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Quality of machined products is often related to the shapes of surfaces that are constrained by geometric 

tolerances. In this case, statistical quality monitoring should be used to quickly detect unwanted 

deviations from the nominal pattern. The majority of the literature has focused on statistical profile 

monitoring, while there is little research on surface monitoring. This paper faces the challenging task of 

moving from profile to surface monitoring. To this aim, different parametric approaches and control 

charting procedures are presented and compared with reference to a real case study dealing with 

cylindrical surfaces obtained by lathe-turning. In particular, a novel method presented in this paper 

consists of modeling the manufactured surface via Gaussian processes models and monitor the 

deviations of the actual surface from the target pattern estimated in Phase I. Regardless of the specific 

case study in this paper, the proposed approach is quite general and can be easily extended to deal with 

different kinds of surface or profiles. 

 

KEYWORDS: GP model, kriging, profile monitoring, spatial statistics, geometric specifications, 
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Introduction 

In the last years, profile monitoring has become an important new area of statistical process control 

(SPC). Starting from the simplest case of linear profiles, (Kang and Albin (2000), Kim et al. (2003), 

Mahmoud and Woodall (2004)) literature on profile monitoring has now covered different parametric 

and nonparametric approaches and different application domains. Woodall et al. (2004) and Woodall 

(2007) presented reviews of the literature on this topic while the recent book (Noorossana et al. (2012)) 

on profile monitoring presents a brief overview of different approaches and applications of profile 

monitoring.  

Among the different approaches for profile monitoring, one stream of research focused on monitoring 

2D or 3D profiles which are related to physical shapes of the workpiece constrained by geometric 

tolerances (Colosimo and Pacella (2007, 2010), Colosimo et al. (2008), Colosimo and Senin (2011), 

Colosimo and Pacella (2011), Del Castillo et al. (2013)).  

Moving from profiles to surfaces, Colosimo et al. (2010) showed how surface monitoring can be 

considered as a generalization of profile monitoring. Specifically, they showed that cylindrical surfaces 

of lathe-turned items can be modeled using linear regression with spatially correlated error terms. By 

combining this model with control charting, the authors showed how different types of out of control of 

the manufactured surfaces can be detected. 

The present paper starts from the approach proposed in Colosimo et al. (2010) for surface monitoring 

and presents a novel method for surface quality monitoring. In this approach, Gaussian processes (GPs) 

(Matheron (1963), Cressie (1993)) are used as main tool for surface modeling. The use of GPs instead of 

regression allows one to simplify the modeling step, since selection of the appropriate regressor 

variables is not required anymore. As a drawback, the standard solution of monitoring model’s 

coefficients to detect change of the profile/surface pattern is not working when GP replies regression as 

modeling tool. In this paper, we will show that this approach can be ineffective and different solutions 
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have to be found. In particular, we will propose a method based on monitoring the GP-predicted 

deviations of the surface from the in-control pattern estimated in Phase I. This solution is similar to the 

approach recently proposed by Grimshaw et al. (2013) to monitor the mean of a process via Gaussian 

processes or to the approach recently proposed by Zhang et al. (2013) in the context of linear profile 

monitoring. Similarly, some connections can be also found with approaches recently proposed for 

nonparametric profile monitoring (Qiu et al. (2010), Chipman et al. (2010)). We will discuss and 

evaluate performance of these other methods in the last section of the performance comparison study.  

It is worth noting that all these approaches share the same idea of our proposed procedure, which is 

using a statistic that summarizes discrepancies between profile/surface data predicted via GP (or other 

nonparametric approaches) and their corresponding “in-control” values. However, none of these 

methods discuss on how to select the number and locations of these design points. Our paper provides 

some guidelines on possible strategies to locate these points. 

 The remainder of the paper is organized as follows. In the next section, the real case study and the 

parametric model for cylindrical surface modeling will be introduced. In the same section, the in-control 

and out-of-control simulation models will be presented.  Then, the GP-based approaches for monitoring 

cylindrical surfaces will be described, while the following section will report results of a simulation 

study used to compare performances of all the existing approaches for surface monitoring. Conclusions 

and final remarks will be eventually provided in Section 0. 

The case study and the simulation model 

The case study was originally presented in Colosimo et al. (2008) to show how to perform profile 

monitoring on roundness profiles. The data used in that paper refer to a circular profile obtained by an 

ideal cross section of cylindrical components obtained by lathe-turning. In this paper, we will use all the 

data measured on the cylindrical surfaces to move from profile to surface monitoring. 
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Data refer to 100 rolled C20 carbon steel bars which were machined by lathe-turning (cutting speed 163 

m/min and feed rate 0.2 mm/rev). The initial diameter of the bar was 30 mm and it was reduced to a 

final diameter of 26 mm through two cutting steps, 1 mm depth each.  

Each machined surface was measured by a Coordinate Measuring Machine (CMM) on a given 

cylindrical grid of C GN N×  equally spaced positions, CN  measurements along the axial and GN  along 

the angular directions, respectively.  CN  and GN  correspond to the number of circumferences and 

generatrices sampled on the cylindrical surfaces. In practice, the CMM touch trigger approached the 

nominal position of each grid point, and then stored the actual coordinates of the probe when it touched 

the surface. Surface data in this case study were measured on a 61 68× -point cylindrical grid, i.e., 

61CN =  and 68GN = . 

For each item, final surface data were computed as deviations of the measured radiuses from the 

substitute geometry, which is the ideal pattern of the form error under study (i.e., a cylinder). This 

substitute geometry was computed using a least-square approach, i.e., by minimizing the sum-of-squared 

distances between the observed radiuses and the ideal feature. By subtracting the radius of the substitute 

geometry, the final set of measurements consists of a set of radial deviations from a perfect cylinder, 

measured at each position of the cylindrical grid.  

Cylindricity requirement measures the difference between the actual feature and a perfect cylinder, 

regardless of the position of the actual object or its orientation in space (ISO (2012)). Therefore, 

preliminary steps of registration were implemented for each cylindrical surface. Registration by 

translation is performed by centering each cylindrical surface on the origin of the coordinate system. 

This step is accomplished by subtracting the mean value to the surface data expressed in Cartesian 

coordinates. After this step, all of the objects share the same axis. Hence, only registration by rotation 

around the vertical axis is still needed. This final registration step is based on maximizing the cross-
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correlation between roundness profiles obtained by cross-sectioning the cylinders, as detailed in 

Colosimo and Pacella (2007).  

Notation and parametric model for cylindrical surfaces  

In order to measure the actual surface, a common sampling strategy consists of considering a fixed and 

regular grid on the ideal cylinder (substitute geometry) and let the CMM trigger approach radially each 

point of the grid to register a signal as the trigger touches the real surface. Let ( ), ,i i izρ θ=s , denote the 

location at which the actual radius is measured, where ρ  is the nominal radius, which is equal for all the 

points on the cylindrical grid, while iθ  and iz  are the angular and vertical coordinates associated to the 

i -th point (Figure 1). Let ( ) ( ), ,h i h i ir r zρ θ=s  represent the difference between the actual radius and 

the nominal radius observed at location is , ( 1, ,i N= … ) on the h -th surface. Note that 

( ) ( ), ,h i h i ir r zρ θ=s  represents the response variable of interest as a function of other location 

variables, similarly to what is usually done for representing 2.5D surfaces, where the vertical deviation 

of the real surface from its ideal pattern is commonly modeled as a function of the other two coordinates 

(i.e., ( ),h i iz x y ). Thanks to this clear connection, approaches presented in this paper for cylindrical 

surfaces monitoring can be easily extended to 2.5D surface monitoring.  

Usually the same sampling strategy is assumed for all the surfaces, defining an ideal grid of 

C GN N N= ×  equally spaced locations, where CN  and GN  are the number of vertical and angular levels 

at which the actual radii are measured. In this case, angular and vertical locations at which data are 

observed are selected among fixed levels, i.e.,  1 2[ , ,..., ]i Gθ θ θ θ∈  and 1 2[ , ,..., ]i Cz z z z∈ . 

 



6 

 

 

Figure 1: An example of deviation of a real cylindrical surface from the nominal one.  

 

Following Henke et al. (1999) and Colosimo et al. (2010, 2011), we will assume that typical deviations 

of a machined cylinder from its ideal feature can be described as a combination of a large- and a small-

scale components of a SARX model (Cressie (1993)), described in the first and second rows of the 

following equation, respectively:  

( ) ( )( )1 2
1 2 .

h h h

h h h h hα α

= +

= + +

r Xβ u

u W W u ε
 (1) 

In the first row [ ]1( ) ( ) ( )h h h i h Nr r r ′=r s s s… …  represents the 1N ×  vector of the radial deviation 

from the nominal radius observed on the h -th item, X  is the regressor matrix, whose i -th row 

[ ]1i i ki Kix x x′ =x … …  is a 1K ×  vector, [ ]1 10h h kh hβ β β′ =β … …  is the 1K ×  vector of 

parameters. The second row in (1) describes the small-scale component which is given by the 1N ×  

vector of error terms hu . Error terms are assumed to be spatially correlated and are represented as a 

Spatial Autoregressive (SAR) process of order 2. [ ]1 2h h hα α′ =α  is the vector of coefficients of the 

zRadial deviation
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SAR model related to the h -th cylindrical surface. ( )1W and ( )2W  are the first and the second order 

adjacency matrices (Cressie (1993)). As shown in Colosimo et al. (2010), the rook-based contiguity is 

suitable to represent real data and will be assumed in this paper, too. Finally, hε  is a 1N × vector of 

independently and normally distributed residuals, ( )20,h NN εσε I: , where NI  is the N-dimension 

identity matrix. 

Table 1 shows the expression of the 10K =  regressor functions which were shown to be significant to 

describe the 100 cylindrical surfaces of the case study (Colosimo et al. (2011)). These regressor 

functions combine Chebyshev polynomials to represent axial errors and sinusoidal functions to model 

circular errors. 

In particular, sinusoidal functions represent bilobe and trilobe patterns, which can be observed along the 

angular direction, while Chebyshev polynomials of order 0 to 2 are used to represent linear and 

quadratic patterns observed along the vertical direction (Figure 2). Following Henke’s model, 

Chebyshev polynomials ( )0 1iT ξ = ; ( )1 2i iT ξ ξ= ; ( ) 2
2 4 1i iT ξ ξ= − ( )l iT ξ  are expressed as a function of a 

scaled z-coordinate, given by min

max min

2 1i
i

z z
z z

ξ −= −
−  

which ranges in [-1 , +1].  

Coefficients of model in (1) can be stored in a 12-dimension parameter vector 

1 2 10 1 2
ˆ ˆ ˆˆ ˆ ˆh h h h h hβ β β α α⎡ ⎤′ = ⎣ ⎦c …  that can be used to simulate in-control profiles.  

With reference to the actual data of 100 lathe-turned surfaces, measured on a regular grid of 61CN =  

axial locations and 68GN =  angular locations, the unknown coefficients hc  are approximately 

distributed as a multinormal distribution with mean cµ  and covariance matrix cΣ  ( )( )h c cMN:c µ ,Σ .  
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Table 1: The regressor functions xki as function of the index k, Colosimo et al. (2010). 

K Order of Chebyshev  
polynomial  

Order of the periodic  
(Fourier) component  

kix  

1 0 2 ( ) ( )0 cos 2i iT ξ θ  

2 0 -2 ( ) ( )0 sin 2i iT ξ θ  

3 0 3 ( ) ( )0 cos 3i iT ξ θ  

4 0 -3 ( ) ( )0 sin 3i iT ξ θ  

5 1 0 ( )1 iT ξ  

6 1 2 ( ) ( )1 cos 2i iT ξ θ  

7 1 -2 ( ) ( )1 sin 2i iT ξ θ  

8 1 3 ( ) ( )1 cos 3i iT ξ θ  

9 1 -3 ( ) ( )1 sin 3i iT ξ θ  

10 2 0 ( )2 iT ξ  

 

 

 

Figure 2: Typical form errors for cylindrical features: a) taper; b) bellmouth; c) hourglass; d) barrel; e) banana; f) lobing; g) random (Henke 

et al. (1999)) 
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In-control and out-of-control surfaces simulation 

In-control surfaces can be simulated by using model (1) after performing Monte Carlo simulation of the 

parameter vector hc . Starting from this in-control baseline model, out-of-control cylindrical surfaces can 

be simulated by adding different terms, corresponding to possible occurrences of assignable causes that 

can affect lathe-turning processes (Cho and Tu (2001), Henke et al.  (1999) and Zhang et al. (2005)). 

Each condition is characterized by an amplitude parameter (δ ) related to the severity of the out-of-

control. 

Let ( )h ir s  and ( )h ir% s  represent the surface data under the in- and out-of-control models, respectively, 

five out-of-control conditions can be represented as follows: 

- Quadrilobe, which can be due to a spindle-motion error that was not present in the baseline 

model, 

( ) ( ) ( ) ( ) ( )1cos 4 cos 4 ,h i h i quadrilobe i i ir r Tδ θ ξ θ= + +⎡ ⎤⎣ ⎦s s%  

0.00185,0.002,0.0025.quadrilobeδ =  
(2) 

- Trilobe, which can be due to an increase in the trilobe motion error already existing in the 

baseline model of the spindle or to an excessive force imposed by the clamping fixture, 

( ) ( ) ( ) ( )1 cos 3 ,h i h i trilobe i ir r Tδ ξ θ= −s s%  

0.0025,0.003,0.0035.trilobeδ =  
(3) 

- Half-frequency, which can be due to wear on one ball bearing spindle or to whirling in a 

hydrodynamic bearing, 

( ) ( ) ( ) ( ) ( )1cos 0.5 cos 0.5 ,h i h i halffreq i i ir r Tδ θ ξ θ= + +⎡ ⎤⎣ ⎦s s%  

0.00075,0.001,0.002.halffreqδ =
 

(4) 

- Tapering, which can be due to an increased inflection of the workpiece axis while machining, 
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( ) ( ) ( )5 1 ,h i h i taper h ir r Tδ β ξ= +s s%  

0.1,0.15,0.2.taperδ =  
(5) 

- Residuals variance. This kind of out-of-control condition can be due to possible changes in the 

material property or machining conditions. Values 5%,  10%,  15%incvarδ =  are considered. 

In Figure 3, the in-control and out-of-control surfaces are graphically shown, using values of the factor 

δ  to better represent the specific shape under study. 

 

Monitoring cylindrical surfaces via Gaussian Processes 

The parametric model just presented requires one to identify functional forms that can characterize the 

final shape (e.g., regressors shown in Table 1). Clearly, this task can be easy when we deal with simple 

patterns or standard shapes that have been studied in the literature for long time, as the cylindricity 

obtained by lathe-tuning. For new shapes and processes, selection of the proper set of regressor 

functions can be a cumbersome activity and represents the main barrier to application of surface 

monitoring in industrial practice. This is why a second solution based on GPs is presented in this paper.  

 

 

a) 

 

b) 

 

c) 
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d) 

 

e) 

 

f) 

 

Figure 3: In control and out control simulated surfaces (grids of 61 68×  points). a) In-control surface, b) Quadrilobe error, c) Trilobe error, 

d) Half-frequency error, e) Tapering form error, f) Residuals variance. The radial deviations related to each surface are represented on a 

nominal cylinder of diameter and height equal to dimensions of the real case cylinders, respectively 26mm and 50mm. The effects of out-

of-control conditions are highlighted by representing the nominal cylinder on 1:100 scale. Gray scale is related to radial deviations. Dark 

colors represent deviations greater than zero, while bright colors represent deviation smaller than zero. 

 

1.1 Modeling cylindrical surfaces via GP 

Xia et al. (2008) and del Castillo et al. (2013) showed how GPs can be used for modeling surfaces. GP 

is a particular type of random process where all the joint probability distributions of any finite subset of 

values ( ) ( ) ( )1h h i h Nr r rs s s… …  are normally distributed. In particular, Xia et al. (2008) showed 

how the deviation from the perfect shape can be modeled as a function of the spatial location via GP.  

In the case of a cylindrical surface measured via CMM, the model by Xia et al. (2008) can be applied 

after an appropriate transformation from cylindrical to Cartesian coordinates is considered. In fact, if 

location is , at which ( )h ir s  is observed, is expressed in cylindrical coordinates, contiguity in space is 
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not correctly represented. Consider for instance radial deviations observed on a cylinder at iθ  equal to 0° 

and 360°. They are close in space but seem far apart if the angle is taken as driver of contiguity.  

In order to overcome this lack of the GP formulation for closed surfaces, we decided to pre-process data 

by firstly transforming cylindrical coordinates into three-dimensional Cartesian coordinates, namely 

( ), ,i i izρ θ= →s ( ), ,i i i ix y z=t  and then represent the radial deviation as a function of this last indicator, 

i.e., ( )h ir t . By transforming the cylindrical coordinates into the Cartesian ones we are still dealing with 

a three-dimensional spatial domain. Herein, we are not considering any transformation into a low-

dimensional domain, as could be a map projection of the cylindrical surface to a two-dimensional plane. 

Then, the following GP model was assumed: 

( ) ( )f ,h i h i hr ε= +t t  (6) 

where 2(0, )h N εε σ:  and ( )fh it  is a GP model characterized by a mean ( )h im t  and covariance 

function ( ),h i ik +t t d . Following a usual practice, we set the mean equal to a constant value: 

( ) ,h i hm a=t  (7) 

given that most of the prediction ability of the GP model is usually due to the correlation function. 

The covariance function represents the relationship between data observed at location it  and i +t d , 

where d  is a displacement vector. It is usually modeled using the correlation function ( ), hR d l , namely 

( ) ( )2, ,h i i h hk Rησ+ =t t d d l . Different kinds of correlation functions are proposed in Rasmussen and 

Williams (2006). A very popular choice is the isotropic squared exponential correlation function, which 

is very simple and requires one to estimate a small number of parameters. The squared exponential 

function (a.k.a. isotropic Gaussian correlation) has the form: 

( )
2

2, exp .
2h

h

R
⎛ ⎞

= ⎜− ⎟⎜ ⎟⎝ ⎠

d
d l

l
 (8) 
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In (8), ⋅ denotes the Euclidean norm and hl  is the scale parameter controlling how rapidly the 

correlation decays as the distance between two points, i.e. the Euclidean norm of the displacement vector 

d , increases.  

In general, a correlation function for a GP model depends on the metric used to compute the distance 

between points. The Euclidian distance of two points on the cylindrical surface, on which equation (8) is 

based, actually corresponds to the three-dimensional “chordal” metric. More accurate metrics could be 

used instead, such as a geodetic distance, which is defined as the length of the shortest path(s) linking 

these points and remaining on the spatial domain defined by the cylindrical surface (Banerjee, 2005). By 

using the chordal distance, a slight underestimation of the geodetic distance is expected, because the 

chord “penetrates” the domain, producing a straight-line approximation to the geodetic arc. 

In most practical settings, as in the reference case study where the spatial domain has negligible 

curvature, the approximation of the chordal metric can be considered appropriate (del Castillo et al., 

2013). Furthermore, this approximation of the chordal metric has an important theoretical implication 

for the modeler. A troublesome aspect of geodetic distances is that they are not necessarily valid 

arguments for correlation functions, such as the exponential, squared exponential and Matérn (Curriero, 

2006), which yield positive definite correlation matrices only in Euclidean spaces. Valid classes of 

correlation functions for Euclidean spaces are generated by Bochner’s theorem, (ch. 2 of Stein, 1999), 

highlighting the theoretical importance of Euclidean metrics. 

However, the approximation of the chordal metric (which is Euclidean) ensures valid correlation such as 

the squared exponential yield positive definite correlation matrices and enables proper convergence of 

the statistical estimation algorithms.  

The Gaussian correlation function shown in (8) is one of the possible choices. In order to evaluate 

alternative selection, we also tried a different isotropic correlation function. In particular, we consider 

the class of Matérn correlation functions, where each function is indexed by a smoothness parameter 
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0ν > . The larger ν  is, the smoother is the correlation function at zero, and the smoother is the spatial 

process (details can be found in Rasmussen and Williams (2006)). The Matérn class gives a broad range 

of shapes of correlation functions allowing any degree of smoothness at the origin (from continuous but 

non-differentiable, 1ν < , to infinitely differentiable as ν →∞ ), which includes, in the limit as ν →∞ , 

the Gaussian correlation in (8). The integer part of ν  determines the number of times the underlying 

spatial process is differentiable. 

In this paper, we considered the Matérn correlation function of smoothness parameter 5 2ν = , which is 

2-times differentiable and is given by 

( )
2

, 5 2 2

5 5 5
, 1 exp .

3Matern h
h h h

R ν =

⎛ ⎞ ⎛ ⎞
= ⎜ + + ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

d d d
d l

l l l
 (9) 

In order to decide which of the correlation functions is better for the application at hand, we compared 

the log marginal likelihood values (Rasmussen and Williams (2006)) of the two corresponding GP 

models. Starting from the original set of 61 68 4148× =  surface points simulated by using the model in 

(1), we sub-sampled 1 31 34 1054N = × =  data points and used it as learning data set to fit the GP model, 

i.e., estimate the GP parameters and compute the log marginal likelihood, under both the squared 

exponential and the Matérn correlations functions. Through a pairwise t-test we compared the log 

marginal likelihood values obtained repeating the procedure on 1, ,100h = …  simulated surfaces. The 

test procedure consisted of computing the difference of the pair of log marginal likelihood values on 

each of the h -th surface and then testing the hypothesis that the mean of the difference is zero. The 

obtained test statistic is 0 1.80t = −  and the 95% confidence interval is [-23.1582, 1.1448]. Choosing 

0.05α =  results in 0.025,99 1.98t = −  and we concluded that there was no strong evidence to indicate that 

the two GP models differ in their mean log marginal likelihood (the p-value is P=0.08). For this reason 

we proceeded by comparing the fitting ability of the two corresponding GP models. After the estimate of 

the GP parameters, we then used the two GP models to predict surface data ( )ĥ ir t  at the remaining set 
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of 4148 1054 3094N = − =%  locations and compared predicted data with the original values ( )h ir t  

observed at the same locations. The Mean Square Prediction Error (MSPE) was eventually used as 

synthetic indicator of the prediction ability: 

( ) ( )( )
2

1 ˆ    1, ,100,  
N

h h i h i
i

MSPE r r h
N

= − = …∑ t t
%

%
 (10) 

Also in this case, the same procedure was repeated for 1, ,100h = …  simulated surfaces and we collected 

100 values of MSPE estimated using both the two correlation functions under study. 

Figure 4 shows the plots of a surface simulated using the parametric model in (1) (Figure 4a), the 

corresponding surfaces predicted by the GP models under a squared exponential (Figure 4b) and a 

Matérn (Figure 4c) correlation functions. Visual comparison of the two predicted surfaces shown in 

Figure 4b and Figure 4c does not show significant differences in terms of reconstruction of the surfaces 

starting from a subset of data points. This qualitative result is confirmed by Figure 5, where the interval 

plots of the 100 MSPE values of the two competitive GP models are shown. As it can be observed, the 

difference between interval plots is not significant.  

Similar results (not shown here) were also obtained using Matérn correlation functions characterized by 

different smoothness parameters ν . Considering these results, we decided to keep one correlation 

function only as reference for the following of the study, namely the squared exponential correlation 

function shown in (8). 

Fitting a GP model requires one to estimate all the unknown parameters for each given surface. Let 

2, ,h h h ha ησ⎡ ⎤= ⎣ ⎦p l  represent the vector of unknown parameters for the h -th surface. The Gaussian 

Process for Machine Learning (GPML) Toolbox in the MATLAB environment was used in this paper 

for GP fitting and prediction (Rasmussen and Williams (2006), Rasmussen and Nickisch (2010, 2011)). 

Once unknown parameters are estimated, the GP model can be used to predict an expected observation 

at any spatial location (both observed and unobserved).  
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a) b) c) 

 

Figure 4: Simulated surface and GP models predicted surfaces ( 61 68× points). a) SARX model simulated surface. b) Surface predicted by 

a GP model with constant mean function and squared exponential covariance function. c) Surface predicted by a GP model with constant 

mean function and Matérn covariance function with 5 2ν = . Gray scale is related to radial deviations. Dark colors represent deviations 

greater than zero, while bright colors represent deviation smaller than zero.  

 

 

Figure 5: Interval plots on 100 values of MSPE obtained by using a GP model with constant mean function and squared exponential 

covariance function and a GP model with constant mean function and Matérn covariance function with 5 2ν = . 
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Control charts for GP-based approach 

Different approaches can be used to combine a GP model of the surface data with control charts. These 

different methods are described in the following. 

2T  control chart on GP parameters 

The first approach mimics traditional methods for profile monitoring and consists of fitting a new GP 

model to each surface data, and then use a 2T  statistic for monitoring the vector of estimated parameters, 

namely 

( ) ( )2 1ˆˆ ˆˆ ˆ ,h h par par h parT −′= p -µ Σ p -µ  (11) 

where ˆ hp  denote the 3 1×  vector of GP parameters estimated on the h -th surface data, i.e. 

2ˆˆ ˆ ˆ, ,h h h ha ησ⎡ ⎤= ⎣ ⎦p l  while  ˆ parµ  and ˆ parΣ  are the mean vector and the covariance matrix of the parameters 

estimated in Phase I using a set of in-control surfaces.  

Results achieved with this method will be referred to as ‘GP_par’ from now on. As we will see in a 

while, this approach has poor performance because a similar set of GP parameters can result in very 

different shapes of the surface to be monitored. For this reason, we decided to try a second approach 

described in the following subsection.  

2T  control chart on GP-predicted values 

A second approach for GP surface monitoring consists of building a model of the in-control surface 

pattern by estimating the GP model on each of the Phase-I surfaces. Then, attention focuses on a set of 

opportunely selected locations, referred to as checkpoints, from now on. A multivariate  2T  control chart 

is then computed on each new profile by comparing deviations observed from the average in-control 

pattern estimated in Phase I. Abdel-Salam et al. (2010) showed that this method has similar performance 

when compared with approaches based on monitoring coefficients of a parametric or semi-parametric 

model.  
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Let ˆ parµ  be the mean value of GP parameters estimated in Phase I, ˆ ˆ( ) | ,k j k parr t r µ  denotes the value 

predicted at the j-th checkpoint jt , given all the data kr observed on the k-th surface and the GP model 

with known parameter ˆ parµ . Repeating this procedure for all the Phase I in-control surfaces, we can 

eventually estimate the mean and covariance of predicted data at checkpoints, ˆˆ rµ  and ˆ
ˆ
rΣ  

For each new h-th surface the 2T  statistic is then given by: 

( ) ( )2 1
ˆ ˆ ˆ
ˆˆ ˆˆ ˆ ,h h hT −′= r r rr -µ Σ r -µ  (12) 

where ˆhr  represents the 1n×  vector of surface data predicted at checkpoints of the h-th surface, where 

for simplicity of notation we skipped to show ‘ ˆ| ,h parr µ ’, i.e., prediction is done given the other data 

observed on the same surface and the vector of GP parameters estimated in Phase I.  

Number and locations of the checkpoints 

We start designing the 2T  control chart in (12) considering as checkpoints the whole number of points 

used to estimate the GP model. Results referring to this approach are labeled ‘GP_all’ henceforth. 

Usually, when a dense data grid is used to compute the 2T  statistic, numerical problems can arise as 

discussed in the Appendix. To overcome these drawbacks we found the nearest positive semidefinite 

matrix to the given sample matrix (Higham (2002).  

Secondly, we design the 2T  control chart in (12) considering a reduced number of n checkpoints, which 

is not necessarily a subset of the original set of N measured points. In particular, for each new surface N 

points are measured as in the first case. However all this point cloud is used to predict via GP the surface 

pattern in a reduced number of locations. In other words, we are planning to work assuming a constant 

measurement effort (acquiring always a point cloud of fixed sample size N).  

We explored two different strategies to locate checkpoints on the surface. The first assumes an equally-

spaced cylindrical grid of checkpoints (obtained by combining 5 uniformly distributed values of the 
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heights with 5 uniformly distributed values of the angular position). Results referring to this approach 

are labeled ‘GP_sub_unif’ henceforth. The second method locates the same number of n=25 checkpoints 

using a latin hypercube design considered in the literature on computer experiments (McKay et al. 

(1979), Joseph and Hung (2008)). In particular, the  maximin  distance  criterion   (Morris  and  Mitchell 

(1995)) and the related Matlab routine shown in Forrester et al. (2008) is considered. The label 

‘GP_sub_lh’ is used to show results of this approach.  

In all the approaches (GP_par, GP_all, GP_sub_unif and GP_sub_lh), the 2T  control chart is coupled 

with a univariate control chart on the estimated residual variance: 

2 ˆ ˆˆ ,
1

h h
h N

σ
′

=
−

v v  (13) 

where ˆˆ h h h= −v r r  is the vector of difference between the vector of actual surface data hr  and the vector 

ˆhr  of values predicted via GP at the same locations of the h-th surface.  

 

Performance comparison 

In order to speed up performance comparison and stay closer to production practice, down-sampling was 

performed on the original set of 61 68× -point cylindrical surfaces. In particular, 1 point out of 2 was 

selected in both the axial and the angular directions to obtain a grid of 1 31 34 1054N = × =  in the first 

simulated scenario. Similarly, by selecting 1 point out of 3 in the original grid, a set of 

2 20 23 460N = × =  data points defined the second productive scenario.  

In this paper, we will concentrate on Phase II analysis, using the Average Run Length (ARLs) as 

performance indicator. For all the approaches, Phase I or the design stage was based on a set of 100 in-

control surfaces simulated according to the parametric model shown in equation (1). A second set of 

20000 in-control cylindrical surfaces, was then used to set the control limits of the multivariate and the 
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univariate control charts in order to achieve an overall in-control ARL=100, using 1 1 1/ ARLα = − −  as 

false alarm probability of each single control chart.  

Once completed the design stage, Phase II performances are computed by generating new surfaces for 

all the out-of-control scenarios described in Section 2.1.1 and computing the ARL as the mean number 

of surfaces required to detect the specific out-of-control under study. 

 

Comparison of approaches based on GP model of the surface  

This first comparison study is aimed at comparing performance achieved by directly monitoring the GP 

parameters (GP_par) or using the GP model to predict surface data and then controlling deviations of the 

predicted values from the in-control pattern observed at that same set of locations in Phase I (GP_all, 

GP_sub_unif or GP_sub_lh). Note that the first approach -GP_par - is time-consuming, since it requires 

fitting a GP model for each new surface. On the contrary, the second set of approaches (GP_all, 

GP_sub_unif or GP_sub_lh) are faster since predicting new data with a known GP model is quick.  

Table 2 summarizes the simulation results. In particular, the ARLs were estimated by computing a set of 

250 run lengths, given new surfaces simulated according to each specific out-of-control model. 

Table 2 clearly shows that the first method, which consists of monitoring the GP parameters (GP_par), is 

inefficient in signaling all the types of out of controls. In fact, in all the examined cases GP_par presents 

the lowest power of detection. This behavior can be mainly ascribed to the fact that variation of the 

cylindrical patterns does not translate in change of the GP parameters, which are in turn related to the 

type of correlation or similarity between adjacent points of the surface. We outline that a further main 

weakness of the first approach is the computational time, since it requires fitting the GP model for each 

cylindrical surface. Consequently, monitoring the GP parameters is not recommended in actual 

applications.  
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Table 2: Performance comparisons of methods GP_par, GP_all (computed on the whole set of N2=460 data), GP_sub_unif and GP_sub_lh 

(computed on a subset of n=25 checkpoints): ARLs and Corresponding Standard Deviations within brackets (250 trials). 

 Shift size GP_par GP_all GP_sub_unif GP_sub_lh 

In control  102.83 (7.14) 102.29 (7.18) 101.28 (6.97) 101.60 (6.62) 

Quadrilobe 
     

0.002 57.18 (3.40) 1.61 (0.07) 2.46 (0.11) 1.99 (0.08) 
     

Trilobe 
     

0.003 68.08 (4.29) 15.10 (0.91) 19.71 (1.14) 1.35 (0.04) 
     

Half frequency 
     

0.001 78.96 (5.12) 43.59 (2.87) 9.15 (0.54) 3.80 (0.20) 
     

Tapering 
     

0.15 102.53 (6.10) 83.60 (5.68) 64.87 (3.79) 63.55 (4.06) 
     

Residuals variance 
     

1.1 58.17 (3.28) 7.29 (0.39) 7.52 (0.44) 7.40 (0.39) 
     

 

 

As shown in Table 2, the best performance are associated to GP_sub_lh, where 25n =  checkpoints are 

placed according to the maximin distance criterion (Morris  and  Mitchell (1995)).  

When compared to GP_sub_unif, GP_all presents improved performance only for out-of-control 

conditions characterized by high frequency content, as for the trilobe and the quadrilobe pattern. Poor 

performances of GP_sub_unif method in these cases can be mainly ascribed to an inappropriate 

locations of the checkpoints. In fact, by simply varying the location of the 25n =  checkpoints (i.e., 

moving from GP_sub_unif to GP_sub_lh), we observe a clear performance improvement.   

Similar results (not reported in this paper) were obtained by using n=460 checkpoints with locations 

established through a maximin distance criterion. Also in this case, the power of detection of out-of-

control conditions at low harmonic frequency was poor when compared to GP_sub_unif and GP_sub_lh 

methods. Furthermore it has to be highlighted that a high density of checkpoints makes the maximin 
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distance criterion computational time requesting and less effective due to the reduced degrees of 

freedom on the design space.  

From obtained simulation results we can conclude that high numbers of checkpoints may lead to poor 

performance, especially for out-of-control conditions characterized by low harmonic frequencies. These 

results are consistent with other studies showing performances of multivariate control charts as a 

function of the number of process variables to be monitored (Prabhu and Runger (1997), Champ et al. 

(2005), Chenouri et al. (2009)). As a matter of fact, as the number of variables increase the average run-

length performance to detect a specified shift in the mean of the variables for multivariate control charts 

also increases, because the shift in the mean of the variables is diluted in the multidimensional space of 

the process variables (Montgomery (2009)).   

On the contrary, both the methods based on monitoring a reduced number of checkpoints, i.d. 25n = ,  

(GP_sub_unif and GP_sub_lh) are well performing. In particular, the second approach, which locates the 

checkpoints using a space-filling criterion instead of placing them uniformly, seems the more promising.  

A comparison between different approaches for surface monitoring 

In this second comparison study, performances of the GP methods (GP_sub_unif and GP_sub_lh) are 

compared to two benchmarks. The first benchmark consists of using a standard univariate control chart 

for monitoring a synthetic indicator associated to each surface. This indicator is the cylindricity form 

error, which will be referred to as out-of-cylindricity (OOC), from now on. This indicator is the 

minimum radial distance between two coaxial cylinders that contain among them the actual surface (ISO 

(2012)). Typically, OOC values are computed for quality inspection of machined surfaces in order to 

decide whether an item can be considered conforming to the requirements. In fact, when the OOC is 

greater than the tolerance value specified in the technical drawing, the item has to be scrapped or 

reworked. This monitoring approach is selected as representative of the industrial practice.  
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The second benchmark was proposed for cylindrical surface monitoring (Colosimo et al. (2010, 2011)) 

and consists of using a 2T  control chart for monitoring the regression-based parameters of model shown 

in (1), coupled with a univariate control chart for monitoring the estimated residuals variance. 

As a summary, for each scenario ( 1 1054N =  and 2 460N = ), four competing approaches are considered: 

i) the individual control chart on the form errors (OOC); ii) the SARX-based approach proposed by 

Colosimo et al. (2010, 2011); iii) the GP-based approach with the 2T control chart designed on a uniform 

grid of checkpoints (GP_sub_unif); iv) the GP-based approach with the 2T control chart designed on a 

Latin Hypercube distribution of checkpoints (GP_sub_lh). 

Also OOC and SARX-based approaches were first tuned in order to achieve the same in-control ARL 

value of about 100, the control limits were obtained by simulation on 20000 instances of in-control 

cylindrical surfaces. The simulation results of our simulation study for scenario 1 ( 1 1054N = ) and 

scenario 2 ( 2 460N = ) are shown in Figure 6-10 and reported in Table 3.  

 

  

Figure 6: Performance comparison of OOC, SARX, GP_sub_unif and GP_sub_lh for quadrilobe out-of-control condition: ARL values 

(1000 trials) in scenario 1 (N1=1054) and in scenario 2 (N2=460).  
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Figure 7: Performance comparison of OOC, SARX, GP_sub_unif and GP_sub_lh for trilobe out-of-control condition: ARL values (1000 

trials)  in scenario 1 (N1=1054) and in scenario 2 (N2=460).  

  

Figure 8: Performance comparison of OOC, SARX, GP_sub_unif and GP_sub_lh for half frequency out-of-control condition: ARL values 

(1000 trials) in scenario 1 (N1=1054) and in scenario 2 (N2=460).  

  
Figure 9: Performance comparison of OOC, SARX, GP_sub_unif and GP_sub_lh for Tapering out-of-control condition: ARL values (1000 

trials) in scenario 1 (N1=1054) and in scenario 2 (N2=460).  
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Figure 10: Performance comparison of OOC, SARX, GP_sub_unif and GP_sub_lh for increase of residuals variance out-of-control 

condition: ARL values (1000 trials) in scenario 1 (N1=1054) and in scenario 2 (N2=460). 

 

The ARLs values are the averages of 1000 run lengths in each out-of-control condition for different 

values of the parameterδ  (shown in the abscissa of Figure 6-10), which represents the level of surface 

change. 

As it can be observed, the GP-based monitoring approaches (GP_sub_unif and GP_sub_lh) and the 

regression based method (SARX) outperform the simple OOC control chart in almost all the simulation 

scenarios. In fact, in most cases the individual control chart of the OOC values presents the lowest 

power of detection. The only exception is the tapering out-of-control (Figure 9), where the OOC control 

chart seems to perform as well as the GP-based approach when 1 1054N = . 

Comparing the two GP-based approaches (GP_sub_unif and GP_sub_lh), GP_sub_lh presents improved 

performance when compared to GP_sub_unif, as we observed in the previous performance comparison 

study. In other words, using GP with an appropriate distribution of checkpoints allows us to obtain better 

performances with respect to the case where a uniform grid of checkpoints is used.  

Eventually, the regression-based method (SARX) performs as better as the GP_sub_lh in all the 

scenarios but the tapering one. This result is particularly worth, since we expected the SARX method to 

outperform the GP-based methods by construction. As a matter of fact, all the surfaces were simulated 
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using the SARX model and this is why we were expecting that a control charting procedure based on 

this model should outperform competing methods.  

As we already noted, the only case where the GP_sub_lh approach does not produce satisfactory results 

is that characterized by the tapering error, a case in which all the approaches show unsatisfactory results. 

In this case, the difference between the approaches shows that GP_sub_lh is still close to the optimal 

performance, which is achieved by the SARX-based method.  

From our simulation study, we observed that this last behaviour might be mainly ascribed by a 

combination of two factors: i) the locations of checkpoints, which cause only a small subset of them to 

be influenced by the effect of tapering (e.g. the checkpoints at higher azimuthal locations) and ii) low 

amplitude parameters ( 0.1,0.15,0.2taperδ = ), which make the tapering to have a limited effect on the out-

of-control condition.  

As shown in Figure 11, the effect of tapering error is irrelevant also for taperδ =0.2 when compared to the 

corresponding in-control surface. Values of taperδ  greater than 0.2 were not considered in this work, 

since they could represent unrealistic out-of-control conditions of a lathe-turning process. 

From the results shown in Figure 6-10, by comparing graphs on the left with the corresponding ones on 

the right, we can observe that reducing the number of measured points (from 1 1054N =  to 2 460N = ), 

increases the ARLs without affecting the ranking of methods. 
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a) b) 

 

Figure 11: Checkpoints for GP_sub_unif and GP_sub_lh approaches. a) In control surface predicted by GP_model. b) Tapering ( 0.2δ = ) 

predicted by GP_model.  Circle points and asterisk points represent the 25 checkpoints of GP_sub_unif and GP_sub_lh respectively. Gray 

scale is related to radial deviations. Dark colors represent deviations greater than zero, while cold bright colors represent deviation smaller 

than zero. 

 

In general, we can observe that deciding on the location of checkpoints is crucial, as the performance of 

the control charts combined to GP may be greatly influenced by how the checkpoints are distributed on 

the cylindrical surface. Adopting a simple strategy in which checkpoints are uniformly distributed over a 

grid of equally spaced locations (along the vertical and angular coordinates) is not recommended. This is 

particularly true when it is important to signal timely out-of-control conditions characterized by periodic 

shape errors along the angular direction (e.g., Quadrilobe, Half Frequency and Trilobe errors). In fact, 

checkpoints uniformly distributed over a grid of locations at fixed vertical and angular coordinates, may 

cause several of these points result situated on positions, which share the same angular coordinate. In 

these cases, the 2T control chart may have poor power in detecting periodic out-of-control conditions. 
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Table 3: Performance comparisons of OOC, SARX, GP_sub_unif and GP_sub_lh: ARLs and Corresponding Standard Deviations within 

brackets (1000 trials) in scenario 1 (N1=1054) and in scenario 2 (N2=460). 

 Shift size OOC SARX GP_sub_unif  GP_sub_lh 

  
Scenario 1 ( 1 1054N = ) 

In control  101.53 (2.98) 103.40 (3.26) 99.69 (3.08) 100.77 (3.19) 

Quadrilobe 0.00185 86.12 (2.80) 1.03 (0.00) 4.70 (0.13) 1.39 (0.02) 
0.002 77.29 (2.35) 1.01 (0.00) 2.90 (0.07) 1.16 (0.01) 

0.0025 51.70 (1.68) 1.00 (0.00) 1.14 (0.01) 1.00 (0.00) 

Trilobe 0.0025 78.70 (2.47) 1.09 (0.01) 12.40 (0.38) 2.27 (0.05) 
0.003 56.75 (1.79) 1.00 (0.00) 5.57 (0.15) 1.29 (0.01) 

0.0035 41.42 (1.35) 1.00 (0.00) 2.78 (0.07) 1.04 (0.01) 

Half frequency 0.00075 70.27 (2.17) 3.06 (0.08) 14.11 (0.43) 4.51 (0.13) 
0.001 50.51 (1.48) 1.27 (0.02) 4.61 (0.13) 1.54 (0.03) 
0.002 10.99 (0.34) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 

Tapering 0.1 83.68 (2.59) 65.34 (2.29) 80.81 (2.46) 83.18 (2.64) 
0.15 59.12 (1.80) 45.88 (1.44) 66.66 (2.01) 67.11 (2.10) 
0.2 43.01 (1.36) 23.98 (0.72) 47.63 (1.48) 54.53 (1.77)  

Increase of variance 1.05 84.23 (2.56) 16.51 (0.49) 20.86 (0.68) 22.77 (0.71) 
1.1 48.31 (1.44)  2.69 (0.06) 3.55 (0.10) 3.70 (0.10) 

1.15 27.36 (0.79)  1.21 (0.02) 1.38 (0.02) 1.37 (0.02) 

  
Scenario 2 (

2 460N = ) 

In control  102.38 (3.24) 101.33 (3.43) 98.76 (3.01) 102.39 (3.35) 

Quadrilobe 0.00185 107.79 (3.30) 1.28 (0.02) 3.58 (0.09) 3.48 (0.09) 
0.002 100.73 (3.12) 1.09 (0.00) 2.41 (0.06) 2.23 (0.05) 

0.0025 69.36 (2.16) 1.00 (0.00) 1.07 (0.01) 1.08 (0.01) 

Trilobe 0.0025 104.65 (3.31) 1.25 (0.01) 31.25 (0.94) 2.16 (0.05) 
0.003 104.04 (3.30) 1.02 (0.00) 19.84 (0.58) 1.28 (0.02) 

0.0035 102.75 (3.30) 1.00 (0.00) 11.60 (0.35) 1.05 (0.01) 

Half frequency 0.00075 83.00 (2.63) 5.46 (0.15) 26.34 (0.83)  11.63 (0.35) 
0.001 63.80 (2.03) 1.88 (0.04) 9.10 (0.27)  3.59 (0.10) 
0.002 15.33 (0.44) 1.00 (0.00) 1.01 (0.00)  1.00 (0.00) 

Tapering 0.1 99.05 (3.06)  69.98 (2.34)  85.44 (2.78) 86.33 (2.71) 
0.15 80.00 (2.58) 48.21 (1.48) 69.35 (2.17) 61.33 (1.93) 
0.2 56.24 (1.77) 28.66 (0.92)  50.92 (1.65)  40.92 (1.24) 

Increase of variance 1.05 95.68 (3.06) 35.59 (1.10) 32.55 (1.01) 31.50 (0.98) 
1.1 60.49 (1.86) 7.39 (0.21) 7.32 (0.21) 7.55 (0.21) 

1.15 35.89 (1.13) 2.48 (0.06) 2.45 (0.06) 2.51 (0.07) 
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On the other hand, in a space-filling distribution, points are scattered throughout the surface by 

optimizing a specific criterion. Our simulation results showed that, one of the most widely used 

measures to evaluate the ‘space-fillingness’ of points over a region, i.e. the ‘maximin’ metric introduced 

by Johnson et al. (1990), can be usefully adopted in order to decide on the locations of checkpoints. By 

adopting this method, the performance of the GP-based approach is improved when compared to those 

obtained by uniformly distributing the points on a regular grid. 

With reference to the out-of-control condition characterized by increase of residual variance the 

performances of two compared GP methods are similar. In this case, the shape error is ‘randomly’ 

distributed over the cylindrical surface. Performance of GP control charts is not influenced by the 

distribution of checkpoints.  

 

Comparison with other approaches for profile monitoring  

Different authors presented approaches based on the idea of predicting profile data on a set of points 

(that we called checkpoints in our paper) by using appropriate smoothing techniques and then 

monitoring the deviations between the actual and the in-control data at these set of locations. As a matter 

of fact, a similar approach was proposed by Qiu et al. (2010) and Chipman et al. (2010) for 

nonparameteric profile monitoring. Zhang et al. (2013) and Grimshaw et al. (2013) presented similar 

approaches for GP-based monitoring.  

In this section, our aim is to compare performance of different ways of summarizing discrepancies 

between the observed and the in-control data points in the statistic to be monitored.  

In order to keep comparison fair, we will re-conduct all the different methods, sometimes involving 

exponential weighting schemes, to the Hotelling control chart, as the one we used in our paper. The main 

idea behind this choice is to keep a monitoring scheme that stays alert for both single outlying profiles 

and sustained profile shifts. Secondly, we will focus the attention only on the different statistics to be 
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plotted on the control chart against the control limit, while keeping the GP as reference smoothing 

technique.  

Qiu et al. (2010) presented an approach for nonparametric profile monitoring, which can be adapted to 

our framework by eliminating the EWMA weighting scheme and considering GP-based prediction in the 

checkpoints, thus resulting in the following statistic (written in matrix form):  

1
ˆ ˆ_ 1

1 ˆˆ ˆˆ ˆ( ) ' ( )QZW h h r h rQ
n

−= − −r µ Σ r µ  (14) 

where	
   ( )ˆ1
ˆ ˆdiag= rΣ Σ ,	
   ˆˆ rµ  and ˆ

ˆ
rΣ  are the Phase-1 estimate of the mean and covariance of predicted data 

at checkpoints and  ˆhr  represents the vector of surface data predicted at checkpoints of the h-th surface.  

Equation (15) is clearly an oversimplified version of the Qiu et al.’s approach, since the main 

contribution of their method is what we neglected, i..e. the nonparametric exponentially smoothing 

scheme used to predict surface data. However, by separating the smoothing approach from the structure 

of the statistic to be monitored, we can draw some fair conclusions on the two separate effects. In the 

discussion to the paper by Qiu et al. (2010), Chipman et al. (2010) suggested a different statistic for 

nonparametric profile monitoring, which is basically equivalent to our proposal when the exponentially 

weighting scheme is neglected. This is why we will not include the Chipman et al.’s statistic as 

competitor method in this study.  

Zhang et al. (2013) presented a different approach to model the within-profile correlation estimated via 

GP. In this paper, the linear trend term (if any) is monitored with a first statistic while the remaining 

within-profile correlation is modeled via GP and monitored using the successive difference of profile 

data at selected locations: 

( ) ( )2 1
ˆ_ 1 1

1 ˆˆ ˆ ˆ ˆ'
2MMR h h h h hT −

− −= − −rr r Σ r r  (15) 
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A third possible competitor is the GP-based method proposed by Grimshaw et al. (2013). However, we 

will not include this further approach as competitor because the statistic they proposes is very similar to 

ours. 

It is worth noting that none of these methods discussed about locations of the checkpoints. Some of the 

methods (Grimshaw et al. (2013), Zhang et al. (2013) simply assumed to use a fixed set of locations for 

Phase 1 and Phase 2. Qiu et al. (2010) discussed about a different design matrix when monitoring has to 

be performed instead of smoothing, but they did not deepen discussion on how to select the design 

points.     

Table 4 shows the ARLs performance and the corresponding standard deviations (within brackets, 1000 

replicates) of our GP_sub_lh method, the MMR (equation 15) and QZW (equation 14) approaches. All 

the approaches now will share the same N2=460 points were used to estimate the in-control model in 

Phase 1 and to predict data at the checkpoints of each new surface. Once again, we use all the N2=460  

points measured on each surface to build the statistic which is based only on the set of 25 checkpoints.  

Once again, we found that our proposed approach has the best performance on almost all the simulated 

scenarios. The only exception is the case of tapering out of control, where the approach by Qiu et al. 

(2010) seems to outperforms all the other two.  

 

Table 4: Performance comparisons of GP_sub_lh, MMR and QZW: ARLs and corresponding standard deviations within brackets (1000 

trials) in scenario 2 (N2=460). 

 Shift size GP_sub_lh MMR QZW 

In control  102.39 (3.35) 100.36 (3.39) 99.82 (3.09) 

Quadrilobe 
    

0.002 2.23 (0.05) 101.87 (3.45) 89.50 (2.84) 
    

Trilobe 
    

0.003 1.28 (0.02) 102.03 (3.63) 73.15 (2.42) 
    

Half frequency     
0.001 3.59 (0.10) 96.66 (3.09) 11.96 (0.36) 
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Tapering 
    

0.15 61.33 (1.93) 92.86 (3.33) 24.17 (0.78) 
    

Residuals 
variance 

    
1.1 7.55 (0.21) 31.83 (1.12) 80.50 (2.55) 

    
 

 

Conclusion 

In this paper, a GP-based approach for surface monitoring is presented and analyzed through an 

extensive simulation study. A real case study concerning lathe-turned items subject to cylindricity 

tolerance was used for the study. The main conclusions of the study are summarized below. 

1) The GP model can be effectively used to represent surface patterns. Compared with traditional 

regression-based approaches to surface modeling, the main advantage is its easiness of use, since no 

cumbersome activity of regressor selection is required. Further work should be devoted to deepen 

advantages of using geodesic distances instead of Euclidean distances in the correlation function (del 

Castillo et al. (2013)).  

2) Control charts based on GP model cannot monitor the estimated GP parameters, as commonly done 

for profile monitoring. In fact, similar values of the GP parameters can result in very different shapes 

of the manufactured surfaces.  

3) Our proposed method consists of monitoring the vector of deviations between surface data predicted 

via the in-control GP model and the real surface data observed on the surface. This approach is able 

to detect unwanted change of the surface, provided that appropriate number and sampling strategy of 

surface points to be monitored is considered. In our study, we showed that a minimax space filling 

Latin Hypercube design can be very effective. Further work evaluating the effect of sampling 

strategy is required.  
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As a summary, research on surface monitoring via GP appeared to be a promising direction for further 

research. Considering that the approach proposed is quite general, a revised version of the proposed 

method to profile monitoring could be also tested and compared with existing procedures. In particular, 

extensions of the proposed method can be effectively considered to monitor image data (Megahed, et al., 

2011), which can be interpreted as a special case of 2.5D surface. 
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Appendix: Numerical problems in computing T2 statistics using GP models 

Two main problems can arise when using surface data predicted via GP to compute the 2T  statistic 

shown in equation (12).  A first problem can arise because of the round-off error i.e., the error that 

occurs through replacing real numbers with floating-point decimal numbers with only a fixed number of 

digits. This error can firstly cause the propagation of absolute or relative errors in all the computations 

that follow. Secondly, as a consequence of rounding and truncation a second type of error called 

cancellation can happen. In fact, it is possible to show that subtractive cancellation causes relative errors 

or uncertainties already present in the matrix to be magnified; in other words, subtractive cancellation 

brings earlier errors into prominence (see Higham (1996)). The second issue is ill-posedness of the 

problem as surface data become more dense. In particular, the main drawback is related to the inversion 
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of a matrix (in our case the covariance matrix), which can become rank deficient or close to rank 

deficient due to multicollinearity brought by the proximity of points in the design matrix.  The spectral 

condition number of a symmetric matrix, A, defined as the ratio between the absolute values of the 

largest and smallest magnitude eigenvalues, measures the sensitivity of the solution of a problem to 

perturbations in the data, either in initial data or introduced by a solution process, to the errors in the 

final result (Wilkinson (1961)). For this reason, large condition numbers are undesirable in practice. 

Ababou et al. (1994) investigate the behavior of the condition number of the covariance matrix with 

respect to two factors in order to find which characteristic affects results in terms of condition number: 

choice of the covariance function and number of data points in the domain. At the end of their paper, 

they founded out that the condition number diverges as sampling density increases while domain size is 

fixed, especially for covariance models which are “flat” at the origin resulting in a smooth function of 

the data. Posa (1989) showed that the introduction of noise in the data reduces smoothness, and therefore 

results in a less ill-conditioned covariance matrix, partially solving the influence of the choice of the 

correlation function. The relationship between the size of the matrix and previous numerical issues is 

well known and, as already stated, one would expect them to increase as the size increased (Higham 

(1996)). 

To overcome these difficulties we decided to follow two different methods: during the estimate of 

optimal parameters inside the optimization algorithm, where numerical errors are only due to round-off, 

we simply discard solutions that don’t lead to a positive semidefinite correlation and covariance 

matrices; instead, when we estimate the prediction covariance matrix which may not be positive 

semidefinite due to the cancellation effect, we decide to find the nearest positive semidefinite matrix to 

the given sample matrix by the approach proposed in Higham (2002), who formalized the notion of 

nearness using a weighted Frobenius norm and provided a method for computing the nearest covariance 

or correlation matrix. 
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