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Networked Music Performance (NMP) is a mediated interactional modality with a tremen-
dous potential impact on professional and amateur musicians, as it enables real-time interac-
tion from remote locations. One of the known limiting factors of distributed networked per-
formances is the impact of the unavoidable packet delay and jitter introduced by IP networks,
which make it difficult to keep a stable tempo during the performance. This paper investigates
the tolerance of remotely interacting musicians towards adverse network conditions. We do so
for various musical instruments and music genres, as a function of rhythmic complexity and
tempo. In order to conduct this analysis, we implemented a testbed for psycho-acoustic anal-
ysis emulating the behavior of a real IP network in terms of variable transmission delay and
jitter, and we quantitatively evaluated the impact of such parameters on the trend of the tempo
maintained during the performance and on the perceptual quality of the musical interaction.

0 Introduction

Low-latency communication systems are a key
requirement for a wide category of innovative
applications, ranging from virtual machine mobility for
cloud computing services to video conferencing and
telepresence, real-time financial and business transactions.
Among the many applications that are crucially dependent
on latency minimization, that of Networked Music
Performance (NMP) promises to revolutionize interactive
music fruition (e.g. remote rehearsals, music teaching) by
allowing remote players to interact with each other in a
musical performance from remote physical locations
through an Internet connection over a telecommunication
network. Though computer-based systems enabling music
performance have been investigated starting from the ‘70s
(see [2] for an historical overview), in the past two
decades the massive diffusion of Internet greatly widened
the opportunities for new forms of musical interactions.
Several experimental software applications have been
recently developed, which support both real-time and
latency-accepting NMP [27, 5]. Moreover, different
network architectures have been investigated as enabling
design paradigms for NMP systems, ranging from
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client-server [29, 19] and master-slave [28] to
decentralized peer-to-peer infrastructures [31, 11].

In order to reproduce realistic environmental conditions
for NMP, several technical, psycho-cognitive and
musicological issues must be addressed. In particular, at
network level, very strict requirements in terms of latency
and jitter must be satisfied to keep the one-way end-to-end
transmission delay below a few tens of milliseconds.
Typically the delay tolerance is estimated to be 20-30 ms
[8] (corresponding to the time that the sound field takes to
cover a distance of 8-9 m), which has been shown to
correspond to the maximum physical separation beyond
which keeping a common tempo for rhythmic music
interaction without conductor becomes difficult. In NMP,
the overall delay experienced by the players includes
multiple contributions due to different stages of the audio
signal transmission: the first is the processing delay
introduced by the audio acquisition, processing, and
packetization; the second is the pure propagation delay
over the physical transmission medium; the third is the
data processing delay introduced by the intermediate
network nodes traversed by the audio data along their path
from source to destination, the fourth is the playout
buffering which might be required to compensate the
effects of jitter in order to provide sufficiently low packet
losses to ensure a target audio quality level.
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Some preliminary studies on the delay tolerance for live
musical interactions have already appeared: in
[20, 12, 14, 13] the authors evaluated the trend of tempo
variations (measured in Beats Per Minute - BPM) while
performing predefined rhythmic patterns through hand
clapping, in different latency conditions. A similar
analysis was integrated with an evaluation of the
musicians’ subjective rating of the performance quality in
[9].

The sensitivity to delay and the quality of the musical
experience in the context of NMP is influenced by several
additional factors [4]: in [3], the authors investigate the
correlation between perceptual attack times of the
instrument and the sensitivity to network delay,
concluding that instruments with a slow attack (e.g.
strings) usually tolerate higher latency. In [15], the authors
investigate the correlation between accepted network
latency and the genres of pattern-based music.

To the best of our knowledge, a quantitative study of the
sensitivity to delay and quality and its dependency on
additional parameters such as the rhythmic complexity of
the performed piece, the timbral characteristics of the
instruments and the type of musical part that is being
performed (e.g. melody, chord comping, sustained
harmony) has not yet been proposed in the literature.
Therefore, taking advantage of the feature-based analysis
proposed in [23, 32] in this study we provide an
evaluation of the impact of network conditions on the
quality of the musical experience, according to the type of
the instruments and to some characteristics of the
performance. As far as the type of instrument is concerned
we adopt a timbral feature-based representation, whereas
we exploit musical part, Event Density [24] and Rhythmic
Complexity [26] of the performed pieces to characterize
the performance.

It is also worth noticing that all the previous studies in
the literature conducted in controlled network
environments do not consider the effect of packet jitter on
the end-to-end latency and assume that each packet
carrying audio data experiences exactly the same delay.
Such assumption is quite unrealistic for actual
telecommunication networks, in which jitter is by far not
negligible and must be compensated by the receiver’s
buffer. The buffer must be sized to strike a balance
between the additional packet delay due to queuing at the
receiver side and the audio glitches due to buffer overruns
and underruns. For this reason, we implemented a testbed
for psycho-acoustic analysis which emulates the behavior
of a real IP network in terms of variable transmission
delay and jitter by generating random packet delays
according to any desired statistical distribution. In our
testbed, we opted for a peer-to-peer solution based on the
publicly available SoundJack software [7], which also
implements a direct real-time evaluation of the
experienced one-way end-to-end latency (thus including
processing, buffering and playout delays).

The remainder of the paper is organized as follows:
Section 1 provides a brief definition of the extracted
musical features. Our experimental testbed is described in

Section 3. Results obtained from the performed
psycho-acoustic tests are analyzed in section 4. Finally,
we draw our conclusions in Section 5.

1 Background

Numerical attributes that can be extracted from musical
audio signals are typically categorized into timbral and
rhythmic features. Timbral features typically describe
some short-time properties of the sound (e.g. spectral
information, or zero-crossings), whereas rhythmic content
tend to describe longer-term properties (e.g. beat, tempo,
pitch changes). As the timbral characteristics of a musical
instrument are reflected in the spectral distribution of the
generated musical signal, spectral features are widely used
in the literature for the characterization of a musical
instrument (see [23, 33, 25, 10] for a comprehensive
feature enlisting and mathematical definition).

In [21] the authors show that the timbre of the
instruments can highly influence the emotional state
elicited in the player or the audience during a
performance. The experiment was conducted by asking
musicians to play the same list of melodies using
instruments with different timbres in presence of an
audience. Players and members of the audience were then
asked to express the emotion perceived during each
performance. According to the study, the sound qualities
of the instruments have a significant impact on the
perceptual quality of the performance. In particular, noisy
sounds can alter the perception of note transients and
durations. For these reasons it worth analyzing the impact
of instrument timbre on the quality of the musical
experience and the sensitivity to delay.

In [26], the authors provide a definition of the perceived
rhythmic complexity as the capability of the listener to
clearly perceive a repetitive pattern in the rhythm and to
decompose the pattern into a simpler structure. Playing a
piece with a complex rhythmic pattern requires the
musicians to strongly keep the same tempo, i.e., to be
synchronized during the execution. In the real-time NMP,
however, the musicians perceive the note onsets of the
other players as shifted in time, due to the effect of the
introduced delay. Consequently, it is important to address
how the subjectively perceived rhythmic complexity level
influences the tolerance to the delay introduced by NMP.

In [3], the authors show that the human auditory system
focuses on onsets produced by instruments with a short or
almost impulsive attack time (i.e., the time that the
instrument takes to reach its maximum loudness), whereas
it tends to perceive less immediately those onsets
associated to instruments with a slow attack. The impact
of delay on the synchronism of the performance is
therefore expected to be more clearly perceivable when
using musical instruments with a fast attack, than with
instruments with a slower attack time. This means that the
choice of musical instrument matters in presence of
network delay. In practice, however, musicians tend to
adjust their playing technique according to the specific
attack time of the played instrument. For example, organ
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players are used to naturally compensating the delay
elapsed between the pressure of the keyboard keys and the
sound emission at the pipes, as well as the time that the
sound takes to travel back from the pipes to the musician.
To a smaller extent this is also true for piano players. In
this case the delay between pressing a key and detecting
the corresponding note onset varies between 30 and 100
ms, depending on sound loudness and musical articulation
(e.g. legato, staccato) [1]. For some categories of
instruments, it has been shown that the expressive
intention and direction of the musician (i.e., subjective
artistic and interpretation choices, which are in turn
affected by a particular emotional state during the
performance) can have a significant impact on sonological
parameters such as attack, sustain and decay time [6]. This
is why in this study we do not evaluate the impact of the
instrument attack time on the performance interplay, and
consider this attack time simply as part of the overall
delay perceived by the musician.

One specific aspect that needs to be addressed is the
role played by a musical instrument in a performance. In
western music, some instruments have a more pronounced
“leading” role than others. For example, drums usually
have the task of producing regular patterns that
rhythmically lead all the other voices. The rhythmic
evolution of the melodic line, on the other hand, is more
dependent on the personal interpretation of the musician,
and therefore its onsets tend to deviate from this reference
timing. Drum players are therefore expected to keep a
steady tempo even when the other musicians are playing
off-tempo. This, of course, needs to be accounted for in
the evaluation of the sensitivity to the delay.

As far as the latency perception is concerned, studies
[27, 9] introduce three metrics: Ensemble Performance
Threshold (LPD), Personal Beat Shift Range (PBSR), and
Ensemble Delay Accepted Limit (EDAL). The LPD
indicates the maximum delay that allows musicians to
play in synchronization without noticeable latency
perception. As discussed in Section 0, a consistent body of
literature estimates the value of the LPD around 25 ms.
Conversely, the PBSR evaluates the personal tolerance of
a single musician to deviations from perfect onset
synchronization (i.e., to inter-onset delays), when
performing with a counterpart. This value highly depends
on the musicians’ training level, performing style and
personal inclination. Finally, the EDAL defines the latency
tolerance threshold for a specific musical performance,
depending on the PBSR of each player and on several
contingent factors such as the musical piece to be
performed, the reference tempo, and the instruments being
played. In our experimental results, for the evaluation of
latency perception we focus on metric similar to the
EDAL, i.e. the musicians’ subjective rate of the delay
perception, considering a wide variety of performances
characterized by different combinations of instruments,
reference tempo, rythmical complexity and musical role
of the played parts.

2 Description of Musical Features

In this Section we discuss which timbral and rhythmic
features are relevant for the analysis at hand. The timbral
features that we use for analyzing recorded audio tracks are
extracted using the MIRToolbox [24].

As for rhythmic features that are characteristic of the
rhythmic complexity of the musical piece, we either
computed them manually or extracted them directly from
the MIDI symbolic data (score) using the MIDI Toolbox
[18].

2.1 Rythmic Features
Despite the fact that several metrics have been proposed

in the literature for characterizing the rhythmic content of
a score [30], there is little consensus on one that can be
seen as commonly accepted in the Music Information
Retrieval (MIR) community. In this study, in order to
capture the rhythmic complexity of the played parts, we
consider the following rhytmic features: Event Density
(ED) [24] and Rythmic Complexity (RC) [26]. Given the
score of a part of a musical piece, the Event Density
estimates the average number of note onsets per second
[24]:

ED =
NO
T

, (1)

where NO is the number of onsets and T is the duration of
the musical piece. It is worth highlighting that an onset is
defined as a temporal event, regardless of the number of
notes that are simultaneously played. A chord is therefore
counted as a single onset and the ED values for
polyphonic parts are comparable with the ones computed
over monophonic parts. The ED is thus a metric
quantifying the degree of the density of notes. In this
study the note also refers to drum and percussion events.

The rythmic complexity (RC) provides a numerical
evaluation of the complexity, degree of surprise and
unpredictability of the part [17]. The rhythmic complexity
for a music piece is computed as a weighted mean of
several factors:

RC = w1 H + w2 ED + w3 σ + w4 A, (2)

where H and σ are the entropy and the standard deviation
of the distribution of the duration of the notes in the score,
respectively, w1, . . . ,w4 are the correspondent weights
[16] and A is a measure of phenomenal accent synchrony
from inferred metrical hierarchy. Musicians use to
hierarchically decompose a rhythmic pattern into strong
accents (that usually occur in the first or second beat of a
bar) and weak accents (in the other beats of a bar).
However, composers can place accents in different
locations of the metric to provide their composition of a
specific expression and to induce specific emotions. This
is the case of the syncopation, where strong and weak
accents are located on the upbeats. The (mis)alignment
between the metrical hierarchy and accent synchrony,
which affects the rhythmic complexity of a music piece, is
captured by the metric A.
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Both rhythmical features depend uniquely on the
reference BPM (δ ) and on the rhythmic figures that are
prescribed in the score, therefore ED and RC can be
extracted directly from the MIDI (symbolic)
representation of the musical scores, given the reference
BPM value.

2.2 Timbral Features
As far as timbral characterization is concerned, we

consider a set of features that describe the shape of the
magnitude spectrum. From the Short Time Fourier
Transform (STFT) of the sound signal [23] we compute
the first four moments of the magnitude spectrum. These
moments are, in fact, widely used Spectrum descriptors
[23, 33, 32], known as Spectral Centroid (SC), Spectral
Spread (SSp), Spectral Skewness (SSk), and Spectral
Kurtosis (SK). We also captured two additional spectral
features which describe the noisiness of the sound:
Spectral Flatness (SF), and Spectral Entropy (SE).

The Spectral Centroid (SC) corresponds to the “center
of gravity” (first moment) of the magnitude spectrum:

FSCl =

K
∑

k=1
f (k)Sl(k)

K
∑

k=1
Sl(k)

, (3)

where l is the frame index; Sl(k) is the Magnitude
Spectrum computed at the k-th frequency bin; f (k) is the
frequency corresponding to the k-th bin; and K is the total
number of frequency bins. The spectral centroid gives us
an idea of where on the frequency axis the energy is,
therefore it somehow captures the brightness of the sound.

The Spectral Spread (SSp) is the second moment of the
distribution and it measures the standard deviation of the
magnitude spectrum from the Spectral Centroid:

FSSpl =

√√√√√√√
K
∑

k=1
( f (k)− FSCl )

2Sl(k)

K
∑

k=1
Sl(k)

. (4)

The SSp describes the compactness of the magnitude
spectrum around the Spectral Centroid. A spread out
distribution of the frequency components is characteristic
of noisy sounds. For this reason, the Spectral Spread tends
to measure the noisiness of a sound source.

The Spectral Skewness (SSk) is the third moment of the
magnitude spectrum and captures the symmetry of its fre-
quency distribution:

FSSkl =

K
∑

k=1
(Sl(k)− FSCl )

3

KF3
SSl

, (5)

where FSCl is the Spectral Centroid at the l-th frame (see
eq.(3)) and FSSl is the Spectral Spread at the l-th frame
(see eq. (4)). A positive value of Spectral Skewness
corresponds to an asymmetric concentration of the
spectrum energy towards higher frequency bins, which
implies the presence of a long tail on lower frequencies.

Vice versa, negative SSk coefficients represent a skewed
distribution towards lower frequencies, with a long tail
towards higher frequencies. The perfect symmetry
corresponds to the zero SSk value.

The Spectral Kurtosis (SK) is the fourth moment of the
distribution and describes the size of the tails of the
distribution of the Magnitude Spectrum values:

FSKl =

K
∑

k=1
(Sl(k)− FSPl )

4

KF4
SSl

− 3 , (6)

where FSCl is the Spectral Centroid at the l − th frame (see
eq. (3)) and FSSl is the Spectral Spread at the l-th frame (see
eq.(4)). Positive Spectral Skewness values indicate that the
distributions have relatively large tails, distributions with
small tail have negative kurtosis, and normal distributions
have zero kurtosis. This is why the Spectral Kurtosis can be
interpreted as a description of the deviation from normality.
The offset −3 in eq. (6), in fact, is a correction term that
sets the kurtosis of the normal distribution equal to zero
[24].

As previously discussed, capturing the noisiness of the
audio signal is crucial for investigating the impact of
timbre on delay tolerance. For this reason, we introduce
consider two additional features: Spectral Entropy (SE)
[24], and Spectral Flatness (SF) [23]. As a white-noise is
characterized by a flat Spectrum, spectral features devoted
to capturing the noisiness of a sound should provide a sort
of comparison with respect to the flat shape.

The Spectral Entropy (SE) is a measure of the flatness of
the magnitude spectrum by applying the Shannon’s entropy
definition commonly used in information theory context:

FSEl = −

K
∑

k=1
Sl(k) logSl(k)

logK
. (7)

A totally flat magnitude spectrum corresponds to the
maximum uncertainty and the entropy is maximal. On the
other hand, the configuration with the spectrum presenting
only one very sharp peak and a flat and low background
corresponds to the case with minimum uncertainty, as the
output will be entirely governed by that peak.

The Spectral Flatness (SF) estimates the similarity
between the magnitude spectrum of the signal frame and
the flat shape inside a predefined frequency band. Higher
values of Spectral Flatness correspond to noisy sounds
and vice versa. Mathematically it is defined as the ratio
between the geometric mean and the arithmetic mean of
the magnitude spectrum:

FSFl =

K

√
K−1
∏

k=0
Sl(k)

K
∑

k=1
Sl(k)

. (8)
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Fig. 1: Testbed setup

3 Experiment Description

3.1 Testbed Setup
As depicted in Figure 1, our experiments involved pairs

of musicians playing in two phono-insulated
near-anechoic rooms (sound rooms), to avoid any audio
feedback or visual contact.1 The musicians were also
forbidden to verbally communicate to their counterpart
during the performance. Each room was equipped with a
desktop PC running the Soundjack software. Each PC was
connected to an external sound card via high-speed
connection (FireWire and AES/EBU) operating at a
sampling rate of 48 kHz. The sound card was connected to
high-quality headphones and microphones. An additional
PC (with two network interfaces) running the WANem
network emulator [22] was placed in between. The
network interfaces of the three PCs were connected to
each other through a Fast Ethernet switch. The PCs of the
sound rooms were configured to communicate exclusively
through the interfaces of the WANem emulator, thus
preventing any direct communication between them.

Each musician was able to hear his/her own instrument
as well as the instrument of the other player through
headphones. The two audio signals were transmitted
through the Local Area Network of the building. During
the experiments, all the involved LAN segments were free
of other traffic. The audio tracks were recorded as follows:
the audio data generated by performer A were recorded
directly after the electric transduction of the microphone,
whereas the audio data generated by performer B were
recorded from the SoundJack feedback after propagation
of the audio stream through the network, i.e. as heard
through performer A’s headsets.

1Visual contact was provided not even by means of video
streaming because video processing time is larger than audio pro-
cessing time and would have increased the minimum achievable
end-to-end delay.

3.2 Scores and Network Parameters
We considered three pieces of different rhythmic

complexity: “Yellow Submarine” (by The Beatles) at
different values of BPM (88,110,130), “Bolero” (by
Maurice Ravel), and “Master Blaster” (by Stevie Wonder),
arranged for four different parts: main melody (M), chord
comping (CC), sustained harmony (SH), and drums (D).
From the score of every part of each piece we extracted
the rhythmic characterization in terms of ED and RC,
which are reported in Table 1. More specifically, the
average ED has been manually computed, whereas the
average RC has been computed based on the MIDI
representation of the music scores using the MIDI
Toolbox, which sets the weights in Formula (2) to
w1 = 0.7, w2 = 0.2, w3 = 0.5, w4 = 0.5. Scores were
released to the testers in advance2.

Our experiments involved 8 musicians with at least 8
years of musical experience, all with semi-professional or
professional training level, each playing one of the 7
different instruments reported in Table 3. The musicians
were grouped in 7 pairs according to the combinations
listed in Table 2. Note that some musicians performed in
more than one pair (e.g., one clarinetist performed twice,
i.e. in pairs 5 and 7, whereas the pianist played electric
piano and keyboard in pairs 2,3,4 and 7). For a given pair,
each musician performed only one of the four parts for
each of the three considered musical pieces, as detailed in
Table 2. Musicians in pairs 5 and 6 had regularly
performed together in the last years, where the remaining
pairs had never played together before. However, in order
to avoid biases due to prior common performances, all the
pairs were allowed to practice together in the testbed
environment until they felt sufficiently confident. Before
participating to our experiments, none of the players had
ever experienced networked music interactions.

We consider the timbral features as properties of the
instrument and we do not track their evolution during the
performances. For each instrument, we compose an audio
file with a representative selection of recordings of its
timbre. For example, the timbral characterization of the
drums included the recording of each percussive
instrument from the drum set, whereas the
characterization of guitar included different kinds of
playing techniques, like chords played as arpeggio and
plucked strings. The features were then extracted by
means of the MIRToolbox and their average values
computed over each recording are reported in Table 3.

The recording procedure was repeated several times for
each piece. As reported in Table 4, each recording was
characterized by different tempo and network settings in
terms of reference BPM (δ ), network latency and jitter.
The two latter parameters were set by assigning each IP
packet a random delay Tnet , statistically characterized by

2Scores are publicly available at
http://home.deib.polimi.it/buccoli/netmusic/
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Table 1: Rythmic characterization of the musical pieces
performed during the tests

Bolero Master
Blaster

Yellow
S. (88
BPM)

Yellow
S. (110
BPM)

Yellow
S. (130
BPM)

M
ED 2.1407 2.1667 1.5253 1.9067 2.2880
RC 5.5337 5.5627 5.4160 5.7094 6.0567

CC
ED 1.3222 2.6542 1.8333 2.2917 2.7500
RC 3.4516 6.8903 5.3064 5.6455 5.9592

SH
ED 0.3778 0.5778 0.8213 1.0267 1.2320
RC 2.9364 5.3444 3.8062 4.0208 4.2237

D
ED 2.0148 4.3514 1.5253 1.9067 2.2880
RC 6.0285 5.7255 4.5228 4.7548 4.9767

Table 2: Combination of parts played in each experiment
session. M: main melody; CC: chord comping; SH: sus-
tained harmony; D: drums

Id Instrument A Part A Instrument B Part B
1 Acoustic Guitar M Classic Guitar CC
2 Electric Piano M Drums D
3 Keyboard (strings) SH Drums D
4 Keyboard (strings) SH Electric Guitar CC
5 Clarinet M Clarinet M
6 Eletric Guitar CC Drums D
7 Keyboard (strings) SH Clarinet M

Table 3: Timbral characterization for each instrument

Instrument SC SSp SSk SK SF SE
Ac. Guitar 2047 4109 2.76 10.25 0.19 0.76
Clarinet 1686 2272 4.85 31.81 0.07 0.731

Cl. Guitar 3263 4680 1.57 4.43 0.22 0.841
Drums 7903 7289 0.35 1.57 0.61 0.936

El. Guitar 1848 2522 3.70 23.46 0.09 0.818
El. Piano 2101 4251 3.16 12.26 0.16 0.734
Keyboard 1655 3065 4.39 23.77 0.1 0.733

Table 4: Tested network parameters and tempo settings

Piece δ [BPM] µ [ms] σ [ms]
Yellow Submarine 88,110,132 20,30,40,50,60 1

Bolero 68 20,30,40,50,60 1
Master Blaster 132 20,30,40,50,60 1

independent identically distributed Gaussian random
variables with mean µ and standard deviation σ . The
payload of each packet contained 128 16-bit-long audio
samples, corresponding to a duration of 2.67 ms. For the
considered values of µ and σ , we set the receiver buffer
size to 4 packets (i.e. 512 audio samples) and measured
the number of buffer overruns/underruns during each
recording. The overall probability of overrun/underrun
events turned out to be smaller than 1%. This value is
representative of realistic traffic conditions of a
telecommunication network. Note that overruns/underruns
generate glitches (e.i, distortions in the reproduction of the
received audio signal) which affect the overall audio
quality perceived by the musicians.

Note also that, as Tnet accounts only for the emulated
network delay, the additional latency Tproc introduced by
the audio acquisition and the audio rendering processes
must be taken into account in the computation of the
one-way overall delay time Ttot = Tnet + Tproc. More
specifically, the processing time Tproc includes: in-air
sound propagation from instrument to microphone;
transduction from the acoustic wave to electric signal in
the microphone; signal transmission through the
microphone’s wire; analog to digital conversion of the
sender’s sound card, internal data buffering of the sound
card; processing time of the sender’s PC to packetize the
audio data prior to transmission; processing time of the
receiver’s PC to depacketize the received audio data;
queuing time of the audio data in the application buffer at
the receiver side; digital to analog conversion of the
receiver’s sound card; transmission of the signal through
the headphone’s electric wire; transduction from electric
signal to acoustic wave in the headphones. We
experimentally evaluated Tproc by measuring the
end-to-end delay Ttot when setting µ = 0 and σ = 0. The
measured time3 was Tproc = 15 ms.

During each recording session, the order of the
proposed network configurations was randomly chosen
and was kept undisclosed to the testers, in order to avoid
biasing or conditioning. Two measures of metronome
beats at the reference BPM were played before the
beginning of each performance. At the end of each
performance, the testers were asked to express a rating,
Qperc, of the quality of their interactive performance4

within a five-valued range (1=“very poor”, 5=“very
good”) and of the perceived network delay, Dperc, within a
four-valued range (1=“intolerable”, 4=“none”). In case the
players spontaneously aborted their performance within
the first 50 s, Dperc was set to 1 and Qperc was set to 0 by
default. The two ratings are considered as subjective
quality parameters.

4 Numerical Results

We are interested in assessing the “trend” of the BPM,
and particularly, the tendency to slow down or accelerate.
We compute a metric of this trend by means of the linear
regression of the BPM over the BPM measurements. In
order to do so, we considered the first 50 s of each
performance and we manually annotated the BPM over
time. We then divided the audio track into 5-second
windows, with a 50% overlap (2.5 s), with a total N = 20
windows. For each time window, we computed the
average BPM, resulting in the BPM trend b(tn), with

3The Tproc estimated in our experiments is larger than the one
reported in [27]. This is mainly due to the use of generic sound
card drivers, which increased the processing time of SoundJack.

4Note that the metric Qperc is not related to the audio quality
experienced by the musicians, but only to the evaluation of the
overall satisfaction of their experience and interaction with the
counterpart.
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Fig. 2: BPM trend over time when playing “Yellow Submarine”, for different combinations of parts and instruments
(performer A on top, performer B on bottom), for various values of end-to-end delays Ttot (identified by the color) and
reference BPM δ , identified by the type of line (solid, dashed, dotted).
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Fig. 3: BPM trend over time when playing “Yellow Submarine” with Drums, combined with different parts and instruments
(performer A on top, performer B on bottom), for various values of end-to-end delays Ttot (identified by the color) and
reference BPM δ , identified by the type of line (solid, dashed, dotted).

tn = n · 2.5 s and n = 1,2, ...,N. We finally estimate the
intercept β and the slope κ with linear regression:

argmin
κ,β

1
N

N

∑
n=1

(b(tn)− (κtn + β ))2 . (9)

In our experiments, the average Mean Square Error was
about 1.75%.

In the remainder of the paper we consider the slope κ as
an objective metric for the evaluation of the performance
quality: κ = 0 means steady tempo; κ > 0 means that the
musician is accelerating; κ < 0 means that the musician is
slowing down and thus is unable to keep up with the tempo.

4.1 Preliminary Qualitative Results
We begin with some qualitative comments on the trend

of the BPM curve b(tn) extracted from the execution of
“Yellow Submarine” for different combinations of
instruments and parts, various values of Ttot in the range

between 15 and 75 ms and three different values of δ (as
reported in Table 4). The lower bound of the tested delay
values (i.e. Ttot = 15 ms) is obtained by setting Tnet = 0
ms, meaning that no network delay is added to the
unavoidable processing time Tproc. For values of Ttot
above 75 ms (i.e., when Tnet = 60 ms), a considerable
amount of executions were aborted by the musicians due
to the extreme difficulty of maintaining synchronization.
Therefore, we limit our analysis to delay ranges which
allowed every pair of musician to perform the piece
uninterruptedly for at least one minute. Results reported in
Figures 2 and 3 show that in all the considered recordings
an initial deceleration occurs in the first few seconds,
when the players adjust their tempo until they find a
balance which allows them to reach the required degree of
synchronization. Such initial deceleration is nearly absent
for small network end-to-end delays and reference BPM,
but it becomes much more pronounced for large values of
Ttot and δ . In particular, the scenario with δ = 132 BPM
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and Ttot = 75 ms causes an initial tempo reduction of
12-20 BPM in all the tested combinations of instruments
and parts. In addition, as shown in Figure 2, combining
typically non-homorhythmic parts such as Melody (M)
and Chord Comping (CC) or M and Sustained Harmony
(SH) leads either to a tendency to constantly decelerate
(see Figure 2, left-hand side), which is more pronounced
for large δ , or to a “saw tooth” pattern in which the
players periodically try to compensate the tempo
reduction (Figure 2, middle). Note that, in the latter case,
there is no such pattern in the benchmark scenarios with
Ttot = 15 ms. The difference in the behavior of SH and
CC when interacting with M is also due to the type of
rhythmic interplay that takes place. Chord Comping, in
fact, tends to closely follow and match the tempo of the
Melody, while Sustained Harmony is a steady
accompaniment (“pad”) with more relaxed on-time
constrains. As M is expected to meander off-tempo, it is
harder for SH and M to stay in sync, and adjustments
happen in bursts.

When two homo-rhyrthmic parts (those that are
expected to keep a steady tempo, such as CC and SH) are
combined, b(tn) tends to remain almost constant (see
Figure 2, on the right-hand side, where a slight negative
slope occurs only at δ = 132 BPM). A similar behavior is
observed when M, CC or SH combines with Drums (See
Figure 3), despite the fact that the two parts are not always
homo-rhythmic. This is due to the fact that drums tend to
have a very specific rhythmic “leading role” in western
music, therefore the other musicians generally tend to
follow the drummer.

Based on the above results, we conclude that the choice
of the combination of instruments and parts has a
significant impact on the capability of the musicians to
keep a steady tempo. In the next Subsection, we will give
a more in-depth analysis of the impact of single rhythmic
and timbral features characterizing the specific
combination of parts and instruments on the subjective
and objective performance quality metrics.

4.2 Dependency of Quality Metrics on Rythmic
Features

We now analyze the impact of different end-to-end
delays Ttot on the subjective quality metric Dperc and on
the BPM slope κ , for various values of the rythmic and
timbral features described in Section 2. The interaction
quality rating Qperc resulted to be strongly correlated to
Dperc, therefore for the sake of brevity we do not report
such results.

For every recording, we consider the maximum and
minimum values of each feature among the two parts and
instruments played by the musicians. For example, in test
session 2 (see Table 2) when performing “Bolero”, the
minimum event density (ED) is 2.01 (ED of the D part)
and the maximum ED is 2.14 (ED of the M part).
Conversely, the minimum rhythmic complexity (RC) is
5.53 (on the M part) and the maximum RC is 6.03 (on the
D part).
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(b) Average BPM Linear Slope κ

Fig. 4: Dependence of κ and Dperc on the minimum Ryth-
mic Complexity RC for different values of Ttot

Figure 4a reports the subjective delay perception Dperc
attributed by the pairs of testers to their performances, for
different values of Ttot , as a function of the minimum RC
between the two parts. For the sake of clarity, only four
values of Ttot are reported, where Ttot = Tproc = 15 ms is
considered as benchmark. Results shows that, for a given
value of minimum RC, the average Dperc decreases when
Ttot increases. Moreover, for a given Ttot , increasing RC
also has a negative impact on the average quality rating.
However, the reduction of Dperc is more relevant for large
values of Ttot .

Let us now take a look at how the average BPM linear
slope κ is affected by the minimum rhythmic complexity
RC. For large values of RC (see Figure 4b), we found
slightly negative values of κ (which denote a tendency to
slow down) even in the benchmark scenario. As expected,
the need of synchronism increases when musicians are
playing more complex parts and the lack of typical
synchronization cues, such as eye-contact, affect the
performance even in absence of network delay. However,
negative slopes tend to become much steeper for large
values of Ttot , which suggests that the tolerance to the
delay decreases for more complex musical pieces.

Similar conclusions can be drawn on the dependence of
the perceived delay Dperc and the objective metrics κ on
the minimum ED, as depicted in Figure 5, due to the
non-negligible correlation that exists between RC and ED.
These conclusions remain substantially unvaried if,
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Fig. 5: Dependence of κ and Dperc on the minimum Event
Density ED for different values of Ttot
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Fig. 6: Dependence of κ and Dperc on the minimum Spec-
tral Entropy SE for different values of Ttot
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Fig. 7: Dependence of κ and Dperc on the minimum Spec-
tral Flatness SF for different values of Ttot
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Fig. 8: Dependence of κ and Dperc on the minimum Spec-
tral Skewness SSk for different values of Ttot

instead of considering the minimum values of RC and ED,
we consider the maxima.
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Fig. 9: Dependence of κ and Dperc on the minimum Spec-
tral Centroid SC for different values of Ttot

4.3 Dependency of Quality Metrics on Timbral
Features

As far as timbral features are concerned, we observe
that the noisiness of the instrument, which is captured by
Spectral Entropy, Flatness and Spread, has a relevant
impact on the perceived delay Dperc. For example, in
Figures 6 and 7 we show Dperc and κ are affected by
Spectral Entropy (SE) and Spectral Flatness (SF). We
consider the minimum Entropy and minimum Flatness
between the two involved instruments. Focusing on the
objective metric κ (see Figures 6b and 7b), we notice that
as the SE and the SF increase, the tempo slowdown
becomes more relevant. This impact is negligible for low
network delays, but it grows significantly for fairly large
values of Ttot . Similar considerations are valid for Dperc,
as reported in Figure 6a. Analogous findings also apply to
the dependency of the quality metrics on the Spectral
Spread (these results are not shown here for reasons of
space). Conversely, when considering the impact of
Spectral Skewness (SSk) and Sperctral Kurtosis (SK) on
the performance metrics, we notice that, for a given delay
Ttot , a change in their values does not cause the quality to
perceivably worsen (see Figure 8, results on SK not
reported for conciseness).

Finally, when looking at the influence of the Spectral
Centroid SC (i.e., of sound brightness) on the subjective
quality metrics, results reported in Figure 9a show that the
perceptual metric Dperc does not exhibit significant
fluctuations due to a varying SC. However, for large
values of SC, a slight tendency to decelerate emerges in

Figure 9b, which shows the impact of SC on the objective
quality metric κ .

It is also worth noticing that Dperc is not necessarily an
indicator of quality degradation of the performance, but
only on the musicians’ subjective perception of the
end-to-end delay. However, results reported in Figures
3-8b show that such perception is strongly affected by the
timbral and rhythmic characteristics of the combination of
instruments and parts. For example, in Figure 8a, the
perceived network delay Dperc is larger for large values of
SSk and Ttot than the value we would have in the case of
low delays. This leads us to think that the musicians’
capability of estimating the network delay is biased by the
perceived interaction quality of the performance. This
means that large network delays (i.e., Ttot ≥ 75ms) do not
prevent networked musical interaction, but they limit the
selection of the instrument/part combinations. Thus, the
resulting experience can be satisfactory if the performer is
willing to trade flexibility and perceived interaction
quality with the convenience of playing over the network.

5 Conclusion

This article proposes an extensive evaluation of the
quality of Networked Music Performances (NMPs) as a
function of numerous parameters, some concerning
telecommunication network delays and conditions, others
involving rhythmic and timbral descriptors of the musical
instruments involved. The analysis goes as far as
considering the influence of the role of the instrument on
such quality metrics. In order to conduct this analysis, we
implemented a testbed for psycho-acoustic tests, which
emulates the behavior of a real telecommunication
network in terms of variable transmission delay and jitter,
and we quantitatively evaluated the impact of the various
performance parameters on the trend of the tempo that the
musicians were able to keep during the performance, as
well as on the perceived quality of the musical interaction.
We found that the possibility of enjoying an interactive
networked musical performance is not only a function of
the total network delay, but it also depends on the role and
the timbral characteristics of the involved musical
instruments, as well as the rhythmic complexity of the
performance.

In particular, the paper provides evidence to the
following main findings. When playing more rhythmically
complex pieces, musicians exhibit a more pronounced
tendency to decelerate when the network latency is higher.
Nonetheless, the rhythmical complexity does not
significantly worsen their perception of the delay and of
the interaction quality. Among the timbral features,
instruments with a higher Spectral Entropy and Spectral
Flatness (such as guitars and drums) lead to larger tempo
slowdown in case of higher network delays. In addition,
they also amplify the negative impact of network delay on
the perceived delay and interaction quality.
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