

range (5%), hence the module is considered in this case as 

faulty. 

 

 
(a) 

 
(b) 

Fig. 8.  Laplace analysis of (a) a healthy module sample (b) a defective 
module sample. 

 

The here developed method can also be applied not to a 

single module, but to a general picture in which an array or a 

group of modules are present. In this case the procedure is also 

able to recognize part of a module shorted by a bypass diode 

and either an entire string or a single disconnected module, as  

shown in Fig. 9. In this case three modules are connected to 

the grid by means of three different micro-inverters [16]. One 

of these was out of order. According to equation (8), the 

calculated percentage of hot area is equal to 27.8% for the 

selected area shown in Fig. 9c, that in this specific case means 

one disconnected module out of three. 

Finally, it is important to underline that the smallest defect 

which was detected in this test has a diameter of 0.6 cm; in 

any case it should be noticed that the smallest size of the 

detectable defect extremely depends on the flying height. 

V. CONCLUSION 

A growing demand of PV plant and modules in the energy 

market shows a high potential of the photovoltaic technology 

to meet the future energy quality requirements. Effective 

operation and maintenance can guarantee the PV system 

proper lifetime and payback for PV plants owner investment. 

This manuscript was focused on design and pre-test an 

automated, integrated and smart system both for small and 

large scale PV plants inspection, to assess PV plant status and 

performance during its operational time. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.  The proposed method for the analysis of three modules in which a 

single module is disconnected. (a) Original picture (b) Grey scale picture (c) 

Binary picture (d) Laplace filtered picture. 
 

In this innovative system, the images of PV modules are 

obtained by mounting IR and Visual cameras on UAV, which 

transfers the images to a processing unit for defect detection 

and post-processing. The image processing algorithm used in 

this experimental set up (in this paper only for IR) was a 

preliminary process to identify different problems and control 

opportunity, and further investigation is needed to develop a 

more complete, flexible and market oriented system in order 
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to be implemented in advanced O&M services for PV plants. 
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