
Abstract— We show that a self-mixing interferometer can 
supply not only to the usual optical-phase signal cos 2ks(t) of 
the external reflector displacement s(t), but also the attitude 
signal P(a) because of the dependence of power from the angle 
a between wavevector k and normal n to the target reflective 
surface. By proper interrogation of P(a) along two orthogonal 
components of tilt and yaw, the two angles can be measured 
simultaneously, together with the displacement, in a single self-
mixing interferometer channel implemented by a single laser 
diode and monitor photodiode combination.   

Index Terms — Optical interferometers, Measurements, 
Optical feedback, Semiconductor laser diodes. 

I. INTRODUCTION

elf-mixing interferometry (SMI) was introduced about 
25 years ago [1], but only in recent years it has attracted 

much interest because it's a simple yet powerful tool in a 
variety of applications (see for example Ref.[2] for a 
review).  
    Measurements of displacements, vibrations, and related 
kinematic quantities are the most developed applications of 
SMI [2-4], and with them we read optical pathlength as a 
phase φ=2ks, where k is the wavevector and s the target 
distance, just like in a normal interferometer. But we can 
also look at other features of the SMI signal, for example 
amplitude, and develop echo detectors [5,6] good as sensor 
up to THz frequency [7,8], or at waveform details to 
measure e.g., index of refraction [9], and linewidth [10] and 
alpha factor [11,13] of the laser. The still growing areas of 
application span from engineering [14,15] to biomedical 
[16,17] to consumer [18].  
     The theoretical background for SMI operation is also 
well established and all the experimental findings are nicely 
explained [4], at increasing level of coverage, by at least 
three models: (i) the rotating vector model, explaining the 
amplitude and frequency (AM and FM) modulations 
generated by the backreflected field, (ii) the 3-mirror model 
explaining also the waveform switchings due to frequency 
hopping on the external-cavity modes and, (iii) the Lang-
Kobayashi equations for the full coverage of the SMI  
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dynamics, including the case of strong feedback regimes 
leading to chaos [19].  
Yet, rather surprising, another effect always present in the 
SMI and also due to the backreflection from remote target 
has been totally ignored till now, that of the decrease of 
losses of the oscillating cavity because of the external 
reflector contribution.  Usually, in an experiment conducted 
with the basic scheme of SMI (as shown in Fig.1), one looks 
at the optical power modulation induced by the returning 
field, described by the signal  

             P(φ) =P0 (1+m cos φ)  (1) 

where P0 is the quiescent power, m is the modulation index, 
and φ=2ks is the external pathlength. Actually, the external 
target affects also the cavity losses of the laser, and makes 
them decrease at the increase of external reflectivity, with a 
dependence of quiescent power P0 from external attenuation 
A, so that we can re-write Eq.1 in the more general form: 

             P(φ,A) = P0(A)  (1+m cos φ)  (1a) 

Additionally, using a reflective target, attenuation A is on its 
turn a function A(a) of angle a between wavevector k and 
target surface n, so that we can write:  

            P(φ,a) = P0(a)  (1+m cos φ)  (1b) 

    Note that the dependence on A or a adds to the 
dependence of power amplitude on the modulation index m, 
because it has a physically different mechanism: the 
modulation (AM and FM) comes from the phase-dependent 
vector addition of returning field on the unperturbed in-
cavity vector, whereas the backreflection affects losses of 
the cavity and is a phase-independent effect. Stated in 
another way, the former is a coherent effect, the latter is an 
incoherent one. 
    Taking advantage of the incoherent dependence of power 
from the external return, we show that it is possible to  

Fig.1 Schematic of a self-mixing interferometer (SMI) using a laser 
diode to sense the phase shift 2ks of field returning from an external 
reflector (or diffuser) at a distance s. 
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measure, concurrent to the displacement signal φ, the angle 
a between k and n, and to resolve it into two orthogonal 
components, namely tilt and yaw. 
    The paper is organized as follows: in Section II, we 
develop the theory of both φ-dependent modulations and A-
dependent cavity losses, relative to the power oscillating in 
the cavity and measured by the rear photodiode (Fig.1).  
In Section III we offer some experimental evidence 
confirming the theory. Then, we turn to consider a reflective 
target and its dependence of A on alignment angles atilt and 
ayaw, and in Section IV we propose the simultaneous 
measurement of s, atilt and ayaw, by properly allocating 
frequency bands to the three signals, in the single output 
channel of the monitor photodiode output. 

II. THEORY

     For sake of clarity, let's write explicitly the well-known 
Lang-Kobayashi (L-K) equations [4,20] for an SMI as: 

      dE/dt = ½ [GN(N-N0)-1/τp] E + (K/τin) E(t-τext)×  
× cos [ω0τext +φ(t)- φ(t-τext)]       (2a)

dφ/dt = ½ α{GN(N-Nth)-1/τp} + (K/τin) E(t-τext)/E(t)×    
  × sin [ω0τext +φ(t)- φ(t-τext)]         (2b) 

      dN/dt = Jη/ed - N/τr - GN(N-N0) E2(t)  (2c)

where (with values currently used for a FP laser diode): 
GN = modal gain = 8.1·10-13 m 3s -1, 
K = fraction of field coupled into the oscillating mode 
N = carrier concentration (m-3),  
N0 at inversion =1.2·1024 m-3, 
Nth at threshold = 2.5·1024 m-3, 
τext =2s/c = round trip time of external cavity 
s = distance to external cavity reflector, φ= 2ks external 
optical phaseshift  
τin =2ninLin/c = round trip time of laser cavity = 5 ps, 
τp = photon lifetime in laser cavity = 2 ps, 
τr = carrier lifetime = 5 ns, 
α = linewidth enhancement factor, (typically 3..6)
ω0 = k0/c =2πλ0/c = unperturbed frequency;
Jη = pumping current density, with
η = internal pumping efficiency
d = active layer thickness = typ. 0.25 µm
V = active volume = typ. 80 (µm)3

For slowly varying distance such that 2k[ds(t)/dt]τext<<1, the 
phase difference φ(t)-φ(t-τext) in Eqs.2a-2b is negligible, and 
then τext can be dropped in E(t-τext): we take these 
assumptions for granted in the following.  
Factor K in Eqs.2a-2b can be expressed in terms of cavity 
mirrors reflectivity as: 

K = ηs (1-r2
2)(r3/r2)   (3) 

where ηs is the mode superposition factor, and r2=√R2 and 
r3=√R3 are the field reflectivities of output mirror and target 
(r2

2
 ≈0.35 for a typical semiconductor cleaved facet). 

     Now, let's start considering the SMI φ-dependent injection 
and calculate the amplitude of the resulting SMI signal P(φ). 
Solving Eq.2b for small K, and after some rearrangements we 
arrive to the constitutive self-mixing frequency equation, 
counterpart of Adler's locking equation [4], written in the 
form [20-22]: 

        ωt = ω0t - C sin (ωt+ atan α)        (4) 

In Eq.4 we have introduced the feedback factor C: 

                C=(1+α2)1/2Kτext/τin (4a) 

The C factor determines [4,19-23] the regime of feedback, 
from weak feedback (C<<1) when the waveform F(..) is 
almost sinusoidal and the amplitude of modulation m is 
proportional to C, to moderate feedback (C≈1) when mode-
hopping starts to show up and F(..) exhibits switchings while 
the amplitude doesn't increase any more, to strong feedback 
(C>>1) when F(..) becomes chaotic with multiple switching 
per period and the amplitude (peak-to-peak swing) is 
saturated.  
   In the case of weak feedback, we can solve the L-K 
equations (Eqs.2a-2b), on letting K<<1 and calculating field 
amplitude and phase in the small signal regime as E=E0+ΔΕ, 
and ω=dφ/dt=ω0+Δω,  where E0 and ω0 are the quiescent 
unperturbed values obtained for dE/dt=0, dφ/dt=0 and K=0. 
On doing so, we find for small C: 

     ΔE = [E0 κC cos ω0τext] / [1+κC cos ω0τext],         (5a) 
where                 κ= (1+α2)-1/2τp/τext    (6) 
and 
     Δν = -(C/τext) sin (ω0τext +atan α)/(1+C cos ω0τext)    (7a) 
Also, for C<<1 we can approximate ΔE and Δν to:      

     ΔE = E0 κC cos ω0τext,  (5b) 

     Δν = - (C/τext) sin (ω0τext+atan α) (7b) 

    Thus, at weak feedback (C<<1) both AM and FM 
modulations are sinusoidal and phase-shifted by the 
difference arg(ΔE)-arg(Δν)=ζ of the sine and cosine 
function, or by ζ=π/2-atan α, from Eqs.5b and 7b.  
     About the output signal found at the photodiode, the 
photogenerated current Iph=σP is proportional to power P 
through the spectral sensitivity σ of the photodiode, and so 
we can limit ourselves to consider power and in particular 
the signal-dependent part of it, ΔP=m P0 (as in Eq.1).  
Writing P0+ΔP =<[E0+ΔE]2> and using Eq.5b we get, for 
weak feedback (C<<1): 

       ΔP = 2 E0
2 κC ½ = P0 K τp/τin          (8a) 

whereas for strong feedback (when C>>1) Eqs.5 and 7 are no 
more valid and we shall solve numerically the L-K equations 
(Eq.2a-2b). Doing so, we find [14,15] that the signal saturates 
at the value corresponding to C≈ (1+α2)1/2 in Eq.8a, so that: 

 ΔP ≈ E0
2 κ(1+α2)1/2 = P0  τp/τext       (8b) 



    In conclusion, the SMI φ-dependent signal is governed by 
the C parameter both in shape (the F function) and amplitude 
(the modulation index m): at weak feedback F is about a sine 
wave and m≈κC, whereas at moderate and strong feedback 
function F is a distorted sine (and then chaotic) waveform and 
the modulation index is m ≈ τp/τext ≈ const. 
     For a semiconductor laser, with the target placed at a 
distance s=60mm, we get from Eq.8b a saturation at m≈0.01, 
independent from external mirror reflectivity, in good 
agreement with experimental observation. 
     Second, let's now consider the A-dependent cavity losses 
induced by the external reflector.  
The reflectivity r3 of the external target of course affects also 
the factor K of the coherent injected term (Eq.2a) already 
taken into account, but also the cavity losses summarized by 
the photon lifetime in the laser cavity τp. With a simple loop 
gain argument, by noting that the rate of decay of power 
inside the cavity is given by the inverse of the loss per transit 
time, it is easy to see that for an unperturbed cavity formed by 
mirrors with (power) reflectivity R1=r1

2 and R2= r2
2, and with 

R3=0, the unperturbed photon lifetime τp0 is found as: 

τp0 = τin [-ln (R1 R2 )]-1    (9a) 

whereas, on adding the third mirror with (power) reflectivity 
R3,  we have also the external cavity formed by R2 and R3 and 
the (perturbed) photon lifetime is increased to: 

    τp ≈ τin {-ln R1[R2+(1-R2)2R3/(1-R3R2)]}-1   (9b) 

or, the effective reflectivity R2
* of the output mirror is changed 

to:  
           R2

*=R2+(1-R2)2R3/(1-R3R2), (9c) 

where term (1-R2)2R3 is the contribution returning from target 
R3 after a double transmission through R2, and (1-R3R2) 
accounts for multiple reflections between R3 and R2. 
     Photon lifetime affects two quantities readily measured 
from the static P-I characteristics of the laser: (i) the threshold 
current Jth and (ii) the slope efficiency S=P/(J- Jth). 
To find their dependence, we solve Eq.2c for E2 in the 
stationary conditions dN/dt=0 and above threshold, where the 
term (N-Nth)/τr can be assumed much smaller than (J-Jth)/ed (a 
condition called pinning of N). Noting also, from Eq.2a,  that 
G(N-N0)=1/τp, we get:   

          E2/τp= (J-Jth) η/ed - (N-Nth)/τr ≈ (J-Jth) η/ed          (10a) 

and introducing P=E2 in Eq.10a, the slope efficiency S is 
found to be directly proportional to photon lifetime τp:  

         S = P/(J-Jth)= τpη/ed (10b) 

If we start from R3=0 (τp=τp0) at which S0=τp0η/ed and then let 
R3 increase so that τp>τp0, the slope S will vary as ΔS=(τp-
τp0) η/ed=Δτp η/ed, and then the relative slope ΔS/S0 is: 

         ΔS/S0 = Δτp/τp0  (10c) 

    About threshold Jth, from Eqs.2c we have J0/ed=N0/τr and 
therefore also Jth/ed=Nth/τr. Moreover, from Eq.1c we get Nth= 
N0+1/Gτp and Jth/J0=Nth/N0=1+1/GN0τp.  
  Now, starting from a value Jth0 of unperturbed threshold (i.e., 
for R3=0) at which the photon lifetime is τp0, and going to a 
perturbed condition (R3≠0) with a new value τp, we can 
compute the threshold variation ΔT=Jth-Jth0, and then the 
relative threshold variation ΔT/T0=(Jth-Jth0)/Jth0 as a function of 
Δτp=τp-τp0. The result reads: 

 ΔT/T0=(Jth-Jth0)/Jth0 = [1/GN0τp -1/GN0τp0] /(1+1/GN0τp0) 
 = (τp0-τp)/{τp[1+GN0τp0]} = −(Δτp/τp)/[1+GN0τp0]       (11) 

    ≈ −(Δτp/τp0)/[1+GN0τp0]  for τp≈τp0                                            (11a) 

      As a conclusion of the analysis, slope and threshold are 
both affected by changes in mirror reflectivity R3 because of 
the dependence on photon lifetime τp given by Eq.9b. 
     When the external mirror reflectivity R3 is changed, 
lifetime τp varies according to Eq.9b, and from Eq.10b we see 
that slope variations are equal to lifetime variations Δτp/τp0; 
moreover, from Eq.11, we see that threshold variations are 
just the lifetime variations Δτp/τp0 scaled by the factor 
-[1+GN0τp0], when τp≈τp0 (or, R3 is small). 

III. EXPERIMENTAL VALIDATION

   We have tested the validity of the model using a VCSEL 
diode, model PH85-F1P1S2-KC of Optowell Co., emitting 8 
mW at 850 nm at a nominal drive current of 20 mA. 
Reason for choosing a VCSEL is that the spot is reasonably 
circular and no asymmetry is introduced in the tilt and yaw 
measurement; however we also tested FP-laser and found they 
are described equally well by the model. 
     We used the simple feedback scheme of Fig.1, with a 
reflecting target placed at a distance of 60-mm and properly  

Fig.2 Experimental power-current curves for our VCSEL emitting 
at 850 nm. Thick line is the unperturbed case (R3 =0), thin lines are 
the power emitted at three values of target reflectivity R3.  



 aligned so as to maximize the return into the laser cavity. The 
reflecting targets were flats of: sapphire (R3=0.14), Silicon 
(R3=0.33) and Nickel (R3=0.66), all with the back surface 
blackened to avoid spurious contributions.  
The power-current curve dramatically depends on the target 
reflectivity, more than doubling for R3=0.66 at I=16 mA 
respect to the unperturbed condition R3=0, see Fig.2. 
The slope of the power-current curve also increases with R3, 
and, in the moderate current range where slope S=P/I is 
almost constant, it supplies the experimental value of ΔS/S0 
=Δτp/τp0. 
Also, by drawing the tangent to the initial part of the P-I curve 
and extrapolating it linearly to zero power we could easily 
measure experimentally the relative variation of threshold, 
-ΔT/T0.

Experimental data we measured for the VCSEL PH85-
F1P1S2-KC with external reflector are collected in Table I.

Table I 
___________________________________________________________________________ 

reflectivity R3 0    0.14  0.33  0.66 
threshold variation ΔS/S0 (%)  0        2.2  3.5  9.2 
slope variation  -ΔT/T0 (%)      0         9  15  48 
slope-to-threshold ratio            -   4.1           4.3           5.1 
_________________________________________________ 

     By combining Eqs.10c and 11, we can calculate the ratio of 
relative slope-to-threshold variations with reflectivity R3. For 
small perturbation (τp≈τp0 or small R3) we get:  

-(ΔT/T0)/(ΔS/S0) =1+GN0τp0                                      (12) 
    For a VCSEL, the commonly assumed values [24] of gain 
gN and of carrier concentration at transparency Nt are: 
gN =2.5× 10-16 cm2 and Nth=1.3×1018 cm-3. By converting 
these quantities to our parameters G and N0 of Eqs.2, we get: 
G= c gN =2.5 10-16 ×3 1010 cm3/s=7.5 10-12 m3/s  and N0 = Nt
=1.3 1024 cm-3. 
    Consequently, factor [1+GN0τp0] in Eq.12 is evaluated as 
1+9.75 τp0, where τp0 is in ps. 
    Then, we can start by matching the experimental result of 
slope-to-threshold ratio at small R3, that is
-(ΔT/T0)/(ΔS/S0) =4.1 in Table I, and to do so we need 
τp0=(4.1-1)/9.75=0.318 ps. This value corresponds, in a 
L=10 µm VCSEL cavity with τin=0.2-ps, to a mirror 
reflectivity product (following Eq.9a) 

R1R2= exp-τin/τp0=0.533 (13) 

    As the manufacturer did not provide data about mirror 
reflectivity of our laser diode, we looked for best match of 
experimental data to theory. On taking R1=0.90 and R2 =0.59 
(i.e., a back mirror with high reflectance) we get a reasonable 
good fit with experimental data, as shown in Fig.3 (full line), 
where -ΔT/T and ΔS/S from Eqs.10c and 11 are plotted.  
On the other side, should we assume the cavity loss is equally 
shared by the two mirrors, i.e., R1=R2 =0.73, the match 
becomes appreciably worsened (Fig.3, dotted lines).  

One reason for the limited accuracy of the match is that the 
extra contribution in Eq.9c makes the decay rate governed by 
a double-time constant regime, different from the simple 
exponential assumed to derive Eqs.9b and 13.   

      Fig.3 Match of theoretical and experimental values of slope ΔS/S 
     (dots) and threshold ΔT/T (squares) as a function of external mirror 
     reflectivity. Full lines represent the best matching, found for a high 
     reflectance back mirror (R1=0.9) and R2=0.59 as derived from the 
     τp0 value, ruling out that the two laser mirrors are same reflectivity  
     R1= R2=0.73 (dotted lines).  

     Another reason is the eventual existence, in some lasers, 
of a leak contribution due to backreflected light passing 
around the laser chip and reaching directly to the rear 
monitor photodiode. This stray contribution makes the 
apparent laser power increase, and should be subtracted 
from the true photodetected current Iph due to the backface-
emitted power reaching the photodiode. The existence of a 
stray photocurrent is revealed by comparing the variations 
of photodiode current and of voltage VLD across the laser 
junction, this last being obviously unaffected by the stray 
contribution. For our VCSEL chip having an area of 
500x500µm2, the stray contribution was expected to be  
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Fig.4 The P(a) dependence on angle a, as measured by the 
photodetected current Iph at the monitor photodiode (top) and by the 
diode voltage VLD (bottom) are quite the same and confirm that no 
appreciable leakage contribution is collected. Setup data: 2H=120 mm, 
w0=1.5 mm. 



negligible in our working condition of well-collimated 
output beam, because the returning beam retraces the output 
rays and isn't spread enough to escape the chip. 
    This conjecture is confirmed by the nearly coincident 
trend of detected photocurrent Iph and diode voltage VLD 
reported in Fig.4. Incidentally, it is worth noting that, if the 
VCSEL diode hasn't a rear monitor photodiode, the 
measurement can be anyway carried out by using the diode 
voltage as the sensing signal (albeit with a reduced SNR 
respect to the Iph, as indicated by the small ripple in Fig.4, 
bottom). 

IV. INSTRUMENTAL  DEVELOPMENT

   The angle dependence of power P(a) can be exploited to 
measure angle a between wavevector k of output beam and 
the normal n to the target surface. In particular, we can 
measure tilt ψ and yaw θ angles of the reflective target 
surface (see Fig.5). This measurement can be carried out 
simultaneously to the SMI measurement of displacement s, 
as detailed below.  
   Of course, different from the usual operation of an SMI, 
where for measuring displacements we can also employ a 
diffusing target, we now shall restrict operation to reflective 
target to read the angle signal.  

   Fig.5 Three quantities describing target movement can be 
measured simultaneously from the P(φ,A) signal (see Eq.1a): 
displacement s as in a normal self-mixing interferometer, and the 
angles ψ and θ of tilt and yaw of the target surface, here drawn 
separately for clarity. 

    When the reflective target is moved of an angle a from 
alignment of its normal n to wavevector k, the superposition 
of retuning beam and unperturbed mode distribution inside 
the cavity results in a dependence of emitted power P(a) 
found as [25]: 

       P0(a) = P0 + P00 exp -(2aH)2/w0
2 (14) 

where a=[ψ2+θ2]1/2 is the composite tilt plus yaw angle, H is 
the laser-to-target distance, and w0

 is the spot size of the 
beam projected by the laser onto the target, assumed 
Gaussian and nearly constant because of the collimation 
provided by the objective lens placed at the laser output. 
     Eq.14 applies for a circular spot size like the one emitted 
by our VCSEL; if a FP-laser diode is used, Eq.14 should be 
duplicated for the two spot sizes w0X

 and w0Y
 along axes X 

and Y, the axes that conveniently will be made coincident 

with the reference system of tilt and yaw (Fig.5) 
measurement. 
The Gaussian shape of response of power P(a) as a function 
of angle is fairly well matched (within, say a few percent) 
[25] provided the laser emits a clean spatial fundamental
mode and care is exercised that the beam doesn't suffer
spurious reflections inside the optical elements.
To transform the Gaussian dependence to an almost-linear
one, we use the following well-known technique. A small
modulation Δa (say Δa=Δa0 cos ωmt) is superposed to the
angle a to be measured, so that the small increment Δa is
multiplied by the derivative of the dependence (14), or:

    P0(a+Δa) = P0(a)+[dP0(a)/da] Δa (15a) 

                = P0(a)+P0(a) 2aΔa (2H)2/w0
2  (15b) 

Thereafter, we detect the corresponding signal by a lock-in 
(or phase sensitive) amplifier centered at ωm. The lock-in 
output is then the second term at the right hand side of 
Eq.15b, that is, a linear dependence multiplied by a 
Gaussian, as already shown in Refs.[25, 26].  
The useful, almost-linear range of measurement is about 
a≈±(1.0-1.6)w0/H, before the signal reaches a saturation and 
bends back (see Fig.7 below and Fig.3 of Ref.25). In our 
setup, with w0=1.5-mm and H=80-mm, the useful linear 
range was about ±45 mrad (or ±2.5 deg).  
     We can do better however, if we compute the relative 
derivative S(a) of the power versus angle. We do so by 
dividing the synchronously detected signal (second term in 
Eq.15b) by signal (dc) component (first term in Eq.15b), 
thus obtaining:  

       S(a)= [dP0(a)/da] / P0(a) = a [8H2/w0
2]           (15c) 

This a truly linear dependence versus angle, which is 
extended up to the range where signal P0(a) becomes too 
small (and SNR is impaired), e.g. a ≈±3-4w0/H typically. 
    The P0(a) signal carrying the angle information is just the  
baseline (or mean level) of the self-mixing signal we find at 
the monitor photodiode output (Fig.1), whereas the 
displacement signal is the a.c. component impressed on it, 
one that is easily separated by filtering. To get the linearized 
signal S(a), we apply a small-amplitude variation Δa to the 
angle, and look to the resulting relative power variation 
(Eqs.15b and c). Conveniently, we will apply Δa as an a.c. 
modulation, that is Δa= Δa0 cos ωmt, and then by a lock-in 
amplifier working at the modulation frequency ωm we will 
be able to retrieve ΔP0(a) [and S(a)], without significantly 
occupying the spectrum of the self-mix signal, one let 
available for the displacement component.  
Thus, with this scheme we can measure simultaneously the 
displacement and an angle.  
Next step, we can also make a duplex angle measurement, 
simply by modulating one angle by cos ωmt, and the other by 
sin ωmt, thus generating two orthogonal components that 
will be separated by the two-channel operation (phase and 
quadrature) of the lock-in amplifier fed by the photodiode 
output signal. Thanks to the duplex, we can accommodate 



simultaneous tilt and yaw angle measurements as well as the 
displacement measurement in a single self-mix signal. 
In the following, we outline the implementation of the idea 
and provide some experimental evidence. 
     The angle modulation is readily obtained, as already 
reported in previous papers [25-27], by mounting the 
objective collimating lens (we used a 5-mm diameter, 0.5 
NA, commercial lens) in a holder with two small 
piezoceramic chips on either side of a diameter, along X and 
Y axes, as shown in Fig.6. Note the that, different from 
another possible control developed in Ref.[28], focus is not 
altered in this arrangement. 

Fig.6 Mounting the objective lens on PZT piezo drivers, arranged 
along the X and Y axis and driven in push-pull, to modulate tilt θ and 
yaw ψ angles of the beam. 

   The piezo are driven in push-pull with +Vd and -Vd to 
impart a transversal movement without exerting significant 
stress on the lens. With typical piezo of 1-mm by side, the 
transversal movement was Δtm=2µm, corresponding to a 
modulation of angle Δamod= Δtm/F=2 10-6/5 10-3 =2.2 mr, 
more than enough in amplitude respect to the 50-mr full 
range, and adequate for a good SNR of the measurement. 
   To ensure the X and Y channel are independent, we might 
have also used different modulation frequencies for the two 
driving signals. In this case, however, the band occupancy is 
doubled. It's better to let the signal be an orthogonal pair at 
the same frequency (as already shown in Ref.[25]), that is: 

       VdX  = V0 cos 2πfmt,      VdY = V0 sin 2πfmt           (16) 

So,  tilt atilt=ψ  and yaw ayaw=θ angles are modulated as: 

       Δψ  = Δψ0 cos 2πfmt,       Δθ = Δθ0 sin 2πfmt         (16a) 

Upon synchronous detection of the photocurrent signal 
Iph=σP(a+Δa) (Eq.15) the phase VP and quadrature VQ
outputs of the lock-in provide simultaneously the tilt and 
yaw signals:   

  VP = <VdX P0(a+Δa)> = V0 P0(a) ψΔψ0(2H)2/w0
2    

    VQ = <VdY P0(a+Δa)> = V0 P0(a) θΔθ0 (2H)2/w0
2     (17) 

[note that the displacement signal cos φ (Eq.1) is averaged 
out to zero in Eq.17, except for a narrow-band component at 
frequency fm]. Drive frequency fm is chosen in the low-audio 
range (e.g., ωm/2π=20-Hz) to minimize cross-talk with the 
displacement signal. Amplitude of the piezo driver is in the 
range of 5-10 V. The drive waveforms (sine/cosine) are also 
used as the references of the lock-in for duplex 
demodulation of ψ  and θ. 

    A notch filter is used to remove the modulation carrier ωm
from the photodetected current, to leave a clean self-mixing 
signal (the one of the normal SMI) carrying the φ=2ks 
information. The complementary signal, that is the bandpass 
filtered SMI, is the angle-dependent signal sent to the lock-
in.  
    To test the linearity of the angle measurement response, a 
measurement was carried out by mounting the target (a flat 
with R=0.33 reflectivity) on a rotatable platform with arc-
minute resolution, and then comparing the lock-in output to 
platform readout.  
No appreciable difference was found between tilt and yaw 
measurements, and a good linear trend with error less than 
2% was found up to about ±6 mrad, and less than 10% up to 
about 15 mrad (full lines in Fig.7) for a single measurement 
lasting 50-ms.  
These results are obtained with the relative derivative 
algorithm (Eq.15c), whereas the plain derivative 
measurement (dotted lines in Fig.7) deviates much earlier, at 
about 3.5 mrad for a 5% linearity error. 
The error bars in Fig.7 correspond to one standard deviation, 
estimated over 70 repeated measurements. The angle error is 
limited to 0.2-mrad for the range ±6 mrad, and is mainly due 
to electrical disturbances. By averaging on several (N=100) 
samples, the error drops to 12-µr, comparable to values found 
in Ref. [25]. 
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Fig.7 Top diagram: the P(a) Gaussian response, for a setup with 2H=190 
mm, w0=1.5 mm. Bottom diagram: experimental measurement of the 
angle (tilt or yaw) response of the self-mix P(a) signal obtained by: (i) 
piezo modulation of the beam aim (Eq.15b) - dashed line, and (ii) using 
the relative derivative linearization of (Eq.15c) - full line. Note the 
improvement of the linear dynamic range obtained by the relative 
derivative algorithm, only limited by the worsening of the SNR (i.e., the 
increasing size of the bars).  

Duplex angle measurement 
   To illustrate the waveforms in a simultaneous measurement 
of displacement and angles, we used the jig shown in Fig.8. It 
consists of an optical flat (R=0.33) pivoted at one fixed end-



point along the edge, and driven by a loudspeaker at the 
opposite end of the edge.  
First case, we switched off the piezo scan of objective lens, 
and by the loudspeaker delivered a periodic tilt θ toward the 
observer, as well as a position-dependent displacement s. The 
displacement is a maximum at P2 (Fig.8) and damps out to 
zero at P1, whereas the tilt angle θ is constant all over the 
target. 

Fig.8 Experimental jig to develop illustrative time-varying SMI and 
angle signals.  

In Fig.9 we report the corresponding experimental SMI 
waveforms, detected at P1 and P2. At P1 (the pivot point) 
the signal is pure angle, whereas at P2 the signal has a large 
cos φ displacement component superposed to the angle 
θ signal (visible as a ripple).

Fig.9 Experimental waveforms of self-mix signals (drawn from 
actual oscilloscope traces). Top: an almost pure angle a signal is 
found at point P1 of Fig.8, whereas at P2 (bottom) the main 
contribution is the displacement signal 2ks and the angle component 
is revealed by the underlying ripple.  

Amplitude of displacement was about 5 µm, angle about 1 
mrad, and the C factor was adjusted around unity by adding 
a x20 attenuation in the optical path. 
Second case, we turned the target by a constant (d.c.) 
amount θ0=2-mr, and switched-on the piezo drives. By 

rotating of ±45 deg the X'-Y' axes of the piezo (Fig.8), we 
develop (simulated) tilt θX' and yaw θY' angles respect to 
axes of analysis defined by the piezo. Projecting θ0 on the 
X'-Y' axes, we then have θY'=-θX'=(1/√2) θ0 at point P3 and 
θY'=θX'=(1/√2) θ0 at point P4.  
Thus, the complete angle signal is proportional to θ0 

(cos2πfmt±sin2πfmt)= θ0 sin(2πfmt±45°), with the + sign at 
P4 and the - sign at P3.  The corresponding waveforms 
obtained after bandpass filtering at f=fm are reported in 
Fig.10 and show the expected 90-deg phaseshift of P3 
respect to P4. Also, using Eq.7, we find the correct values of 
the demodulated (angle) signals, that is:  VP= V0 θY' and VQ= 
-V0 θX' at point P3, and VP= V0 θY' and VQ= V0 θX' at point
P4.

Fig.10 Experimental waveforms (drawn from actual oscilloscope 
traces) of angles detected along the X' Y' axes (points P3 and P4 
in Fig.8) with tilt at +45 deg (top) and -45 deg (bottom), after 
having removed the displacement signal by bandpass filtering; the 
waveforms are 90-deg out of phase as expected.  

V. CONCLUSIONS

By using the incoherent effect of power dependence upon 
the alignment angle of a reflective target, together with the 
usual coherent self-mixing dependence on external 
pathlength, we have demonstrated that the SMI can perform 
the simultaneous measurement of displacement and angles, 
tilt and yaw, taking advantage of two orthogonal 
modulations of the beam aim. 
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