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Abstract 

 

In the analysis of the risk associated to rare events that may lead to catastrophic consequences 

with large uncertainty, it is questionable that the knowledge and information available for the 

analysis can be reflected properly by probabilities. Approaches other than purely probabilistic 

have been suggested, for example using interval probabilities, possibilistic measures, or 

qualitative methods. In the present paper, we look into the problem and identify a number of 

issues which are foundational for its treatment. The foundational issues addressed reflect on the 

position that “probability is perfect” and take into open consideration the need for an extended 

framework for risk assessment that reflects the separation that practically exists between analyst 

and decision maker.  
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1. INTRODUCTION 

 

Probabilistic analysis has now been used for more than 30 years (ref. the Reactor Safety Study, 

WASH-1400 [1]) as the basis for the analytical and quantitative process of risk assessment; see 

the reviews by Rechard [2,3]. A probabilistic risk assessment (PRA), sometimes also referred to 

as a quantitative risk assessment (QRA), systemises the knowledge, information and uncertainties 

about the phenomena involved in the activities studied: what are the possible hazards and threats, 

their causes and consequences? What are the probabilities of occurrence of the accident scenarios 

leading to these consequences? Knowledge is input into the QRA model and the associated 

uncertainties are expressed with probabilistic metrics; then, also the risk metrics in output are 

represented in terms of probabilistic metrics, to display the uncertainties; see e.g. the review by 

Jonkman et al. [4].  

 

In a practical QRA setting it is common to distinguish between aleatory (stochastic) and 

epistemic (knowledge-related) uncertainty [5,6,7]. The former refers to variation in large 

populations, is typically measured using frequentist probabilities and is considered irreducible; 

the latter refers to lack of knowledge about phenomena (usually translating into uncertainty about 

the parameters of a model used to describe some phenomenon or phenomena), is typically 

measured using subjective probability and is considered reducible. Winkler [8] describes the 

distinction between types of uncertainty – aleatory and epistemic uncertainty in particular – as 

fundamentally flawed but, nevertheless (and in line with Apostolakis [9]), as useful for the 

practice of modelling and analysing complex systems. Apostolakis states [9 p. 1362]: 
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‘There is only one kind of uncertainty stemming from our lack of knowledge concerning the truth of a 

proposition […] [Distinctions between probabilities are] merely for our convenience in investigating 

complex phenomena. Probability is always a measure of degree of belief.’ 

 

As for the objective/subjective distinction that is often tacitly taken to underlie the 

frequentist/subjective probability distinction, Winkler writes [8 p. 128]: 

 

‘To some individuals, especially those trained in a scientific environment, the subjectivity in subjective 

probability seems to be at odds with a scientific search for objectivity. But, in fact, objectivity in dealing 

with uncertainty in the real world is a goal that is elusive at best and might more realistically be viewed as 

unattainable. In order to apply the classical or relative-frequency interpretations of probability, certain 

assumptions must be made, and these are ultimately subjective assumptions (Gelman et al.3).’ 

 

As for measurement, Popper distinguishes three worlds (see e.g. [10]): the physical world, the 

personal and subjective world, and the objective world of others; in addition, at the intersection of 

the second and third worlds, is the shared inter-subjective world. Measurement of properties of 

the physical world, such as the length of an object, is different from measurement of uncertainty 

in the sense of lack of knowledge, expressed by subjective probability reflecting a person’s 

degree of belief. Some (e.g. [10,11]) would refer to this as measurement of hard and soft systems, 

respectively. 

 

Probabilistic analysis is the predominant method used to handle the uncertainties involved in risk 

analysis, both of aleatory and epistemic types. It is also used in the quantification of margins and 

uncertainties in analyses that use computational models to predict complex system behaviour 

[12]. It seems correct to say that probability is indeed perfectly suited to describe aleatory 
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uncertainty, in its limiting relative frequency interpretation. When used as representation of 

epistemic uncertainty, the suitable interpretation is the subjective one typical of the Bayesian 

probabilistic framework [13,14].  By subjective probability is here meant the exact assignment, 

say, P(A) = 0.3, thus “à la Savage” [15]. Of course, if we judge the event A to be part of an 

exchangeable sequence we would introduce a chance/propensity p of A, understood as the 

limiting relative frequency of A in an infinite exchangeable sequence; then proceed to assign 

P(A|p) = p and establish a (prior) probability distribution F(p’) = P(p ≤ p’) on p. Here P(A) and 

F(p’) are subjective probabilities expressing degrees of beliefs, and both P(A), determined as the 

integral of P(A|p) with respect to F, as well as the value of F(p’) for a given p’, are fixed, which is 

the point we are making above. 

 

However, many researchers have to greater or lesser extent criticised probability as a 

representation of epistemic uncertainty. A number of alternative representations of epistemic 

uncertainty have been proposed, including imprecise/interval probability [16,17,18,19,20], 

probability bounds (p-box) analysis [21,22], fuzzy set theory [23,24], fuzzy probability [25], the 

theory of possibility [26,27,28] and the theory of belief functions (evidence theory/Dempster-

Shafer theory) [29]. Some amend the aleatory and epistemic uncertainty concepts by concepts 

such as fuzziness, ambiguity and vagueness, to be handled using fuzzy set theory; see e.g. 

[30,31]. Other (e.g. [13]) argue against this, saying for example that uncertainty must be 

distinguished from ambiguity, which must be removed before it is meaningful to discuss 

uncertainty (removed here means reduced to a desirable or practicable level, which is assumed to 

always be possible). In the present paper, we do not look into fuzzy set theory and related 

representations, as their motivation is not to describe epistemic uncertainty about unknown true 

quantities but to provide uncertainty statements about vague or ambiguous statements such as 
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“few leakages”. Formally this means that we restrict attention to classical (binary) set theory. See 

also the special issues of JRR [32], JSTP [33] and RESS [34] on the subject of alternative 

representations of uncertainty. One way to categorise alternative representations is [35,36]:  

 

a) Probability-bound analysis, combining probability analysis and interval analysis [37]. 

Interval analysis is used for those components whose aleatory uncertainties cannot be 

accurately estimated; for the other components, traditional probabilistic analysis is carried 

out. 

b) Imprecise probability, after Walley [19] and the robust statistics area [38] (see also 

[39,40]), which encompasses probability-bound analysis, and certain aspects of evidence 

and possibility theory as special cases. 

c) Evidence theory (or belief function theory) as proposed by Dempster [41] and Shafer 

[29], and the closely linked theory of random sets [42].  

d) Possibility theory [26,27,43], which is formally a special case of the imprecise probability 

and random set theories (see Destercke et al. [53] for some theoretical links between 

random sets, possibility functions, probability intervals, as well as so-called p-boxes and 

clouds). 

 

For a unified overview of various representations of uncertainty that have arisen in the areas of 

artificial intelligence and decision theory during the last fifty years, reference is made to  [43]. 

 

The above mentioned methods produce epistemic-based uncertainty descriptions and in particular 

intervals. They have not been broadly accepted in the risk assessment community. Although 

much effort has been made in the area of alternative uncertainty representations there are still 



7 
 

many open questions related to the foundations of these approaches and their use in both 

inference as well as risk and uncertainty decision-making; see for example the discussions in [44, 

45, 46, 47, 48, 49, 50, 51]. Many risk researchers and risk analysts are skeptical towards the use 

of the alternative approaches (such as those of the four categories a) – d) mentioned above) for 

the representation and treatment of uncertainty in risk assessment for decision-making, and some 

also argue intensively against them; see, for example [50 p. 280]. According to Cooke [52] 

alternative representations have been on the decline for at least the last 20 or so years in the 

artificial intelligence community, having been introduced in relation to expert systems in the 

1970’s leading to ‘an explosion of “alternative representations of uncertainty” through the 

1980’s’ [52 p. 14]. So although re-emerging in new fields, as Cooke [52] also points out, the field 

where it was introduced apparently to an increasing and lately dominant extent prefers the 

Bayesian framework over alternative representation. One main objection raised, as we will come 

back to in Section 4, is lack of operational meanings, or interpretations, for these representations. 

 

Most developments relating to the non-probabilistic and hybrid representations of uncertainty 

address technical issues, whereas less is said on foundational issues and little can be found on 

principles and guidelines for selection and use in the practice of risk assessment. In the present 

paper, we attempt to address that side of the problem and identify directions and needs for 

development. We discuss the needs for probability and the challenges in the use of non-

probabilistic representations of uncertainties. We address the practical issues coming from the 

fact that the risk assessment is conducted by an analyst and the results are used by one or more 

decision-makers, and the complications which arise from subjectivity and separation. Axiomatic 

differences between uncertainty representations is hence outside the scope of the present paper; 

we refer to [53] for a discussion on this topic. Furthermore, a critical review and discussion of 
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evidence theory and possibility theory in the context of system analysis is offered in [54], 

focusing on inter alia formal properties and combination of knowledge. 

 

The paper tries to get right to the point as follows: in Sections 2 through 6 we recall the 

differences in the alternative representations of uncertainties, and present and discuss the issues; 

in Section 3 we provide an overall discussion and in Section 8 we draw some conclusions and 

provide some ideas of directions for development. 

 

 

2. SUBJECTIVE PROBABILITY 

 

In the Bayesian probabilistic framework of representation of epistemic uncertainty, probability is 

interpreted as a subjective measure of uncertainty – an expression of degree of belief of the 

analyst, then governed by the axioms of probability. The term subjective probability is most 

commonly used, but we see also other words adopted such as judgmental probability and 

knowledge-based probability. By subjective probability here is meant an exact assignment, say 

P(A) = 0.3. Two interpretations are described below, one making reference to betting and the 

other to a standard for measurement of uncertainty. 

 

If linked to betting, the probability of an event A, P(A), equals the amount of money that the 

analyst(s) assigning the probability would be willing to bet if a single unit of payment would be 

given in return in the case that the event A were to occur, and nothing otherwise. The opposite 

bet must also hold, i.e. the assessor must be willing to bet the amount 1 – P(A) if a single unit of 
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payment would be given in return in the case that A were not to occur, and nothing otherwise 

[56]. 

 

If linked to the standard for measurement of uncertainty, the probability P(A) is the number such 

that the uncertainty about the occurrence of event A is considered equivalent to the uncertainty 

about the occurrence of some standard event, e.g. drawing a red ball at random from an urn that 

contains P(A) x 100 % red balls and 1-P(A) x 100 % balls of colors other than red (e.g. 

[57,58,59,60]).  

 

Several authors argue that the problem of using probability in application lies with the 

measurement procedures and not with the probability concept in itself (e.g. [59,60]).  One 

development direction then, as suggested by Lindley [59] and O'Hagan & Oakley [61], is to 

retain probability as the sole representation of uncertainty and to focus on improving the 

measurement procedures for probability. The thesis is that no alternative to probability is needed, 

as “probability is perfect” [58,61,62]. These authors acknowledge that there is a problem of 

imprecision in probability assignments, but that is considered a problem related to the elicitation 

of probabilities, and not a problem of the probability concept.   

 

This is a strong thesis that in our view is not justifiable as a general statement. We need to clarify 

the situations addressed, making some distinctions important for the practice of risk assessment 

and management. The classical case of decision analysis for risk management considers the 

situation in which the assessor of the probabilities and risk is also the decision maker: in this 

case, it is possible to argue that the use of (subjective) probability as the only uncertainty measure 

is proper, because the subjectivity of the assessment is brought in the decision scheme coherently 
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by the assessor herself/himself. In simple words, the assessor expresses her/his judgements to 

arrive at the assessment of the probabilities which she/he uses for the decision making. However, 

the situation most commonly encountered in practice is different, wherein there is one (or more) 

assessor(s) who perform the (probabilistic) risk assessment whose results are fed to decision 

makers other than the assessor(s). What characterise such situations is specifically: 

 

1. A risk assessment is carried out by a risk analyst/expert group following a request from 

the decision maker(s) (or another stakeholder(s)). The assessment is dependent on the 

subjective expertise of the assessor(s). 

2. The aim is to carry out the assessment, whose results are independent of the decision 

maker (and other stakeholders). 

3. Several stakeholders other than the decision maker will often be informed by the 

assessment and its results.   

4. The decision maker(s) and stakeholders will perform the decision making process 

according to their subjective values and preferences, and be informed by the risk results 

performed by the assessor(s) on the basis of her/his (subjective) expertise. 

 

An example is a societal safety issue, where politicians are to make decisions on protection 

measures, informed by the results of a risk assessment characterising the risks associated to 

alternative options, where the risk assessment is performed by expert risk analysts.  

 

The issue of separation between analyst and decision-maker is of course a transversal one and 

hence relevant regardless of whether the uncertainty representation is subjective probability or 

another method. 
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It is clear that in these situations, the decisions taken by the decision makers are influenced also 

by the knowledge that the assessors put in the risk assessment, through the output probabilities 

calculated. The depth of the knowledge about the system and phenomena studied determines the 

strength of the assessment, and of its influence on the decision maker. On the contrary, when 

knowledge is poor, this should be transparent and acknowledged in the decision process which 

relies on the provided probabilities.  

 

In the above scenario of decision making, we advocate strongly that the output that should be 

retained from the risk assessment and accounted for in the decision making process comprises 

two main components:  

 

a) The quantitative description given by the uncertainty measure used Q (for example, 

probability P). 

b) The background knowledge K used in the assessment.     

 

We regard this as fundamentally important, because the probabilities of the risk assessment are 

by definition subjective, or inter-subjective to some extent, depending on the situation analysed. 

The point we are trying to convey is that the subjective probability P(A) can be written as P(A|K), 

where K denotes the background knowledge that the probability is based on. We can have 

P(A|K1) = P(A|K2) for vastly different background knowledge bases K1 and K2, e.g. one (say K1) 

includes reliable models, abundant relevant data, strong agreement among experts and, in 

particular, weak assumptions because of the strong knowledge on the system and the related 

events and phenomena, whereas the other (K2) includes less reliable models, little or no relevant 
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data, disagreement among experts and strong assumptions because of the weak knowledge on the 

system and the related events and phenomena. When performing a risk assessment, the 

background knowledge is to large extent expressed in the assumptions made. In case of relatively 

poor knowledge, stronger assumptions are made. With strong knowledge, lighter assumptions are 

required. Table I presents a matrix of different situations reflecting different “states” of Q and K.  

 

Table I:  A matrix reflecting different situations of uncertainty descriptions Q and knowledge K (the numbers are just 

references for these elements of the matrix). 

Uncertainty measure Q 

Knowledge K 

Subjective  Inter-subjectivity 

among experts  

Broad inter-

subjectivity  

Strong:  

Weak assumptions made 

in the risk assessments   

 

 

(3) (5) 

Medium:   

Moderately strong 

assumptions made in the 

risk assessments   

 (2)  (4) 

Poor:   

Strong assumptions 

made in the risk 

assessments  

 

 (1)   
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Consider the case (1), which is characterised by strong assumptions and a subjective measure of 

uncertainty, understood as a subjective probability. By replacing the probability Q by an interval 

probability, the intention is to move the situation to (2), (3), (4) or (5). The idea is to use intervals 

that are less subjective and based on not so strong assumptions. In most cases the change would 

lead to the situation (2), as the intervals would need also to be based on some assumptions and 

there are always aspects of the uncertainty description that are not generally inter-subjective. 

 

Arguably it may be no easier to obtain agreement on a lower and upper probability than on an 

exact probability. However, in some cases it could be possible to find intervals that experts could 

agree on. Suppose that we have agreement on the conditional probability P(A|X), but 

disagreement on the probability distribution of X, where X is known to take a value in the 

interval [xmin, xmax]. Then we may at least obtain agreement on the probability interval [P(A|xmin), 

P(A|xmax)] (assuming that P(A|x) is increasing in x), although of course this could lead to a very 

wide interval. 

 

We stress that we perform no value ranking of the different elements of the matrix in Table 1.   A 

subjective assignment (1) may well serve the purpose of the assessment in some cases, where 

focus is on reporting some analysts’ view on specific issues. The results are acknowledged as 

subjective but still considered informative for the relevant decision making. In other cases, we 

may look for more inter-subjective results, more independent of the judgements of specific 

analysts or experts. Normally we find that a combination of different approaches can be useful to 

support the decision making. We need to produce both subjective judgments and beliefs by 

selected analysts and experts, and we need to produce more inter-subjective results where the 
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knowledge and lack of knowledge available are laid out ‘plain and flat’ with no additional 

information inserted.  

 

 

3. LOWER AND UPPER PROBABILITIES 

 

Interval or imprecise probabilities are proposed as an uncertainty measure, alternative to 

“precise” (single-valued) subjective probabilities. The motivation is that intervals in many cases 

correspond better to the (weak) information available. The intervals can be elicited by direct 

arguments or constructed indirectly from assigned possibility functions or mass functions, in the 

framework of evidence theory.  

 

Consider the problem of (subjectively) describing the uncertainty of a quantity x which is known 

to take value 1, 2, 3, 4 or 5. The basis for the assignment of the probabilities of the different 

values is rather weak, because of little knowledge on the process generating x, i.e. because of 

large epistemic uncertainties. Using precise probabilities, the analyst is required to specify five 

values, i.e. one probability for each one of the possible values of x, 1, 2, 3, 4 or 5 (so, actually, 

only four probabilities are needed as their sum must be 1). Based on the scarce knowledge of the 

process, the analyst might find it difficult to assign a specific, precise probability mass to each of 

the 5 possible values of x: a distribution like for example 0.1, 0.2, 0.3, 0.1, 0.3 may leave the 

analyst with the uneasy feeling that the numbers are somewhat arbitrary given the rather weak 

background for the assignments. Yet the assessor may find it practically feasible as she/he has 

just four numbers to assign and feels that the values assigned indeed are reflecting her/his best 

judgment. Alternatively, she/he could opt for a uniform distribution to reflect that she/he has the 
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same degree of belief in x to be equal to, say, 2 as in x to be equal to, say, 5 or any other value. 

On the premise that such a distribution does, in fact, reflect the assessor’s uncertainties, it is 

attractive to use it as only one value is needed.  

 

In principle, the assignment of intervals would seem more fit to a situation of scarce knowledge 

of the process, which leads to a lack of precision in the value assignment of probabilities. This is 

because the analyst need not specify one exact number; on the contrary, she/he is given a way to 

reflect her/his limited knowledge, and her/his associated uncertainty in the assignments, through 

an imprecise (interval) specification. However, the matter of fact is that in practice the analyst is 

still required to assign numbers, and now not just one for each x but two, a lower and an upper 

bound reflecting the imprecision of the assignment in view of the scarce knowledge.  Take for 

example x=3. The question to address is: How likely is it that x=3? The analyst finds it difficult 

to specify just one number in [0,1]; but how, then, does she/he assign the bounds? One way is 

direct assignment, e.g. say, that the probability of x=3 lies in the interval [0.2, 0.5]; but, again, 

one may feel that the assignment of such an interval is somewhat arbitrary and now, actually, we 

have a double assignment (lower and upper bounds of the intervals), with double source of 

arbitrariness. Also, it is challenging to really interpret what the assigned interval expresses. First 

of all, it expresses that the analyst is not willing to specify her/his degree of belief on the 

probability of x=3 more precisely than [0.2, 0.5].  It also states that the analyst’s degree of belief 

on the realization of the value x=3 is higher than that she/he has when drawing a specific ball out 

of an urn having 5 balls, but lower than when drawing a ball from an urn having 2 balls. She/he is 

not willing to specify her/his beliefs on the value of x further than this. This reasoning is not 

straightforward and it might be difficult to “absorb” by the assessors who are asked to provide the 
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assignments. It is our experience that the assessors need a lot of training and practice to get used 

to this way of thinking. 

 

In addition, many assessors struggle with understanding what is gained by the use of interval 

probability assignments compared to exact numbers. In the end, the richer description provided 

by the intervals, which are capable of representing the imprecision in the assignments, is 

contained in a double set of numbers, whose message is far more difficult to read than single 

point values. With the difficulties that they encounter in assigning the numbers, they question the 

need for going beyond one uncertainty description level, as provided by single-valued 

probabilities.   

 

This reflection is important for the practice of risk assessment and the consequential decision 

making. To be able to effectively use interval probabilities in practice, the obstacles in the 

interval assignments need to be identified, addressed and adequately dealt with. More, and 

extensive, research needs to be carried out in the directions of interval elicitations and interval 

interpretations. Until solid solutions are offered, pragmatically, our recommendations for cases in 

which the background knowledge is poor and not given in a clear structured form, are:  

 

 still use exact probabilities, but supplemented with an explicit characterization of the 

background knowledge, e.g. by a qualitative  approach for assessing the importance of the 

assumptions that the quantitative analysis is based on (see Section 6).  

 use interval probabilities to supplement the exact probabilities if the format of the 

information and knowledge available justifies the assignment of a specific interval of 

values, for example if a specific possibility function can be derived, or the expert 
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judgments are elicited in a form that supports the use of intervals. For instance, suppose 

that the experts provide information about x of the form: there is nothing to suggest that 

the value of x is or is not 3; for the remaining x values 1, 2, 4 and 5, my upper 

probabilities are 0.2, 0.5, 0.3 and 0.7. These elicited expert judgments could be well 

reflected by the set of probability intervals [0, 0.2], [0, 0.5], [0, 1], [0, 0.3] and [0, 0.7]. 

 

 

4. “POSSIBILITY”, “BELIEF”, AND OTHER NON-PROBABILISTIC MEASURES OF 

UNCERTAINTY 

 

Both probability-bound and imprecise probability analyses can be seen as extensions of 

probability analysis. Their common, starting ground is that single-valued probability is not 

considered adequate for representing uncertainty and the solution called for is a representation of 

uncertainty based on measures interpreted as lower and upper probabilities. Also the 

representations based on evidence theory (belief and plausibility measures) and possibility theory 

(necessity and possibility measures) can be interpreted as lower and upper probabilities; in fact, 

technically both possibility theory and probability theory are special cases of evidence theory. 

However, belief measures and possibility measures can also be understood as expressing 

“degrees of belief” and “degrees of possibility” per se, and not as lower and upper probabilities. 

This is how belief functions are to be understood according to Shafer [29], who presents evidence 

theory as a generalisation of the Bayesian theory of subjective probability in the sense that it does 

not require probabilities for each proposition or event of interest but bases the belief in the truth 

of a proposition or occurrence of an event on the probabilities of other propositions or events 

related to it. Shafer [63] uses several metaphors for assigning (and hence interpreting) a belief 
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function Bel. The simplest says that Bel(A) = q means that the assessor judges the strength of the 

evidence indicating that event A is true, is comparable with that of the evidence provided by a 

witness who has a q x 100 % chance of being reliable, i.e.  

 

Bel(A) = P(the witness claiming that A is true, is reliable). 

 

Hence, it is clear that a duality in terms of interpretation, analogous to that which affects 

probability (limiting relative frequency vs degree of belief), also affects possibility theory (degree 

of necessity/possibility vs lower/upper probabilities) and the theory of belief functions (degree of 

belief/plausibility vs lower/upper probabilities). Developing methods based on interpretations 

other than with reference to lower/upper probabilities represents a distinct development direction 

for uncertainty representation in risk analysis. Phrases such as 'degree of possibility' in possibility 

theory and 'degree of belief’ in evidence theory do not provide sufficiently clear interpretations. 

This is the motivation for Cooke [64] asking for an 'operational definition' of the possibility 

function in possibility theory (and the membership function in fuzzy set theory). One key 

challenge is hence to develop or apply a clear interpretation (operational definition) of these 

concepts, and then to develop appropriate measurement/elicitation procedures. 

 

 

5. HYBRID REPRESENTATIONS OF UNCERTAINTY 

 

Probability-bound analysis (item a) in the first list in Section 1) is an example of how research 

has also been directed towards the combination of different representations, in this case 

probabilistic analysis and interval analysis. Another example is probabilistic analysis and 
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possibility theory, where the uncertainties related to some of the parameters of a model are 

represented by probability distributions and the uncertainties related to the remaining parameters 

are represented by possibility distributions; see e.g. [65] and the applications in [66,67,68]. 

Probability and possibility distributions are special cases of belief functions and integrative work 

has also been carried out in the framework of belief functions theory; see e.g. [69,70,71]. A 

hybrid method has also been developed to combine nonparametric predictive inference (NPI) and 

the standard Bayesian framework; see [72]. 

 

The combination of uncertainty representations implies that different representations apply to 

different situations. Unfortunately, authoritative guidance is hard to find on when to use 

probability and when to use alternative representations in the context of risk assessment. The 

argument often seems to be that probability is the appropriate representation of uncertainty only 

when a sufficient amount of data exists on which to base the assignment of the probability 

(distribution) in question; however, it is not obvious how to make such a prescription operational 

[73 p. 33]: Consider the representation of uncertainty about the parameter(s) of a frequency 

probability model. If a sufficiently large amount of data exists, there would be no uncertainty 

about the parameter(s) and hence no need for a representation of such uncertainty. When is there 

enough data to justify probability, but not enough to accurately specify the true value of the 

parameter in question and thus make single-valued probability as an epistemic concept 

superfluous? 

 

As an example [73 p. 33], consider the representation of uncertainty about the parameter p of a 

Bernoulli random quantity X1 for which no observations are available and for which it is 

considered difficult to have any well-founded opinions. A typical ignorance prior for p would be 
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a beta probability distribution with parameters x0 and n0 both equal to 1, which yields a uniform 

probability distribution on the unit interval and P(X1 = 1) = E[p] = x0/(x0 + n0) = 0.5. The core of 

an often-made argument is then that, say, for the throw of an untested but unsuspected coin, most 

people would also assign P(Y = 1) = E[q] = 0.5 (resulting from a non-uniform probability 

distribution on q, centred around 0.5), where Y equals 1 if the outcome is 'heads' and 0 if 'tails', 

but perhaps have a (qualitatively) vastly different comprehension of the situation. One possible 

resolution of this problem is to assign say P(X1 = 1) = 1/2 and P(Y = 1) = 100/200, the 

denominator and numerator chosen to reflect the confidence in the probability assignment 

(Lindley, 1985); however, this involves the assignment of two numbers, just as for the 

assignment of lower and upper probabilities. Suppose that we observe realizations of the 

Bernoulli process and through Bayesian updating obtain pn = P(Xn+1 = 1|x0, x1, …, xn) = (x0 + x1 

+ … + xn) / (x0 + n0 + n). As n tends to infinity, we have, by the law of large numbers, that pn 

tends to the true value of p. The questions then are:  

 For which values of n is a probabilistic representation justified and for which values not?  

 And when a probabilistic representation is not justified, what should be the criteria for 

selecting a particular representation format (interval analysis, imprecise probability, 

possibility theory, evidence theory, etc.)? 

 

For the first question a pragmatic approach is probably required. Precise probability is an ideal 

case where no imprecision is involved; however, there will always be some degree of 

imprecision. On the other hand, because of the relative simplicity of using (calculating with) 

probabilities, it is desirable to use probability if the level of imprecision involved is considered 

negligible. Also, depending on the relevance of the available observations, different values of n 

could be judged as sufficient in different situations.  
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The second question points at an important direction of research in relation to the development of 

the hybrid approach, as well as for specific hybrid methods (interval analysis/probability, 

possibility/probability, etc.).  

 

 

6. SEMI-QUANTITATIVE APPROACHES 

 

The representations described so far are all quantitative. Another approach, which may be 

referred to as semi-quantitative, is based on a mixture of quantitative representations and 

qualitative methods. It may hence be considered a type of hybrid approach, integrating 

quantitative and qualitative representations. Examples of implementations include the approaches 

described by Aven [74,75,76] and Flage & Aven [77], where in both cases standard probabilistic 

risk descriptions are supplemented by a qualitative assessment of uncertainty aspects not properly 

reflected by the quantitative descriptions. 

 

A semi-quantitative approach implies, as the hybrid approach, a belief that probability is not 

perfect, but in addition it requires a belief that the full scope of uncertainty and risk cannot be 

transformed into a quantitative format, using probability or any other measure of uncertainty. 

Following this approach, when taken as a supplement to a precise probabilistic analysis, so-called 

“uncertainty factors” that are “hidden” in the background knowledge (see Mosleh and Bier [78] 

regarding elements in the background knowledge that can be uncertain and considered unknown 

quantities) of the subjective probabilities, are identified and assessed in a qualitative way.  
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Using some simple procedures, the strength of the knowledge that supports the probabilistic 

analysis is categorized. For example a judgment is made on the knowledge being weak if one or 

more of these conditions are true [77]:  

 

- The assumptions made represent strong simplifications. 

- Data are not available, or are unreliable. 

- There is lack of agreement/consensus among experts. 

- The phenomena involved are not well understood; models are non-existent or 

known/believed to give poor predictions.  

 

If, on the other hand, all of the following conditions are met, the knowledge is considered strong: 

 

- The assumptions made are seen as very reasonable.  

- Much reliable data are available.  

- There is broad agreement/consensus among experts.  

- The phenomena involved are well understood; the models used are known to give 

predictions with the required accuracy.  

 

Cases in between are classified as having medium strength of knowledge. In addition there needs 

to be a sensitivity analysis of the importance of the uncertainty factor. If an unreasonable 

assumption is made but the overall result of the risk analysis is not very sensitive to deviations 

from this assumption, then the assumption is not as critical as if a small deviation leads to 

significant alterations to the overall result. 
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More detailed schemes can be developed on the basis of judgments of the criticality of the 

assumptions made [76,77]. An assumption is critical the strength of knowledge supporting it is 

weak and at the same time deviations from it significantly increases the risk level as assessed in 

the risk analysis. The idea is to perform a crude risk assessment of potential deviations from the 

conditions/states defined by the assumptions. For example, if an assumption is made in a process 

plant risk analysis saying that a gas leak will be ignited immediately, then we may perform an 

assumption deviation risk assessment to consider the likelihood and effect of a delayed ignition. 

Let X denote the number of fatalities and suppose that the risk index of interest is the expected 

number of fatalities, EX. The base case assessment was that the time to ignition T would be zero, 

i.e. E[X|T=0], but we also consider say T equal to 30 seconds, i.e. E[X|T=30]. The aim of the 

assessment is to assign a risk score for each deviation, which reflects risk related to the 

magnitude of the deviation and its implications. This “assumption deviation risk” score provides 

a measure of criticality or importance of the assumption. Depending on an overall judgment of 

these assumptions scores, a total strength of knowledge level is determined.     

 

This criticality (importance) scoring of assumptions can be used as a guideline for where to place 

the focus to improve the risk assessment. The assumptions with the high criticality score should 

be examined to see if they can be dealt with in some way and removed from the highest 

importance category (for example, using the law of total probability).  There will, however, 

always be some factors which a probability or other risk metrics cannot be made unconditional 

on, e.g. data and current phenomenological understanding. 
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7. OVERALL DISCUSSION 

 

We have ventured beyond probability to describe uncertainties in a risk assessment context. For 

that, we have considered alternative approaches for representing uncertainty that have been 

looked into, including those based on interval probability, possibility theory and evidence theory. 

We have made the point, strongly, that extending the framework for uncertainty analysis 

naturally leads to the extension of the framework for risk assessment and management. In much 

of the existing literature on the representation and analysis of uncertainty, risk is defined in 

relation to probability. For example using the well-known triplet definition of risk by Kaplan and 

Garrick [57], risk is equal to the triplet (si, pi, ci), where si is the i'th scenario, pi is the probability 

of that scenario, and ci the consequence of the i’th scenario, i =1,2, …N. In this view, risk 

captures: What can happen? How likely is that to happen? If it does happen, what are the 

consequences?  

 

Kaplan [79] has generalised the above risk definition by defining risk as equal to the triplet 

(si, li, ci), where si and ci are defined as above, and li denotes the likelihood of si. However, only 

probabilistic formats are described for the likelihood component, namely frequency, (subjective) 

probability and probability of frequency. The latter refers to the use of subjective probability to 

express uncertainty about uncertain frequencies/frequentist probabilities. 

 

Such a perspective is too narrow to accommodate the integration of different approaches for 

representing and characterising uncertainty and risk: a broader perspective is required to allow 

uncertainty representations other than probability.  
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If risk is defined through probabilities as in the Kaplan and Garrick [57] and Kaplan [79] settings, 

we need to clarify what probability means. It cannot obviously be a subjective definition, as we 

seek a general framework that extends beyond such type of probabilities.  Hence, probability 

must refer to a frequentist concept. However, frequentist probabilities cannot be justified in cases 

of non-repeatability and therefore cannot serve as a general concept for risk assessment, 

applicable to all types of uncertainty representations. We, consequently, have to leave the 

probability-based risk concepts, and extend to perspectives on risk that are based on uncertainty 

instead of probability. 

 

One of the most general risk perspectives is the so-called (C,U) risk perspective, where risk is 

understood as the two-dimensional combination of the (severity of the) consequences C of an 

activity and associated uncertainties  U (what will C be?) [80,81].  This perspective is closely 

linked to some common risk perspectives in social sciences [82,83,84], which express that risk is 

basically the same as consequences C or events that could lead to C. The definitions of risk are 

different, but when it comes to the way risk is to be described there are strong similarities as the 

C-type perspective also covers consequences and uncertainties.  

 

The knowledge dimension enters the scene when we try to describe or measure risk. A risk 

description is obtained by specifying the consequences C and using a description (measure) of 

uncertainty Q (which could be probability or any other measure – measure is here interpreted in a 

wide sense). Specifying the events/consequences means to identify a set of events/quantities of 

interest C’ that characterise the events/consequences C. An example of C’ is the number of 

fatalities. Depending on the principles laid down for specifying C and on the choice of Q, we 
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obtain different perspectives on how to describe/measure risk. As a general description of risk, 

we can write (C’,Q, K), where K is the knowledge that the specification of C’ and the assignment 

Q is based on. Hence, following this definition, there is a sharp distinction between the risk 

concept per se, and how risk is measured or described.  

 

Instead of (C,U), we often write (A,C,U), when we would like to focus on 

hazards/threats/opportunities A. Similarly we write (A’,C’,Q, K) in place of (C’,Q,K). 

Vulnerability given A, can then be defined as (C,U|A), and a vulnerability description covers 

(C’,Q,K|A); i.e., vulnerability given an event A is basically risk conditional on this event.     

 

We see that such a way of understanding and describing risk allows for all type of uncertainty 

representations, and it could consequently serve as a basis for a unified perspective for treating 

uncertainties in risk assessments.  

 

8. CONCLUSIONS 

 

In the present paper, we have highlighted foundational issues for the representation of uncertainty 

in risk assessment as well as discussed the practical implications, concerns and challenges. We 

have looked into five principal directions: 

 

i) Subjective probability 

ii) Non-probabilistic representations with the interpretation as lower and upper probabilities 

iii) Non-probabilistic representations with interpretations other than lower and upper 

probabilities (degree of belief, degree of possibility etc.) 
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iv) Hybrid combinations of probabilistic and non-probabilistic representations 

v) Semi-quantitative approaches 

 

These directions are not mutually exclusive, as for example (iv) could be based on a combination 

of (i) and (ii), and (v) could be seen as a special case of (iv), since it is based on the combination 

a quantitative approach (i.e. (i), (ii) or (iii)) and some qualitative assessments. 

 

Subjective probability is currently the most common approach for treating also epistemic 

uncertainty in risk analysis. We have reflected on the position that “probability is perfect”, on one 

side, and on the need for an extended framework for risk assessment that reflects the separation 

that practically exists between analyst and decision maker, on the other side. 

 

We have argued that we need to see beyond probability to adequately reflect uncertainties in a 

risk assessment context. However, we have highlighted that how this should be done is not 

straightforward. A handful of approaches are out there, but they are of not easily implemented in 

practice. More research has to be carried out to bring these alternative approaches to an operative 

state where they can in fact be used in practice, when needed. The development in this direction 

should have the clear aim of obtaining a unified perspective (covering concepts, principles, 

theories and operative approaches) for the representation and characterisation of risk and 

uncertainty, by linking probability and alternative representations of uncertainty. 

 

Furthermore, we support that a framework for risk assessment needs to allow for both qualitative 

and quantitative approaches. Earlier research has to a large extent been quantitative, but we have 

underlined that the full scope of the risks and uncertainties cannot be transformed into a 
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mathematical formula, using probabilities or other quantitative measures of uncertainty. Numbers 

can be generated, but these alone would not serve the purpose of the risk assessment: to reveal 

and describe the risks and uncertainties. Qualitative approaches linked to probability exist (see 

Section 6), but similar approaches have not been developed for the alternative quantitative 

approaches (probability-bound analysis, imprecise probabilities, possibility theory, evidence 

theory). 

 

Finally, earlier attempts at integration (hybrid probability and possibility approaches) have been 

based on the idea that there exists one and only one appropriate representation in a specific case 

(e.g. possibility representation if the information is poor and subjective probabilities if the 

information is strong). We believe that the variety of decision-making situations calls for a 

unified perspective that allows the use of several approaches for representing and characterising 

the risk and uncertainties. To inform the decision maker, both subjective probabilities and 

imprecision intervals may be used, as these approaches could capture different types of 

information and knowledge important for the decision maker. In addition qualitative approaches 

could be incorporated to provide an even more nuanced characterisation of the risk and 

uncertainties. 
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