
1 Introduction

Stochastic volatility models are a well-known choice in commodity markets. Geman (2005)
and Hikspoors (2008) discussed some of the most popular models of this kind in commodity
finance. The seminal paper, to which they refer is the one by Schwartz (1997), where the
commodity spot values are modelled by a mean reverting process and the convenience yield
is incorporated in the discount factor. While Cortazar and Schwartz (2003) proposed an
extension of the original Schwartz model adding one factor to describe the long-term interest
rate by an Ornstein-Uhlenbeck process, Eydeland and Geman (1998) proposed a different
extension adding a mean reverting OU-process to describe the instantaneous variance of
the diffusion term in the spot dynamics.

As Geman (2000) pointed out, the use of mean reversion in the dynamics of spot values
is controversial, in particular for crude oil market (the object of our analysis) it is not always
needed. In the same work it was suggested a simple test to discriminate if a mean reverting
dynamics is preferable to a simple diffusion process, the results shows that for time series
starting from 2005 there is no strong evidence for a mean reverting modelling choice.

Further developments were implemented, as in Ribeiro and Hodges (2004), to describe
the dynamics for the oil sector of commodity market. Moreover, in their paper, they also
pointed out that the possibility for convenience yield to assume negative values (to explain
the contango effect in commodity market) from a theoretical viewpoint is due to the cost
of storage implied in prices dynamics; if this term was separated off the convenience yield,
then a Cox-Ingersoll-Ross (CIR) process for the convenience yield would automatically
exclude arbitrage opportunities in the market. In the model proposed in this paper, we stand
on this remark by Ribeiro and Hodges, modelling the convenience yield (once the cost of
storage is separated off) with a CIR dynamics but without imposing any linear dependence
of the spot dynamics diffusion term on the convenience yield; on the contrary, we prefer to
include an extra volatility factor (with a CIR dynamics, like in the well known Heston model.
The possibility of jumps with finite activity (modelled by a compound Poisson process with
normally distributed jump size) is allowed in a second version of the model, which has
been tested with the same dataset used for inference in the model without jumps. A third
version of the model substitutes the jump term with a seasonality term (modelled by the
usual periodic function, as suggested also by Hikspoors (2008)), allowing for a comparison
between the effect of jumps and of the seasonality term in the goodness of fit of analysed
dataset. Dataset used for the estimation come from the West Texas intermediate (WTI) index
spot values, quoted in the New York Market Exchange (NYMEX), and the futures written
on it, more details about datasets are provided in a dedicated section. The time window
considered spans from the beginning of February 2007 to the end of September 2010. In
this period the oil market exhibited an inverted market state (also known as contango), and
we expect our models can capture this phenomenon.

Inference under both the historical and the risk-neutral measures are quite common in
literature for models of this kind, and they could be easily extended to the present one. Some

Historical and risk-neutral estimation in a two
factors stochastic volatility model for oil markets

Gaetano Fileccia and Carlo Sgarra*

Dipartimento di Matematica,
Politecnico di Milano, Piazza Leonardo Da Vinci,
32-20133 Milano, Italy
Email: gaetano.fileccia@polimi.it
Email: carlo.sgarra@polimi.it
*Corresponding author



authors resorted to Bayesian analysis to get inference in stochastic volatility framework:
since the seminal paper by Jacquier et al. (1994) a fast-growing literature is exploring the
application of Bayesian estimation techniques, in particular Markov Chain Monte Carlo
(MCMC) methods, to get inference for models belonging to this family. A branch of this
literature is devoting to study joint estimation under historical and risk neutral measure,
using both stock and derivatives prices data. The link between the two measures is provided
by a suitable parametric choice of the Radon-Nikodym derivative.

The main references in this section are the two papers by Eraker (2004) and by Eraker
et al. (2003) in which some popular stochastic volatility models are analysed using a Gibbs
sampling algorithm. Further references in which the Gibbs sampling method is used to get
inference for stochastic volatility models, eventually including jumps, are the papers by
Forbes et al. (2002) and, more recently, by Yu et al. (2011), who extended the results by
Eraker (2004) including different jump models in the analysis and compare them; all these
paper refer to equity markets, analysing S&P500 or DAX data. Another Bayesian technique
which is becoming popular to get inference in a stochastic volatility framework, and when
latent factor are present in general, is the particle filter (PF) method. This is a Bayesian filter
algorithm based on sequential importance sampling for Bayesian networks; differently from
Kalman filter, it can be used also for non-gaussian and non-linear dynamics. A complete
survey on the theoretical background and implementation details on PF are the papers by
Andrieu and Johansen (2008), and Arulampalam et al. (2002), while for application to
stochastic volatility models we mention the papers by Javaheri (2005), Johannes et al. (2009)
and Aihara et al. (2008). Different authors have developed efficient estimation methods
based on PF, by combining the PF approach with MCMC algorithms; in particular, Andrieu
et al. (2010), in order to get inference on the parameters of a stochastic volatility model
with jumps, introduced a particle MCMC algorithm in which the marginal likelihood is
estimated by a nested Auxiliary PF. We are going to apply a similar algorithm in order to
carry out our inference on the model class under investigation.

2 The models proposed

We study three different models for oil price dynamics. We start by studying a basic model
(Model B), then we analyse two possible extensions. The basic model (Model B) is a
two-factor model, including a volatility process and a convenience yield process into the
spot price dynamics. Both the spot variance and the convenience yield processes follow
a square-root CIR type dynamics: the coefficients α and β appearing in the stochastic
differential equation describing this dynamics are the so-called mean-reversion speeds, for
the convenience yield and the volatility respectively, while the coefficients σ and ξ are the
constant of proportionality characterising the diffusion terms of the square root processes,
respectively for the convenience yield and for the volatility again. Under the historical
measure P the dynamics described by the model B is then the following:



dSt
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(P)
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√
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(1)



This basic model we just introduced (and never introduced before, to our knowledge)
shares some relevant features with the model proposed by Yan (2002), but it assumes the
interest rates to be constant and the convenience yield dynamics to be driven by a further
square-root process. As Schwartz (1997) pointed out, after a systematic comparison of
performances between models with deterministic and stochastic interest rates in capturing
the futures observed structure, models with stochastic interest rates do not show any
significant improvement, if we exclude the longest maturity futures (about ten-years
maturity). Since the biggest maturity taken into account in the present paper is five years,
we prefer to avoid stochastic modelling for interest rates in order to make the model more
parsimonious. We decided then to keep the rates at the FED levels. Moreover, since the cost
of storage is separated out from the dynamics of the convenience yield, δt can be modelled
by a CIR process that prevents it from assuming negative values, automatically excluding
arbitrage opportunities in the market, as pointed out in Ribeiro and Hodges (2004). In the
paper by Yan (2002) the parameter estimation problem was not examined, so the main goal
of this paper is to develop an estimation procedure for a whole class of models strictly related
to that proposed by Yan. The stochastic volatility feature combined with the stochastic
dynamics for the convenience yield and the eventual inclusion of jumps make the model
considered flexible enough in order to describe the oil market dynamics, by keeping at
the same time a high level of analytical tractability: we can obtain in fact for futures and
option prices close-form solutions. The procedure, we are going to develop in this paper,
allows moreover to estimate accurately and efficiently the model parameters both under the
historical and the risk-neutral dynamics specification. Similar results, for a different model
class, have been presented in the paper by Peters et al. (2013). In equation (1) we identify
the spot value at time t with St, while δt identifies the net convenience yield process (after
separating the positive revenues from the cost of storage and insurance, c1.) and with Vt

the variance process. WSt , Wδt , WVt are three Brownian motions, with Wδt independent
from the other two process, while WSt and WVt are correlated as described in the fourth
equation of the previous system (1).

In order to understand separately the role plaid by the different factors and their
significance in explaining the spot price dynamics, we consider moreover two variants
of model B: the first allowing for jumps (Model J) in the spot dynamics (modelled with
exponentially distributed jump arrivals time and lognormally distributed jump size), and a
model including a seasonality term in spot dynamics (Model S). This last model includes
in the spot dynamics the usual sinusoidal term (as discussed by Hikspoors (2008)).

Modelling prices dynamics by processes including both stochastic volatility and jumps
is getting more and more popular for several different kind of traded assets, since only
the combined effects of both features can provide reasonable volatility smiles for the on
the whole maturity spectrum (See, for example, Cont and Tankov (2004)). The seasonality
terms, appearing in the oil price dynamics, is on the other hand, a distinctive feature of
energy commodities: the rising of energy demand in both the cold and the hot season, and
the fall of demand during the rest of the year, create the characteristic periodic behaviour
of the deterministic component in the oil price dynamics.

All the models taken into account (model B, S and J) share similar dynamics for the
convenience yield process and the volatility process, while the dynamics for the spot process
is different.



All the dynamics are resumed by the following general system of stochastic differential
equations:


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(2)

with tyear the time elapsed since the beginning of the year (we adopt the word ‘year’ here
and in the rest of the paper to mean calendar year). J (P)

xt is a jump process, where the jump
arrivals time are distributed according to an exponential random variable withλJ parameter,
and the jump size are normally distributed with mean µJ and variance σ2

J . We make the
usual choice of describing the price dynamics through the log-price process: xt = log[St]
eventually by multiplying this term by the seasonality function g whenever this will be
assumed to be different from zero.

From equation (2) we can obtain the three alternative models we are going to study by
fixing some of the parameters:

• model B: we fix λJ , the parameter of Poisson-distributed jump time arrivals, to zero
and ζ1 = ζ2 = 0

• model J: we fix ζ1 = ζ2 = 0

• model S: we fix λJ = 0.

The model B, which is our basic model, is obtained by the general dynamics described
in equation (2) by removing both the seasonality terms and the jump component
in the spot price dynamics, while in model J the seasonality terms are removed and
the jump component is taken into account, and in model S the reverse situation is
considered (the jump component is removed and the seasonality terms are taken into
account).

In order to describe the dynamics under the risk-neutral measure (Shreve, 2003; Bjork,
2009), we need to define the Radon-Nikodym derivative of this measure with respect to the
historical one. The parametric form we choose is the same proposed by Heston (1993) and
by Pan (2002), which preserves the model structure under the measure change. This can be
specified by the following relations between the Wiener processes under the two measures,
provided by the Girsanov theorem:
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where we have denoted by ηS the risk premium associated with the Brownian part of the
spot dynamics. Hence, the dynamics described under the measureP by the system (2), under
the risk-neutral measure Q becomes:
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g(tyear) = ζ1(sin(2πtyear + ω1)) + ζ2(cos(2πtyear + ω2)),

(4)

where µ∗ and dJ (Q) denote respectively the predictable compensator and the compensated
jump measure associated with the jump process.2 Moreover, since δt − c can assume
both positive and negative values, normal and inverted futures market structures are
both allowed. To cope with the inference in this setting we adopt a Euler discretisation
method. A comprehensive and detailed reference providing efficient methods for computing
approximate solutions of stochastic differential equations of the kind under examination is
the book by Glasserman (2004). By approximating the deterministic differentials by forward
finite increments, the Brownian motions by normallly distributed random variables with
zero mean and variance ∆t, and by simulating the jump dynamics by a compound Poisson
process N (J)

t , the discretised dynamics (under the risk neutral measure) can then be written
as follows:

xt+1 = xt + (r + c− δt −
1

2
Vt − µ∗)∆t+

√
1− ρ2

√
Vtϵ

(S)
t

+ρ
√
Vtϵ

(V )
t +

∑N
(J)
t

i=1 ϵ
(J)
i,t

δt+1 = δt +
(
α(δ̄ − δt)− ηδδt

)
dt+ σ

√
δtϵ

(δ)
t

Vt+1 = Vt +
(
β(V̄ − Vt)− ηV Vt

)
dt+ ξ

√
Vtϵ

(V )
t

(5)

where each ϵ
(S)
t , ϵ(V )

t and ϵ
(δ)
t are normally distributed random variables with zero mean

and variance ∆t. In the discretised jump term, the N (J)
t are independent Poisson distributed

random variables with intensity parameter λJ , and ϵ
(J)
i,t are independent normal random

variables with mean (µJ − ηJ) and variance σ2
J . All the random variables just listed are

independent on each other.
Under the historical measure the same discretisation holds, with the risk premia

{ηδ, ηV , ηJ} and the compensator µ∗ set to zero, while the drift coefficient rf is substituted
by µ.

The relation between the compensatorµ∗ and the parameters characterising the Gaussian
distribution of the jump size, (µJ , σ

2
J ), is provided by the following formula:

µ∗ = exp

{
µJ +

1

2
σ2
J

}
− 1 (6)

With these model specifications, the futures prices are given by the following expression:

F (0, τ) = exp{A0(τ) + xt +A2(τ)δt} (7)



where τ = T − t is the futures time to maturity. Details about computations and the specifics
for the functions A0(τ) and A2(τ) are provided in the next section. Formula (7) holds for
two of the three models studied: model B and model J. Futures prices for the model with
seasonality (model S) include a seasonal term: under model S the futures price formula
becomes:

F (0, τ) = exp{g(Tyear) +A0(τ) + xt +A2(τ)δt}. (8)

where Tyear is the time in years the maturity day differ from the first of January of the
same year. Since the prices of a futures are affected by different kind of noises (possible
incomplete specification of the model, market inefficiency, random noise, etc.) we modelled
(as in Eraker et al. (2003)) the logarithm of the price of the futures making the hypothesis
that the observed market price, lnFM(0, τ), are represented by the theoretical price got by
equation (7) plus an error distributed as a white noise ϵfut ∼ N (0, σ2

ϵ ):
3

lnFM(0, τ) = lnF (0, τ) + ϵfut. (9)

3 Futures prices

When the underlying asset follows the dynamics (4), the value of a generic futures contract,
f(t, xt, δt, Vt, Jt), can be computed by the following backward partial differential equation
(PDE):
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This PDE can be easily obtained as follows: by applying the Ito Lemma to the pricing
function f(t, x, v, δ) we get:
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The fundamental theorem of asset pricing (See Bjork, 2009) implies that, in order to avoid
arbitrage opportunities, every contingent claim written on S must be a martingale with
respect to Q. Since the terms involving the Wiener processes dW (Q) and the compensated
jump measure dJ (Q)

xt are Q-martingales by definition, the only term which prevents the
pricing function f to be a martingale is the drift term, so this term must vanish, and this



requirement implies the equation. The previous PDE, in order to admit a solution, requires
the specification of a terminal condition f(t = T ) = H(xT , δT , VT ), with H payoff at
maturity T , and since we are dealing with futures, the final payoff is provided by the
following expression:

H(xT , δT , VT ) = exp{xT }. (10)

The approach we are going to follow in the present section is the same as that presented
in the paper by Yan (2002), Section 1.4, where the computations are exposed in full detail;
this approach can be successfully applied to every model belonging to the large class of
the so-called ‘Affine Models’. For a general survey on these models and their properties
a standard reference is the paper by Duffie et al. (2003). In Appendix B is included the
computation of the Fourier transform of the options on futures prices. According to the
general theory of Affine Processes the solution of equation (10) must be of the following
form:

ft = exp{A0(t) +A1(t)xt +A2(t)δt +A3(t)Vt}. (11)

If we substitute this tentative solution into our PDE we get a polynomial in the independent
variables and, if we impose the vanishing of all the terms with the same power in each
independent variable, we get the following system of ordinary differential equations:
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(12)

where we changed variable from t to τ = T − t.4

Since the payoff is equation (10) we obtain the initial condition for the ODE system:
A0(0) = 0

A1(0) = 1

A2(0) = 0

A3(0) = 0

(13)

The previous system of linear differential equations can be solved via standard methods
(see, for example, Boyce and Di Prima, 2012), which provide the following solution:
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with: 
C =

√
(α+ ηδ)2 + 2σ2

D =
(ηδ + α) + C

2

B =
(ηδ + α)− C

2

(15)

4 The inference algorithm

The object of our inference is the vector {Θ, V0:T , δ0:T , J0:T } where V0:T , δ0:T , J0:T
are the three latent processes (the variance process, the convenience yield and the
jump process) and Θ is the set of parameters, that is our main inference target:
Θ = {ϵ, µ, c, α, δ̄, σ, ηδ, β, V̄ , ξ, ρ, λ, µJ , σJ , ηJ}.5 For simplicity we shall indicate with
X0:T the vector of the three latent processes {V0:T , δ0:T , J0:T }, and by Z1:T the set of
observed market data (coming from both asset price and futures price quotations).

To get inference in a so large state space, particle Markov Chain Monte Carlo methods
(PMMC henceforth) represents an efficient technique, since it allows to simulate the latent
processes in a single simulation block. A presentation of PMMC technique applied to
econometric inference in commodity financial markets has recently appeared in Peters et al.
(2013). The PMMC allows to sample from p(Θ, X0:T |Z1:T ), that is the joint probability
distribution of the parameter set and the latent processes given the observed data. To sample
with a Monte Carlo technique from such a probability distribution we used a PF algorithm6

to estimate the marginal likelihood L(y|Θ), this which is used in defining an acceptance
ratio probability that will ensure that after a sufficient amount of time, whatever point in state
space we started from, we will sample from the distribution p (Θ|Z1:T ), getting unbiased
estimate for Θ.

The MCMC method used is a variant of the well known Metropolis-Hastings algorithm
(a thorough discussion about theory and implementation of MCMC methods can be found
in Gilks (1996))

• At step (s = 0)
after setting a starting point Θ = θ(0) arbitrarily, then a Sampling Important
Resampling algorithm is implemented. SIR7 algorithm allows to simulate the latent
processes x(0)

1:T from the distribution p(X1:T |Z1:T , θ(0)) and an estimate of the
marginal likelihood p(Z1:T |θ(0))

• At step (s from 1 to MC, the length of the Markov chain sequence we want to
simulate)
a new value set, θ∗, is sampled from a proposal (symmetric) distribution
q(·|θ(s− 1)) and the new sampling value is accepted with a probability:

min

(
1,

p(z1:T |θ∗)p̃(θ∗)
p(z1:T |θ(s− 1))p̃(θ(s− 1))

)
(16)

where p̃(θ) is the prior distribution associated to θ, while p(z1:T |θ∗) is the likelihood
for the observation chain given the parameter set θ∗.
Again the marginal likelihood and x∗

1:T comes form a PF algorithm run.
If accepted: θ(s) = θ∗, otherwise: θ(s) = θ(s− 1).



According to this algorithm we are sampling from a Markov chain whose limiting
distribution is:

p(Θ, X1:T | Z1:T ) = p(θ|z1:T )pθ(x1:T | z1:T ) (17)

We can also discard the information about hidden state process and use the sample to get
inference about θ, if we need just the last one.

To reduce the number of rejected proposal, and increase mixing of the chain different
techniques are known, as Metropolis within Gibbs variant, that is the one we implemented in
our sampling algorithm. The output coming from the Particle Metropolis Hastings algorithm
(PMMH), as any MCMC output need to be resized, removing the burn in, that is the part of
the chain needed by algorithm to get to the stationary distribution. To check that convergence
to stationary distribution was reached (for all the parameters) we adopted the Geweke test
(Geweke, 1992).

5 The data

The data used for the analysis are relative to WTI Cushing Crude Oil spot and futures
quotations on NYMEX market from 1 February, 2007 to 28 September, 2011. We used the
the first 85% if the dataset to get the inference on our model and reserved the last 15% of
dates for out of the sample performances study. The range of dates for the estimation goes
from 1 February, 2007 to 31 December, 2010, and the spot data are presented in Figure 1.

Spot data are collected from the US Energy information administration webpage where
a large collection of energy related time series (among which the WTI FOB spot prices) is
provided. Daily data are taken into account for any available working day in the interval.
A plot of the spot data used in estimating the parameters of the different analysed models
is shown in Figure 1.

Figure 1 Spot FOB data for WTI crude oil. The x-axis label (the lower one) refers to the number
of working days from the starting date 1 February, 2007 (see online version for colours)

Beside the spot data, for any working day we recorded a panel of 12 future contract values.
Their maturity day is fixed on the first working day of each month of 2012. So for any trading



day we analysed a spot datum and 12 futures data, and in the range there are 988 dates.
Hence the dataset consists in 988 spot values and 11,856 future contracts.

In addition to this dataset we reserved a panel of data to evaluate out of the sample
performances. The dataset include again a FOB spot datum and a panel of 12 future data
(with different maturity one for each month of 2012, the maturities are set on the first trading
day), the range of dates goes from 1 January, 2011 to 28 September, 2012. The number of
working days in the range is 187.

Future contracts are usually characterised by their behaviour when time to maturity goes
to zero. If at a certain date the futures quotation increases when the time to maturity become
longer, it usually said the future market is normal, otherwise is said inverted. In Figure 2
are indicated the dates for which we can observe a normal future market (equivalent to the
value +1) and the dates with an inverted future market(equivalent to the value −1).

Figure 2 The dates in the dataset used for the parameter estimation are divided in normal future
market days (+1 value) and inverted future market days (−1 value). The x-axis label (the
lower one) refers to the number of working days from the starting date 1 February, 2007
(see online version for colours)

Both the future market behaviours have been found in the different analysed periods. The
two behaviours are illustrated by Figures 3 and 4 which show, respectively, an example of
normal market structure (the future values on 11 May, 2011 with higher market values for
futures with longer time to maturity) and an example of inverted market structure (the future
values on 25 September, 2011 with higher market values for futures with shorter time to
maturity).

From the available range of dates we extracted a second dataset from 11 February, 2010
to 28 September, 2011; again we used about the first 85% of the dates to get inference and the
remaining part to evaluate out of the sample performances evaluation. The dataset used for
the inference goes from 11 February, 2010 to 30 July, 2011. The spot quotations are reported
in Figure 5. With respect to the first dataset, the period from June 2008 to December 2008,
when a disastrous fall in FOB quotations was observed in the market (the barrel price went
from about 150$ to about 30$, before rising up again to a more stable value of about 100$),
has been excluded. By restricting the dataset to one year data and excluding the exceptional
period just discussed, from our analysis, we hope to find a description of the market more
reliable than that provided by the first dataset. We shall evaluate this hypothesis by analysing



both the residuals and the out-of-the sample performances in Section 7. In Figure 6 are
reported, as done for the previous dataset, with dates characterised by a normal future
market structure and with dates characterised by an inverse future structure. We excluded
the model with seasonality from the analysed models, since the dates range spans just one
year and a half, hence any inference on yearly periodic functions would be affected by the
too short range considered. The number of working dates in this range is 350 and, as before,
we considered for each date one spot FOB quotation and 12 futures for each date, hence
our inference dataset consists in 350 spot data and 4200 futures data. The out of the sample
performances are evaluated on the dataset consisting in 81 spot data and 972 futures data,
these data correspond to the range of dates from 1 July, 2011 to 28 September, 2011.

Figure 3 Normal future market: WTI future quotations 11 May, 2011, different maturities.
On x-axis are the days to delivery (see online version for colours)

Figure 4 Inverted future market: WTI future quotations 25 August, 2011, different maturities.
On x-axis are the days to delivery (see online version for colours)



Figure 5 Spot FOB data for WTI crude oil for the reduced dataset. The x-axis label (the lower one)
refers to the number of working days from the starting date 11 February, 2010 (see online
version for colours)

Figure 6 The dates in the dataset used for the parameter estimation are divided in normal future
market days (+1 value) and inverted future market days (–1 value). The x-axis label (the
lower one) refers to the number of working days from the starting date 11 February, 2010
(see online version for colours)

6 Numerical results

To conduct our inference for each of our models discussed in Section 2, we simulated
Markov chains of 30,000 steps (from these we discard about 10,000 sampled points as
burn-in of the Markov chain).8 We used the mean of the posterior distribution p(Θ|Z0:T ) as
point estimate for each parameter; these results are reported in the Table 1. Together with
means we reported also the standard deviation of the posterior distributions.

Since for all the three models the cost of storage (c) estimate is greater than long run
convenience yield (δ̄) one, then c− δt assumes often positive values, which leads to the



prevalence of the normal market effect in futures structure, as it is present for most of the
dates in the considered period. From Figures 7 and 8 we can observe that the estimate
for δt is greater than the estimate for c in the same periods when in the markets are
observed an inverted future market, as it is possible to see comparing Figures 2 and 6
with Figure 2.

Table 1 Parameter inference: posterior means (and posterior standard deviation) of the model
parameter set Θ for three analysed models (estimated with the dataset 2007–2011).
All values are expressed on a daily basis and are scaled by a 100 factor

Model parameters Basic model Model with seasonality Model with jumps
ηS 0.0892 0.0859 0.1041

(0.0069) (0.0717) (0.0046)
c 0.2043 0.1972 0.1895

(0.0061) (0.0943) (0.00257)
α 0.0942 0.1242 0.4633

(0.0415) (0.0651) (0.0652)
δ̄ 0.1977 0.1965 0.1868

(1.10E − 3) (0.0058) (5.25E − 4)
σ 0.0511 0.0694 0.27

(0.0061) (0.0226) (0.0021)
ηδ 0.0293 0.0256 0.0357

(6.95E − 4) (0.0035) (3.96E − 4)
β 0.5294 1.4486 0.7909

(0.2811) (0.8001) (0.5878)
V̄ 0.0429 0.0392 0.0235

(7.22E − 4) (0.0092) (5.61E − 4)
ξ 0.2616 0.3405 0.155

(0.0666) (0.1159) (0.015)
ρ −64.44 −33.06 −55.98

(2.0302) (16.60) (0.64)
ζ1 − 0.6712 −

(−) (0.2534) (−)
ζ2 − −0.7275 −

(−) (0.1607) (−)
ω1 − 2.6048 −

(−) (2.2499) (−)
ω2 − 3.4644 −

(−) (4.2490) (−)
λJ − − 5.689

(−) (−) (0.2001)
µJ − − −0.7241

(−) (−) (8.91E − 3)
σJ − − 7.373

(−) (−) (0.1594)

The inference results show for all the models a low level in long-run volatility (V̄ ), for the
basic model the estimated value for V̄ is 0.0429 (corresponding to an annualised long-run
volatility close to 3.5%), a value that well represent the historical standard deviation we
recognise in the return time series analysed, if we exclude the period from June 2008 to



December 2008, in which spot quotation faced a dramatic fall resulting in a sudden increase
in volatility level. As expected the model with seasonality show similar values to the basic
model for the volatility process parameters, since the seasonality function do not affect the
volatility dynamics, just the log-spot one. The main difference among this two models is in
the correlation parameter, in model with seasonality we found a lower value for correlation.
The posterior for the parameters ζ1, ζ2, ω1, ω2 show mean values close to zero, and higher
variances with respect to the others parameter posteriors. Beside the basic model and the
model including the seasonality term, as discussed in Section 2, we analyse the model
including jumps. Jumps could provide a better description for exceptional returns, while
ordinary returns can be better explained by the short term volatility dynamics. By comparing
the results of the inference carried out within the basic model and within the model with
jumps, we can observe similar point estimates for all the parameters involved in the spot
and in the convenience yield dynamics, while the differences appears in the parameters for
the volatility process, for which we can observe a specifically lower value for the long-run
volatility in the case with jumps with respect to the basic model; obviously, this is due to the
presence of jumps, which partially explain the volatility of the spot dynamics. The jumps
intensity assumes a value significantly different from zero, and the point estimate suggest
an average of 5.6% days with jumps.

Figure 7 Inference on dynamics for the convenience yield and the volatility process got under the
model without seasonality or jumps (dataset 2007–2011). On the x-axis the working day
starting from 1 February, 2007 (see online version for colours)

Together with inference about the parameters we got inference on the path of the latent
processes (convenience yield and variance process), too. In Figures 7–9) are shown the
inference on the latent processes for the different models considered.

The central line represent the mean of all path, that we can interpret as our estimate for
the process; the two external lines, instead, identify an interval given by the mean plus (and
minus) the standard deviation of the position for all the sampled path. In all the dynamics we
can notice how during the period from June 2008 to December 2008, the filtered dynamics
behaves like in presence of outliers.

It is interesting to remark the occurrences when the filtered process for the convenience
yield is above the ‘threshold’ represented by the estimated cost of storage plus the risk free
rate. In this cases, it is more valuable to have the commodity immediately or within a short



maturity than later, since a shortage in storages or an excess of demand (summarised in
a positive convenience yield) makes more profitable to own the commodity; so the future
prices are generally higher for shorter maturities than longer (inverted future market). If we
compare the filtered dynamics we reported above, with the Figure 2 (where are indicated the
normal future market day, and the inverted ones), the remark just pointed out can provide
quite a good interpretation.

Figure 8 Inference on dynamics for the convenience yield and the volatility process got under the
model with seasonality (dataset 2007–2011). On the x-axis the working day starting from
1 February, 2007 (see online version for colours)

Figure 9 Inference on dynamics for the convenience yield, the volatility process and the jump
process got under the model with jumps (dataset 2007–2011). On the x-axis the working
day starting from 1 February, 2007 (see online version for colours)

As discussed in the Section 5 we conduct the inference for the basic model and for the
model with jumps also for a smaller set of dates, excluding the period with the sudden fall
in WTI quotations, see Figures 10 and 11.



Figure 10 Inference on dynamics for the convenience yield and the volatility process got under the
model without seasonality or jumps (dataset 2010–2011). On the x-axis the working
day starting from 11 February, 2010 (see online version for colours)

Figure 11 Inference on dynamics for the convenience yield and the volatility process got under the
model with jumps (dataset 2010– 2011). On the x-axis the working day starting
from 11 February, 2010 (see online version for colours)

By comparing inferences reported in Table 2 with the one reported in Table 1 we can notice
the slightly lower estimate for the intensity of the jump process, since the new dataset spot
dynamic is less volatile than the previous one (see Figures 1 and 5). Comparing the two
tables, we can also notice that both the elasticity constants of the mean reversion processes
(the one in the convenience yield process, α, and the one in the volatility process, β) have
changed: higher value for the ‘mean reverting speed’ are preferred since we excluded the
period with high volatility from analysed dataset.

7 In the sample and out of the sample performances

To compare performances by the three model we analysed both in the sample and out-of
the sample results. For in the sample results we, as Yu et al. (2011), analysed the ϵ residuals
to verify if the assumption of normality is satisfied, if it is then the model well describes
the dynamics of data we are studying. In out of the sample analysis we ran a PF algorithm
using the parameter set we got from inference and check the square root of the quadratic
errors mean (RMSE) and the mean absolute error (MAE) for futures and options on futures.



Table 2 Parameter inference: posterior means (and posterior standard deviation) of the model
parameter set Θ for the two analysed models (estimated with the reduced dataset
2010–2011). All values are expressed on a daily basis and are scaled by a 100 factor

Model parameters Basic model Model with jumps
ηS 0.1209 0.2012

(0.0069) (0.0194)
c 0.1983 0.1715

(0.0061) (0.00587)
α 1.7618 3.521

(0.0415) (1.38)
δ̄ 0.1950 0.1606

(1.10E − 3) (0.0066)
σ 0.0616 0.4581

(0.0061) (0.0411)
ηδ 0.0285 0.0318

(6.95E − 4) (0.0013)
β 3.3356 2.559

(0.2811) (1.08)
V̄ 0.0461 0.0283

(7.22E − 4) (0.00194)
ξ 0.2646 0.5267

(0.0666) (0.034)
ρ −66.04 −54.99

(2.0302) (0.981)
λJ − 4.039

(−) (0.447)
µJ − −1.084

(−) (0.0062)
σJ − 9.363

(−) (0.5387)

To analyse the goodness of fit and to compare the different models, we studied the residuals
ϵ
(S)
t , ϵ

(V )
t , ϵ

(δ)
t from equation (5):

ϵ
(S)
t =

xt+1 − xt − (µ+ c− δt)∆t− Jt+1√
Vt∆t

ϵ
(δ)
t =

δt+1 − δt − α(δ̄ − δt)∆t

σ
√
δt∆t

ϵ
(V )
t =

Vt+1 − Vt − β(V̄ − Vt)∆t

ξ
√
Vt∆t

(18)

Since the model hypothesis, ϵ(S), ϵ(δ) and ϵ(δ) are distributed each one according to a
standard normal, we use the Kolmogorov-Smirnov test to check this hypothesis9 and the
skewness and kurtosis of the distributions to compare the different models.

For the risk neutral dynamics, specified by equation (4), we evaluate again both the
RMSE and the AME for both the datasets: the dataset used for parameter estimation (in the
sample set ITS) and the dataset outside the first one (out of the sample OTS).10 Results are
shown in Table 4.



For the basic model and, as it is shown by the p-value for the Kolmogorov-Smirnov test
(see Table 3), we have to reject the normality hypothesis for at least two of the residuals:
the convenience yield and the volatility residuals. The presence of the period with the fall of
WTI spot has a great impact in the sampled path, in particular we notice in the histograms
(Figures 12–14) of the residuals ϵδ, ϵV a skewed distribution, and with some values far from
the mode values that brought a much more large kurtosis than for a normal distribution. The
model with jumps seems to mitigate the effect of leptokurtic distribution, explaining part
of the outliers variance value with an increased jump activity. The model with seasonality,
even if it provides higher p-value for the KS test for the spot residual, it does not show any
improvement in the performances of the model as far as ϵδ, ϵV are concerned.

Figure 12 Histogram for the residuals for the basic model (see online version for colours)

Figure 13 Histogram for the residuals for the model with seasonality term (see online version
for colours)

The errors associated with the futures (see Table 4), both in the sample and out of the sample,
suggest that we do not get a real improvement by including the seasonality terms; instead,
model with jumps shows better performances in out of sample errors analysis, due to the
greater flexibility given by using three latent process instead of two in our PF approach.11

By using the reduced sample set we can confirm the positive impact in performances
when jumps process has been included in the model dynamics, see Figures 15 and 16.
Performances are in Table 5 and in Table 6. Using this dataset the basic model again does
not fit perfectly the data (see Table 3), while the model with jumps in spot well describes



the in the sample performances, revealing itself a good model, succeeding in capturing both
the dynamics for WTI quotations (the p-values for all residuals are sufficient high to avoid
rejection of the normality hypothesis, see Table 5)12 and the futures in the analysed time
interval: as we can see from Table 6 the error metrics RMSE and AME for the jump model
are far better than those for the basic model, and this happens both for in the sample and
out of the sample analysis). This good performance of jump model reflects the ability of
the jump process to capture exceptional local events in price dynamics, leading to a better
description of the time series, in the cases analysed.

Figure 14 Histogram for the residuals for the model with jumps (see online version for colours)

Figure 15 Histogram for the residuals for the basic model using the second dataset (see online
version for colours)

Figure 16 Histogram for the residuals for the model with jumps using the second dataset
(see online version for colours)



Table 3 Analysis of the residuals under the historical measure for the three model, for each
residual is reported the p-value of the Kolmogorov-Smirnov test, the skewness and the
kurtosis of the distribution

Residual Basic model Model with seasonality Model with jumps
ϵS KS test 0.151 0.47 0.1399

Skewness −0.045 −0.048 0.061
Kurtosis 2.998 2.86 3.152

ϵδ KS test 1.6E − 15 2.4E − 20 1.3E − 24
skewness −0.141 0.33 0.389
Kurtosis 9.26 9.77 10.29

ϵV KS test 3.1E − 15 3.1E − 23 1.8E − 6
Skewness 2.95 1.98 0.039
Kurtosis 12.31 8.924 2.697

Table 4 In the sample and out of the sample errors for futures data

Futures error Basic model Model with seasonality Model with jumps
ITS RMSE 1.036 0.956 1.08

AME 0.525 0.457 0.499
OTS RMSE 1.033 0.878 0.35

AME 0.583 0.488 0.21

Table 5 Analysis of the residuals under the historical measure for model B and model J, for each
residual is reported the p-value of the Kolmogorov-Smirnov test, the skewness and the
kurtosis of the distribution. We refer to the second dataset

Residual Basic model Model with jumps
ϵS KS test 0.436 0.241

Skewness −0.319 −0.175
Kurtosis 3.517 2.181

ϵδ KS test 0.220 0.1085
Skewness −0.311 0.360
Kurtosis 3.340 3.480

ϵV KS test 1.7E − 14 0.303
Skewness 2.131 −0.174
Kurtosis 9.701 2.327

Table 6 second dataset futures performances

Futures error Basic model Model with jumps
ITS RMSE 1.933 0.997

AME 1.417 0.455
OTS RMSE 0.735 0.41

AME 0.574 0.33

8 Conclusions

In this paper, we analysed three models, we denoted by (B), (J) and (S), and their
performances in capturing the dynamics of West Texas Index spot characteristics and the



future market structure. The aforementioned models belong to the large class of stochastic
volatility models, incorporating jumps, stochastic convenience yield and seasonality terms
in the price dynamics. Two datasets have been used to get inference, the first one including a
period characterised by a sudden fall in spot quote dynamics, while the second one excluding
it. We found that model with jumps succeeds in properly describing the second set of
observed data. As fare as the first set is concerned, none of the three models considered
performs very well, although the model with jumps fits the data slightly better than the other
two models. Hence we analysed the performances of the basic model (without jumps) and
the model with jumps by using a smaller dataset and we found that, while the basic model
still exhibits some difficulties in fitting properly the observed data, the model including
jumps in the spot dynamics fits very well. We reported also the performances in capturing
future market dynamics for a set of data outside the range used to get the inference for the
model parameters. Again the model with jumps exhibits the best performances. It is worth
remarking that the analysis of our data seems to suggest that the sample correlation between
convenience yield process and spot logarithm process is not vanishing. A model including
correlation between these two processes will be the subject of future investigations.
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Notes

1The usual definition of the convenience yield, as discussed also in Schwartz (1997), is obtained
adding the cost of storage to the net convenience yield: δ̃t = δt + c.

2For the basic model we just fix to zero µ∗ and dJ
(Q)
xt , for the model with seasonality we add the

seasonality factor (g(tyear)) to the spot dynamics like in equation (2).
3σ2

ϵ = 0, 08, for the dataset under investigation, is consistent with the value observed for the mean
of the daily spread of the highest-lowest prices for futures in the considered range.

4Note that in the Futures price obtained there is no dependence on the jump process parameters in
strict analogy with Yan (2002).

5In the case of the model with seasonality we replace the parameters referring to jumps({λ, µJ , σJ})
with the parameters referring to seasonality: {ζ1, ζ2, ω1, ω2}.

6Details about the generic PF algorithm and probability distributions used in the simulation we
conducted are in Appendix A.

7The sequential importance resampling (SIR) algorithm is one of the algorithm of the PF family.
A full and deep description is in Andrieu and Johansen (2008).

8The lack of convergence has been tested by Geweke test, and at 1% significance level we cannot
reject the hypothesis of convergence of the Markov Chain. For any further details about the test, the
estimation error and the algorithm used to compute them we refer to the manual written by Smith
(2007).

9We can reject the normality hypothesis for p-values lower than a given threshold. Usual p-value
threshold are 1%, 5%, 10%.

10It is worth to remark that in the analysis out of the sample just the parameter set is fixed from
previous inference. The inference on the path is got from the sampling importance resampling (SIR)
algorithm. Hence it is not surprising the performances out of the sample could be not worse than in
the sample performances.

11This improvement has a cost in required time to run the single PF algorithm: spanning observed
data coming from 998 dates and using 2000 ‘particles’, for the basic model we need 6.45 s, for the
model including the seasonality term the time is equal (the number of latent process simulated is the
same), the model including jumps requires 9.03 s. All the algorithms written in Matlab have been
running on a i3(3, 07 GHz) pc.

12Beside p-values for the Kolmogorov-Smirnov test, all above 10%, we remark that also the kurtosis
and skewness values are consistent with the normality hypothesis.

Appendix A: Particle filter

We implemented the ASIR algorithm proposed by Pitt and Shephard (1999) to generalise
the standard sampling important resampling algorithms, attempting to mitigate the sample
impoverishment effect, sampling the ancestor of the particle at each time step, adapting the
proposed ‘particle’ sample to the new incoming information. The starting point to define
the algorithm is the discretised dynamics of the model (5) adding the future formula (8). Let
us consider the time t a sample for the latent process {δt−1, V t− 1}, that is: {δ(i)t−1, V

(i)
t−1},

with associated weights π(i)
t−1, where i = 1, . . . Ns andNs is the number of particles. Before

propagating the particles, that is before obtaining a sample for the latent processes at time t,
we select the ancestor for this new sample. In practice, we define an expected value for the



latent process sample at time t: {δ̄(i)t , V̄
(i)
t }, and we use this estimate to attach a weight

function ω
(i)
t|t−1 to the particles and select the best fitting for the new incoming information:



δ̄
(i)
t = α(δ̄ − δ

(i)
t−1)∆t

V̄
(i)
t = β(V̄ − V

(i)
t−1)∆t

ω
(i)
t|t−1 =

∑
k ϕ
(
yt|m(i)

xt + kµj ,Σ
(i)
xt + kσ2

j

) λk
j e

−λj

k!
π
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t

m
(i)
xt = (r + c− δ̄

(i)
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(i)
t )∆t

Σ
(i)
xt = V̄

(i)
t ∆t

(19)

where m
(i)
xt is the mean of the observed process log spot excluded jumps x at time t, and

Σ
(i)
xt his variance, while µj is the mean of the jump amplitude and σ2

j his variance.

Hence we get a Ns long sample {δ(s)t−1, V
(s)
t−1} from the distribution {δ(i)t−1, V

(i)
t−1}

associated to probability weights ω
(i)
t|t−1/

∑
i ω

(i)
t|t−1. This are our selected ancestors, we

will propagate using equation (5). First we simulate the jumps. The number of jumps N j
t

happening in the time passing from t− 1 to t is distributed according to a Poisson with
parameter λj :

N
(s)
t = k with probability q(N

j(s)
t ) = ϕ

(
xt|m(s)

xt
+ kµj ,Σ

(s)
xt

+ kσ2
j

) λk
j e

−λj

k!

For numerical purposes we need to restrict to a finite number of possible jumps, since the
time interval consists in one day, we can fix the maximum jumps to 1 per day.

Hence, the jump amplitude is simulated from a normal, as suggested in Johannes et al.
(2009) we incorporate the new return information in our sampling:

J
(s)
t ∼ q(Jt|xt) = N

(
N

(s)
t µj +N j

t

σ2
j

V̄
(s)
t ∆t

(
xt − (r + c+

(
ηS − 1

2

)
V̄t − δ̄

(s)
t )

)
,

N
(s)
t σ2

j

(
1−N

(s)
t

σ2
j

V̄
(s)
t ∆t

))

Once we have a sample for the jumps, we sample the value of the ‘particles’ for the variance
and the convenience yield:



δ
(s)
t ∼ p(δ

(s)
t |δ(s)t−1) = N

(
δ̄
(s)
t , σ2δ

(s)
t−1∆t

)
V

(s)
t ∼ q(V

(s)
t |V (s)

t−1, δ
(s)
t−1, xt, Jt)

= N
(
V̄

(s)
t + (xt − (r + c− δ̄

(s)
t − 1

2 V̄
(s)
t−1)∆t− J(s)t)

× ξ
√

1− ρ2, ρ2ξ2V
(s)
t−1∆t

) (20)



Hence, by Monte Carlo importance sampling theory (see Glasserman, 2004), we compute
the new weights π(s)

t :

π
(s)
t =

π
(s)
t−1

ω
(s)
t|t−1

λ
N

(s)
t

j e−λj

N
(s)
t !

q(N
(s)
t |xt)

×
ϕ(J

(s)
t |µj , σ

2
j )

q(J
(s)
t |xt)

ϕ(V
(s)
t , V̄

(s)
t , ξ2V

(s)
t−1∆t)

q(V
(s)
t |V (s)

t−1, δ
(s)
t−1, xt, Jt)

×ϕ(xt|(r + c− δ
(s)
t − 1

2V
(s)
t−1)∆t+ J(s)t

+ρ

√
V

(s)
t−1∆tϵ

(V,s)
t , (1− ρ2)V

(s)
t−1∆t)

(21)

where ϵ
(V,s)
t is the random value got for ϵ(V )

t and corresponding to the s-th particle An
unbiased (Pitt et al., 2012) estimate for the marginal likelihood of the observation given the
parameter set is:

p̂(x1:T , F1:T ) = p̂(x1, F1)
∏T

t=2 p̂(xt, Ft|yt−1, Ft−1)

p̂(xt, Ft|yt−1, Ft−1) =

(
Ns∑
s=1

π
(s)
t

Ns

)(
Ns∑
s=1

ω
(s)
t|t−1

)
(22)

where F1:T indicates the vector of the latent processes (δ1:T , V1:T , J1:T ).
At this stage we can add an other re-sample step from the particles with weights π(s)

t ,
conditional on a measure of the impoverishment of the sample, if we resample we have to
set all the weights equal to 1/Ns.

To obtain the algorithm for the model without jumps it is sufficient to set all N (s)
t = 0

for all t in the algorithm presented in this section.

Appendix B: Futures options prices

To evaluate, under the Q measure, a general contingent claim H , whose dynamics follows
equation (4), with the seasonality function fixed at zero g(tyear) = 0, we need to solve the
PDE:

∂H

∂t
+

∂H

∂x

(
rf + c− λµ∗ − δt −

1

2
Vt

)
+
∂H

∂V

[
β(V̄ − Vt)− ηV Vt

]
+

∂H

∂δ

[
α(δ̄ − δt)− ηδδt

]
+
1

2

∂2H

∂x2
Vt +

1

2

∂2H

∂V 2
ξ2Vt +

1

2

∂2H

∂δ2
σ2δt +

∂2H

∂V ∂x
ρξV

−rfH + λ [H(t, xt + ln(1 + J), δt, Vt)−H(t, xt, δt, Vt)] = 0,

equipped with a terminal condition specified by the contingent claim payoff. In particular,
in this section we are interested in the valuation of a European call option C(t, τ) written
on a futures contract maturing at time τ

′ ≥ τ , where τ is the maturity of the option and



K the strike price. Following Heston (1993), Bakshi and Madan (2000) and Yan (2002),
we can decompose the value C(t, τ) in the following way:

C(t, τ, τ
′
) = G(t, τ)Π1(t, τ)−KB(t, τ)Π2(t, τ), (23)

where B(t, τ), G(t, τ), Π1(t, τ) and Π2(t, τ) are defined as follows:

B(t, τ) = EQ

[
exp

(
−
∫ t+τ

t

r(u)du

)]
(24)

G(t, τ) = EQ

[
exp

(
−
∫ t+τ

t

r(u)du

)
H(t, τ

′
)

]
(25)

Π1(t, τ) =
1

G(t, τ)
EQ

[
exp

(
−
∫ t+τ

t

r(u)du

)
H(t, τ

′
)|H(t, τ

′
) > K

]
(26)

Π2(t, τ) =
1

B(t, τ)
EQ

[
exp

(
−
∫ t+τ

t

r(u)du

)
|H(t, τ

′
) > K

]
. (27)

Here B(t, τ) is the price at time t of a pure (unit) discount bond maturing at time τ and
G(t, τ) is the price at time t of a forward contract delivering at time t+ τ the contingent
claim H(t+ τ, τ

′ − τ). By defining the following discounted function of the logarithm of
the futures price:

f(t, τ, w) = EQ

[
exp (−

∫ t+τ

t

r(u)du) exp (iw lnH(t, τ
′
))

]
, (28)

Bakshi and Madan (2000) proved moreover that:

B(t, τ) = f(t, τ ; 0) (29)

G(t, τ) = f

(
t, τ ;

1

i

)
(30)

f1(t, τ ;w) =
1

iG(t, τ)
f

(
t, τ ;w +

1

i

)
(31)

f2(t, τ ;w) =
1

B(t, τ)
f(t, τ ;w) (32)

where f1(t, τ ;w) and f2(t, τ ;w) are respectively the characteristic functions of the two
probability densities Π1(t, τ) and Π2(t, τ). Hence each term can be recovered once
computed f(t, τ ;w), that is the characteristic function of the logarithm of the future
price probability density. Since f(t, τ ;w) is the price of a contingent claim paying
exp{iwH(t+ τ, τ

′ − τ)} at maturity t+ τ , its value can be found solving again the same
PDE (equation (23)) with the terminal condition:

f(t+ τ ; 0) = exp{iϕH(t+ τ, τ
′
− τ)} (33)



If we substitute the trial solution:

f(t, τ ;w) = exp{θ0(τ) + θδ(τ)δt + θV (τ)Vt + iw[x+ β0(t) + βδ(t)δt]} (34)

in our PDE, we get the following system of ordinary differential equations:


−∂ϕ0(τ)

∂τ
+ iw(rf + c− µ∗) + ϕδαδ̄ + θV βV̄ = 0

−∂ϕδ(τ)

∂τ
+ iw − ϕδ(α− ηδ) +

1
2ϕ

2
δ(τ)σ

2 = 0

−∂θV (τ)

∂τ
− 1

2 iw − 1
2w

2 − θV (β − ηV ) +
1
2ξ

2θ23 + iwθV ρξ = 0

(35)

where

µ∗ = exp

{
µJ +

1

2
σ2
J

}
− 1 (36)

ϕδ(τ) = θδ(τ) + iϕβδ(τ
′
− τ) (37)

ϕ0(τ) = θ0(τ) + iϕβ0(τ
′
− τ) (38)

equipped with the terminal conditions:


ϕ0(0) = iϕβ0(τ

′
)

ϕδ(0) = iϕβδ(τ
′
)

θV (0) = 0

(39)

Solving the ODE system we get:

θV = − 2

ξ2

(
exp{CV τ} − 1
exp{CV τ}

AV
− 1

BV

)
(40)

with 
CV =

√
(ηV + iwρξ − β)2 + ξ2(w2 + iw)

AV = 1
2 [(β − ηV − iwρξ) + CV ]

BV = 1
2 [(β − ηV − iwρξ)− CV ]

(41)

and

ϕδ = − 2

σ2

Aδ exp{Cδτ}+BδC̄

exp{Cδτ}+ C̄
, (42)



where

Cδ =
√

(α− ηδ)2 + 2iwσ2

Aδ = 1
2 [(ηδ − α) + Cδ]

Bδ = 1
2 [(ηδ − α)− Cδ]

C̃δ =
√

(α− ηδ)2 + 2σ2

Ãδ = 1
2 [(ηδ − α) + C̃δ]

B̃δ = 1
2 [(ηδ − α)− C̃δ]

C̄ =

iϕ
exp{C̃δτ

′} − 1
exp{C̃δτ

′}
Ãδ

− 1
B̃δ

−Aδ

Bδ − iw
exp{C̃δ τ̃} − 1
exp{C̃δ τ̃}

Ãδ
− 1

B̃δ

(43)

Finally we solve for ϕ0:

ϕ0 = iw(rf + c− µ∗)τ − 2βV̄

ξ2

(
(BV + CV )τ + log

AV exp{−CV τ} −BV

CV

)
−2αδ̄

σ2

(
(Bd + Cd)τ + log

1 + exp{−Cdτ}C̃
1 + C̃

)

+iw

(
(rf + c)τ

′
− 2αδ̄

σ2

(
(B̃δ + C̃δ)τ

′

+ log
Ãδ exp{−C̃δτ

′} − B̃δ

Ãδ − B̃δ

))

+λJ

(
exp

{
iwµJ − 1

2
w2σ2

J

}
− 1

)
. (44)




