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1. Introduction

Prognostics and health management (PHM) is expected to pro-
vide early detection of incipient faults and predict the progression 
of degradation in industrial components and systems [1–3]. Con-

Bearing as a common rotary machinery component, has at-
tracted attention in both industry and academia [6–8]. The re-
search efforts in the area of PHM for bearings have resulted in the 
development of various algorithms and models tailored to specific 
applications. With the spread of artificial intelligence and machine 
dition monitoring (CM) data, such as vibration, temperature, and 
pressure are collected and techniques of signal processing, feature 
extraction, health assessment, and RUL prediction are developed to 
fulfill the goals of a PHM system [4].

Rotating bearings are very common mechanical components 
and play an important role in a number of industrial applica-
tions. In many instances, operation of these components is in 
harsh working and environmental conditions, which can lead to 
unex-pected failures [5]. In order to avoid fatal breakdowns 
and the consequent decrease of machinery service performance, 
effective component and system health management, and accurate 
remain-ing useful life (RUL) prediction are interesting solutions to 
imple-ment while the roller bearing is operating.
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learning technologies, data-driven methods for estimating the RUL 
based on CM data have gained attention for rotating bearing health 
management. Heng et al. made a review of prognostics techniques 
and current challenges for rotating machinery prognosis [9]. Si et al. 
systematically reviewed the data-driven models and approaches 
reported in the literature in recent decades [10]. Benkedjouh et al. 
proposed the use of the isometric feature mapping reduction 
technique (ISOMAP) and support vector regression (SVR) for 
degradation assessment and RUL prediction [11]. Zhao Wei et al. 
utilized a dynamic particle filter-support vector regression method 
for reliability prediction [12].

Each of these prognostics models proposed in the literature has 
good result, however, a single prediction model may not be able 
to handle all situations in real practice [7,13]. Recently, researchers 
focus on the adaptive prognostics strategy in order to get a bet-
ter prediction results. Liu points out the importance to balance 
the prediction efficiency and accuracy adaptively and propose an 
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on-line adaptive data-driven prognostics strategy of SVR method 
[14]. Liao and Kottig applied a hybrid prognostics method to a bat-
tery degradation case to show the potential benefit of the hybrid 
approach [15]. Liao and Tian provide a framework for predicting 
the RUL under time-varying operating conditions [16]. Sun et al. 
develop a state-space-based degradation model to reduce failure 
prognostics uncertainty [17]. Bearing degradation has great un-
certainty and the dynamic degradation states have significant in-
fluence on the PHM models effectiveness [18,19]. Although there 
are some adaptive methods, which can adjust their modeling by 
changing the parameters to follow different degradation dynamics, 
the results are not always satisfactory under some other circum-
stance [20,21]. Furthermore, the adequacy of the model for the 
different dynamic stages of degradation should also consider the 
time requisites of the application and the effects of algorithmic 
complexity [22,23]. In fact, in some applications CPU computing 
resources may be limited frequently in industrial machinery oper-
ation [24,25]. The control computers are running their own work-
ing programs and they leave not too much computing resources 
for PHM algorithms. Therefore, reducing the computational com-
plexity while ensuring accuracy, can be particularly important 
in practice, especially for industrial systems with limited 
computa-tional resources. Alternatively, a condition-based method 
could be developed capable of selecting the adequate prognostic 
models depending on the current dynamic condition state of the 
bearing.

Rotating bearing degradation is a physical process that typically 
evolves dynamically in stages characterized by different speeds of 
evolution of the characteristic health indicators. Therefore, it is 
op-portune to apply different predictive models in the different 
stages, with the aim of balancing accuracy and calculation 
complexity. This leads to an adaptive scheme of PHM, 
whereby the stages in which the degradation proceeds 
gracefully calls for methods with less accuracy and, therefore, 
less computationally demand-ing, whereas the stages in which 
the process evolves faster call for more accurate predictions but 
at the expense of more demand-ing efforts in computation. In 
this way, the adaptive approach can select the better algorithm 
according to the varying degradation stages, while avoiding the 
limitations of a single algorithm.

To cope with the dynamic degradation behavior of rotating 
bearings and choose the proper prognostics methods for life 
pre-diction, an adaptive method for health assessment and 
prognosis is proposed in this paper, based on the analysis of 
vibration signals. The original acceleration vibration signal is 
decomposed by empirical mode decomposition (EMD) and the 
useful intrinsic mode functions (IMF) are obtained. Then, the EMD 
energy entropy, which can reflect the actual health condition, is 
converted into a con-fidence value (CV) to assess the bearing 
health state, by using a SOM method. In order to dynamically 
select the proper prognostics models, the bearing health state is 
categorized into four different health stages to each of which 
corresponds a specific method for predicting the health trend. A 
case study of a bearing run-to-failure test is analyzed.

The paper is organized as follows. Section 2 describes the bear-
ing health assessment method based on EMD energy entropy, and 
SOM. The bearing health state is represented by the computed CV. 
Section 3 presents the framework of the proposed adaptive predic-
tion method. In Section 4, the experimental verification and results 
are presented with reference to the bearing run-to-failure test. The 
conclusion of this paper is given in Section 5.

2. Health assessment

2.1. EMD energy entropy
EMD is a powerful signal processing technique, extensively 
studied and applied in prognostics of rotating bearings [26]. 
Traditional signal processing techniques, including time-
domain and frequency-domain analysis, cannot provide complete 
information of the vibration signals of the bearing, which 
possess non-stationary and non-linear characteristics. As a self-
adaptive method for time-frequency analysis, EMD is here 
adopted to decompose the signal into a number of IMFs and 
the residue of the decom-position [27]. The original signal x(t) 
is decomposed in terms of n-empirical modes as follows,

x(t) =
n∑

i=1

ci(t) + rn(t) (1)

where rn(t) is the residual function and ci(t) are the IMFs of dif-
ferent frequency bands ranging from high to low.

While the roller bearing is operating under different working 
conditions, the energy of the signal changes with the frequency 
distribution. The EMD energy entropy is used to illustrate the 
change of energy. For a vibration signal x(t), the n IMFs and the 
residue rn(t) are obtained by using (1): the energies of the n IMFs 
E1, E2, · · · , En , are calculated as follows,

Ei =
+∞∫

−∞

∣∣ci(t)
∣∣2

dt (i = 1,2, ..., M) (2)

and the corresponding EMD energy entropies are designated as,

HEN = −
M∑

i=1

pi log pi (3)

where pi = Ei/E (E = ∑n
i=1 Ei) is the percent of the energy of 

ci(t) in the whole signal energy. Generally, the first m IMFs con-
taining the most of the faulty information are considered. These 
m most informative selected IMFs, c1(t), c2(t) · · · cm(t), include dif-
ferent frequency components and the energy distribution in the 
frequency domain of the rotating bearing vibration signal can be 
obtained as follows,

T = [
HEN1(t) HEN2(t) · · · HENm(t)

]
(4)

2.2. Confidence value

The proposed health assessment method is presented in Fig. 1. 
In order to provide an assessment of the bearing health, the con-
fidence value (CV), which ranges from zero to one, is calculated as 
health indicator to represent the bearing health state, with 1 indi-
cating a perfect health condition and 0 indicating an unacceptable 
failure condition [28].

The CV is obtained from the EMD energy entropy through a SOM 
network, which provides a way of representing multi-dimensional 
features into a one or two-dimensional space [29]. Each neuron i of 
the network is represented by an n-dimensional weight vector mi = 
(mi1, mi2, ···, min)

T . The SOM is trained with data recorded during 
normal operation of healthy bearings. In the use of the trained SOM, 
for each input feature vector T there is a best matching unit (BMU), 
whose weight vector mc is the closest to the input vector and can be 
found in the trained SOM. The dis-tance between the input data and 
the weight vector of the BMU is defined as minimum quantization 
error (MQE), which actually quantizes how far the degradation 
condition is from the normal operation state [30]. The MQE can be 
calculated and converted into CV to represent the degradation state 
of the bearings as follows,

MQE = ‖T − mBMU‖ (5)

CV = c√ (6)

MQE + c



Fig. 1. Overview of the proposed health assessment method.
Fig. 2. Adaptive condition-based health trend prediction method scheme.

where mBMU stands for the weight vector of the BMU of the in-
put T , and c is a scale parameter determined by the MQE 
under normal conditions.

3. Adaptive trend prediction method

The procedure of the condition-based adaptive 
prognostics method is illustrated in Fig. 2. The bearing 
degradation process is described in four different stages, 
distinguished as normal, slight degradation, severe degradation 
and failure. Because the charac-teristics of the degradation 
process and the requirements of the prediction in those four 
stages differ, we use different prediction methods in each, as 
presented in Table 1. Firstly, the collected vi-bration signal data is 
used to calculate the CV by using the health assessment method 

described in Section 2. Then, the change rate 
of the CV value of the bearing is used to identify which degrada-
tion stage the bearing is currently operating in.

According to the characteristics of each stage, the 
prediction model should be adaptively selected. The selection 
rules are de-veloped based on the historical data. The goal of 
applying the adaptive prediction method is to achieve the desired 
prediction accuracy in each stage while keeping the 
computational complexity under control with respect to the 
practical requirements of the different stages.

3.1. Normal stage

In this stage, the bearing is in the normal state and the CV 
value is maintained at a high level. This is the stage in which the 
bearing operates in, during most of its life. Thus, there is no need 
to use a complex prediction algorithm in this stage. We simply 
collect the vibration signal at a relatively low sampling frequency 
and monitor the CV value: an incipient fault starts if the CV 
values exceed the degradation threshold whose setting depends 
on the user requirements, e.g. CV = 0.8, and the bearing enters 
the degradation region.

3.2. Slight degradation stage

In this stage, slight degradation has emerged and the CV values 
are continuously decreasing, but the bearing can still be used. 
In this situation, we should increase the frequency of monitoring 
the signal and activate the prediction model. Some data-driven 
mod-els, such as ANN and ARMA, can be applied to track the 
bearing conditions. In the application that follows, we have 
chosen, as an example, the Wavelet Neural Network (WNN) 
algorithm to predict the CV value. WNN is proposed as an 
alternative to feed forward neural networks, based on wavelet 
transform theory [30]. WNN has been shown to possess good 
properties of approximation and robustness [31]. In WNN, wavelet 
basis functions are used as node activation functions. In the 
application of this paper, it is designed as a three-layer structure 
with an input layer, a hidden layer, and an output layer. Fig. 3 
shows the schematic diagram of the three-layer WNN, where Ik

n 
is the n-th input CV value of the k-th data vector. Morlet 
wavelet, which is a widely used wavelet function, is taken as the 
activation function in the hidden layer.

Once the CV value is lower than the threshold or the change 
rate of the CV value increases significantly, the bearing is consid-
ered to be suffering from a severe degradation and entering the 

third stage, precisely the severe degradation stage.



Table 1
Characteristics, requirements and prediction method for the four different stages.

Stage Type CV criterion Sampling frequency Computing requirement Prediction method

S1 Normal 0.8 < CV < 1 Low Low computation time Threshold monitoring

S2 Slight degradation 0.65 < CV < 0.8 Medium Low computation time WNNa

Medium accuracy

S3 Severe degradation 0.6 < CV < 0.65 High High accuracy GPRb

High precision
Probability Output
RUL

S4 Failure CV < 0.6 – Repair –

a WNN = Wavelet Neural Network.
b GPR = Gaussian Process Regression.
Fig. 3. Schematic diagram of the three-layer WNN.

3.3. Severe degradation stage

In this stage, the bearing is close to the end of its life. Although 
the bearing seems to work well, it may break down. In this situ-
ation, the accurate prediction of RUL is of utmost importance for 
the personnel to make maintenance decisions; then, one should 
further increase the sample frequency for monitoring and apply 
a more accurate prediction algorithm. This prediction algorithm 
should have a good capability to handle high data dimensionality 
and small sample size regression problems, because the bearing is 
degrading relatively fast. As an example, we chose the Gaussian 
Process Regression (GPR) algorithm for RUL prediction. GPR has 
high prediction accuracy and provides probabilistic outputs, which 
can reflect the confidence in the RUL prediction that is used to 
take the maintenance decisions [32]. As a probabilistic technique 
for nonlinear regression, it computes the posterior degradation es-
timates by constraining the prior distribution to fit the available 
training data [33,34]. For a new test input x∗, we can establish a 
joint Gaussian prior distribution of the training output y and the 
test output y∗ as follows,

y
y∗ ∼ N 0,

C(X, X) + σ 2
n I C(X, x∗)

C(X, x∗) C(x∗, x∗)

])
(7)

where C(X, X) is an n-order symmetric positive definite covari-
ance matrix, C(X, x∗) is the n × 1 covariance matrix of the test 
input x∗ and the training input X , and C(x∗, x∗) is the covariance 
matrix of the test input x∗ . Under the conditions of a given in-
put x∗ and the training set D = {(xi, f (xi))|i = 1, 2, · · ·n}, xi ∈ X , 
the GP can calculate the test output y∗ according to the posterior 
probability formula,

ξ y∗|x∗, D ∼ N
(
μy∗ ,σ 2

y∗
)

(8)

μy∗ = C x∗, X C(X, X) + σ 2
n I

−1
y =

n∑
αiC xi, x∗ (9)
i

Fig. 4. Overview of the experimentation platform.

σ 2
y∗ = C

(
x∗, x∗) − C T (

x∗, X
)(

C(X, X) + σ 2
n I

−1
C x∗, X (10)

where μy∗ , σy∗ are expectation and variance of y∗ and α =
(C(X, X) + σ 2

n I)−1 y where I is the unit matrix. Therefore, the 
predicted value is a linear combination of the covariance func-
tion C(xi , x j ). Once the posterior distribution is obtained, it can 
be used to assess prediction values for the test data points. Typi-
cally, the squared exponential (SE) covariance function is used and 
the hyper-parameters in the covariance functions can be optimized 
from the training data by maximizing the marginal likelihood 
al-gorithm [35].

3.4. Failure stage

The failure stage is the last stage of a bearing life. The bearing 
may not be completely broken down but due to safety require-
ments or others, it should be replaced immediately when entering 
this stage. Also this final failure threshold is set according to the 
user requirements. In the example that follows, we set the thresh-
old at CV = 0.6, with adequate safety margin to maximize the 
usage of the component while preventing complete failure.

4. Experiment and analysis

4.1. Description of the experiment

In order to validate the proposed adaptive prediction method, 
bearing run-to-failure test data were used, taken from the bearing 
Accelerated Life Tests (ALT) [36]. The overview of the experimenta-
tion platform is presented in Fig. 4. Two accelerometers are placed 
radially on the external race of the bearing in vertical and horizon-
tal directions, respectively, and the load is applied to the bearing 
radially in horizontal direction. Vibration data are recorded from 
two channels for each bearing, at a sampling frequency of 25.6 kHz 
every 10 s. Seventeen bearings are tested in three different opera-



Table 2
Bearing operation conditions.

Dataset Load
(N)

Speed
(rev/min)

Training data Testing data

Dataset1 4000 1800 Bearing 1-1 Bearing 1-2 Bearing 1-6
Bearing 1-3 Bearing 1-4 Bearing 1-7
Bearing 1-5

Dataset2 4200 1650 Bearing 2-1 Bearing 2-2 Bearing 2-6
Bearing 2-3 Bearing 2-4 Bearing 2-7
Bearing 2-5

Dataset3 5000 1500 Bearing 3-1 Bearing 3-2 Bearing 3-3

Fig. 5. Four CV curves of the training data after health assessment.

tion conditions, as shown in Table 2. Twelve bearing data are 
taken for training, and the remaining five bearing sets of data 
are used for testing.

4.2. Adaptive prediction

By applying the EMD method, the vibration signals are decom-
posed into several IMFs. The first five IMFs C1(t), C2(t), . . . ,  C5(t) in-
clude the most relevant degradation information, and are arranged 
from high to low frequency. The corresponding energy entropies 
are calculated and the feature vectors T are obtained according to 
(2)–(4). The first 50 feature vectors of the training data when the 
bearings are in the normal state are used to train the SOM. After 
training, the whole life data of the whole 17 bearings are used for 
testing and the CV curves are obtained by using (5)–(6).

Due to the limited space, only four typical CV curves of the 
training data are given in Fig. 5. Some obvious stage changes 
can be found in CV1, CV2 and CV4. Once the CV curves have 
been obtained, the corresponding degradation rates can be 
calculated. A higher  degradation rate represents a rapid 
deterioration, whereas a lower rate indicates a slow evolving 
health state. The varying degradation modes suggest that the 
adaptive prediction model should be applied.

An example of adaptive prediction for Bearing 3-3 is illustrated 
in Fig. 6. The CV curve is obtained and three degradation stages 
can be identified as shown in Fig. 6(a). In the first stage of the 
CV curve, a slight degradation can be found when the CV value 
reaches the threshold 0.8, but there is no need to predict the RUL 
due to the relatively high CV value. CV decreases as bearing per-
formance deteriorates continuously, then turns into a stable 
period up to time 300 s. A slight degradation stage can be 
identified. Thus, the WNN model is used to predict the 
degradation process in this stage. Seven past CV values are used 
to predict the next, one time step ahead, and 15 data vectors 

are used for training. 
Fig. 6. Adaptive prediction of Bearing 3-3.

Fig. 6(b) shows the CV change rate of the Bearing 3-3. After time 
step 303 s, the degradation mode of the bearing gradually changes 
into rapid degradation. The GPR model is selected to estimate the 
RUL. The prediction result at time 330 s is presented in Fig. 6(c), 
20 data points are recorded and used to train the GPR model, the 
prediction result is 431 s, whereas the actual final time is 427 s. 
The relative prediction error of RUL is 4.1%, calculated by using the 
following formula,

Er = ActRULi − PredRULi × 100% (11)

ActRULi



Table 3
Testing results of the three prediction methods.

Bearing Adaptive prediction model WNN model GPR model

Error % Time (s) Error % Time (s) Error % Time (s)

Bearing 1-6 0.1960 0.3434 0.3009 0.1596 0.0579 0.5858
Bearing 1-7 0.1413 0.4573 0.3073 0.2019 0.0655 0.5742
Bearing 2-6 0.2592 0.4111 0.2691 0.4113 0.0579 0.4091
Bearing 2-7 0.8460 0.3494 1.0682 0.3663 0.2353 0.3031
Bearing 3-3 0.2968 0.2581 0.3993 0.2608 0.0929 0.2528

Fig. 7. Computation time and relative error of the adaptive prediction method.
where ActRULi is the actual RUL and PredRULi is the estimation of 
RUL.

4.3. Performance analysis and discussion

According to previous research [37], the limitation of GPR is 
in the expensive computations needed for inverting the covari-
ance matrix (K + σn

2 I)−1, which yields a cost of O(N3), and for 
the mean prediction, which has a cost of O(N), where N is the 
number of data points. From our experience in the experiment, to 
get high accuracy GPR indeed needs a substantially high computa-
tional cost during both learning and prediction. Although the GPR 
algorithm can get high prediction accuracy, it can result in sig-
nificant computing resources also in the early or mid-degradation 
stages. In contrast to GPR, the WNN has approximately a complex-
ity of O(nmN) for training the network parameters, where m is the 
number of input nodes, n is the output nodes, and N is the num-
ber of data [38]. In general, WNN consumes little computational 
resources during the prediction process.

Given the above, in the proposed adaptive method, we use the 
less computationally complex WNN method in the early 
degra-dation stages and apply the high prediction accuracy, 
relatively high computational cost GPR method in the late 
degradation stage. This ensures overall satisfactory prediction 
accuracy and reasonable consumption of computing resources 
suitable to the requirements.

To further validate the performance of the proposed method, 
WNN and GPR are applied also separately throughout all degrada-
tion stages. The testing results of the three prediction methods are 
presented in Table 3. Five bearings are used for this analysis. It is 
easy to see that the WNN method employs less computing 
time, but does not achieve as much accuracy as the GPR method.
    An example of the computation time and relative error of the 
adaptive prediction method is illustrated in Fig. 7. The 

prediction 
algorithm is changed after time 303 s (Data point 233 in Fig. 
7): as discussed in Section 3, low computation time and 
medium accuracy are important in stage 2; the computation 
time for the prediction is relatively low by using WNN, as 
shown in Fig. 7(a); however, when the bearing enters into 
stage 3, there is a requirement of RUL prediction accuracy: then, 
the GPR method is applied, with more computational cost in 
exchange for high accuracy, as shown in Fig. 7(b).

5. Conclusion

In this paper, we have proposed a condition-based 
adaptive method for bearing health trend analysis and RUL 
prediction. The EMD energy entropy and SOM are applied to 
calculate the CV for representing the health state of the bearings. 
Then, the CV value and the CV change rate are used to identify 
the current stage of the degradation dynamic process, and the 
correspondingly adequate prognostic models are selected to 
estimate the health trend and RUL. Features of the four stages, 
including characteristics, criteria requirements and prediction 
methods, are discussed. A case study concerning data from 17 
test bearings has been analyzed to verify the feasibility of the 
method, with WNN and GPR as tailored models for the different 
degradation stages.

From the experiment results and analysis, the proposed method 
offers a best trade-off between the efficiency and consume. Com-
pared with the traditional single method like WNN, the proposed 
method adaptively adjusts the prediction algorithm according to 
the degraded condition and enhances the accuracy when enter-
ing severely degraded stage. It can be concluded that the proposed 
method can provide high prediction accuracy while effectively 
controlling the computational complexity and CPU resource 
consumption. It guides also a strategy for setting the sampling 
frequency and selecting the appropriate prediction method, 

which is useful for application in real industrial systems.



Furthermore, alternative data-driven models, such as auto-
regressive moving average (ARMA) and support vector regression 
(SVR), are good candidate algorithms for the prediction in the dif-
ferent degradation stages: by selecting the best model in each 
stage, the proposed adaptive method can provide the required 
accuracy within the time and computational requirements of the 
actual application.
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