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We extend models for granular flows based on the kinetic theory beyond the critical volume fraction at 5 

which a rate-independent contribution to the stresses develops. This involves the incorporation of a 

measure of the duration of the particle interaction before and after this volume fraction. At volume 

fractions less than the critical, the stress components contain contributions from momentum exchanged in 

collisions that are influenced by the particle elasticity. At volume fractions greater than the critical, the 

stress components contain both static contributions from particle elasticity and dynamic contributions 10 

from the momentum transfer associated with the release of elastic energy by the breaking of force chains. 

A simple expression for the duration of a collision before and after the critical volume fraction permits a 

smooth transition between the two regimes and predictions for the components of the stress in steady, 

homogeneous shearing that are in good agreement with the results of numerical simulations. Application 

of the theory to steady, inhomogeneous flows reproduce the features of such flows seen in numerical 15 

simulations and physical experiments. 

Introduction 

Granular materials that are comprised of nearly spherical particles 

exhibit behaviour that ranges from that of a gas to that of a solid, 

depending on the nature of the interaction between the grains. 20 

These interactions depend upon the volume fraction of the solid, 

and the volume fraction is sensitive to the loading applied to the 

aggregate. The range of behaviours that granular materials exhibit 

parallels that seen in other systems of soft matter, such as colloids 

and non-Brownian suspensions.1,2 25 

 In shearing flows driven, for example, by the relative motion 

of two rigid, bumpy boundaries at volume fractions less than 

about 0.49, the spheres interact through collisions that can be 

regarded as instantaneous, binary, and uncorrelated. In this case, 

methods from the kinetic theory of dense gases that take into 30 

account the energy lost in a collision,3–5 can be used to predict the 

relationship between the forces necessary to maintain the flow 

and the rate of shearing. When the influence of the boundaries is 

negligible, both the pressure and the shear stress are quadratic in 

the shear rate; as a consequence, the strength of the velocity 35 

fluctuations, the analogue of the temperature, is quadratic in the 

shear rate. Because there is little scale separation in granular 

flows, there is no compelling reason why continuum descriptions 

should apply. However, comparisons between predictions of 

continuum theories and the profiles of concentration, velocity, 40 

and temperature measured in physical experiments and discrete 

numerical simulations of steady flows show relatively good 

agreement6–9 and this encourages their use. 

 Above a volume fraction of 0.49, at which a first-order phase 

transition between disordered and ordered states in an 45 

equilibrated system of colliding hard spheres is first possible,10 

molecular dynamics simulations show that correlations between 

collisions begin to influence the relations between the 

components of the stress and the shear rate.11–13 The introduction 

of an additional length scale in the relation for the rate of 50 

collisional dissipation of fluctuation energy associated with the 

size of clusters of interacting spheres modifies the stress relations 

in an appropriate way.9,14–16 The length scale is determined by the 

competition between the orienting influence of the flow and the 

randomizing influence of the collisions, using a local balance 55 

between the rates of production and dissipation of fluctuation 

energy. This approach has been tested against discrete element 

simulations of steady flows in a variety of flow configurations.17–

20 

 These extended stress relations apply until the mean separation 60 

distance between the edges of the spheres vanishes at least along 

the direction of principal compression, at which point, the 

stresses for hard spheres become singular.20 The volume fraction 

at which this occurs is less than that for random close packing 

and is seen in numerical simulation to depend on the coefficient 65 

of sliding friction.21 It can be interpreted as “the” jamming 

transition for shearing flows of compliant, frictional spheres.1,22–

25 However, discrete numerical simulations in two dimensions of 

the shearing of compliant, frictional, circular disks26–28 indicate 

that there are three different jamming transitions. Consequently, 70 

more work is required in three dimensions to determine if, in fact, 

the volume fraction at which the stresses become singular is 

unique. We note that, because of the anisotropy inherent in a 

shearing flow, the critical volume fraction provides only a rough 

characterization of the singular state; descriptions of the 75 

anisotropy of this state are beginning to be developed.29 

 Replacing a rigid contact with a compliant contact has three 

consequences: it permits the introduction of a time associated 
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with the duration of a collision before the hard-sphere 

singularity;30 it relaxes the singularity of the stresses at this 

singularity; and it allows prediction of the stresses at volume 

fractions greater than that at the singularity. The stresses at 

volume fractions beyond the hard-sphere singularity have parts 5 

that depend on the shear rate and parts that depend on the 

deformation of the contact. We refer to these as the rate-

dependent and rate-independent31,32 parts of the stress. 

 In this paper, we calculate stress relations for steady, shearing 

flows of deformable, elastic spheres that apply at volume 10 

fractions less than, at, and greater than the hard-sphere 

singularity. We do this by extending the stress relations of kinetic 

theories to collisions with a finite duration and employing the 

elastic component of the contact to describe the stresses 

associated with enduring contact of the spheres. 15 

 We first focus on steady, homogeneous shearing flows and 

compare the predicted stresses with those measured in numerical 

simulations.21,33,34 The predictions compare well over the range of 

volume fraction before and after the hard sphere singularity and 

over eleven orders of magnitude of the contact stiffness. The 20 

model requires no parameters other than the contact stiffness, 

coefficient of collisional restitution, and sliding friction of the 

spheres. An interesting result is that the viscosity below the 

singularity is seen to increase with the fluctuation energy, as in a 

dense gas, but to decrease with fluctuation energy above the 25 

singularity, as in a liquid. We also consider steady, 

inhomogeneous shearing flows, in which the conduction of 

fluctuation energy is important, and reproduce, for spheres, the 

qualitative feature of stress relations measured in discrete 

numerical simulations of circular disks.35 30 

Theory 

We consider a steady, uniform, unidirectional, shearing flow of 

spheres of mass density ρp and diameter d. Their interactions are 

characterized, in part, by a normal coefficient of restitution e and 

contact friction µ. We take ν to be the solid volume fraction, and 35 

x and y to be the flow and shear directions, respectively. Then, u 

is the only component of the mean velocity of the particles and u′ 

is the shear rate, with the prime denoting a derivative with respect 

to y. We define the critical volume fraction, νc, as the volume 

fraction above which a rate-independent component of the 40 

stresses develops. At greater volume fractions, the mean distance 

between at least some sphere centres is less than one diameter – 

indicating persistent deformations of such particles.24 We 

distinguish between flows at volume fraction less than and 

greater than νc, referring to those at volume fractions less than νc 45 

as collisional and those above νc as deformational. We first carry 

out calculations for contact forces that are linear in the contact 

deformation and indicate the modifications for non-linear 

contacts. Also, for sake of simplicity, we limit our analysis to 

dense flows; in these, the dependence of the coefficients of 50 

kinetic theory on the volume fraction is proportional to that of the 

radial distribution function at contact. 

Collisional regime 

In this regime, the stresses are due to the transfer of momentum 

in collisions, the mean separation distance between the centres of 55 

spheres is greater than one diameter, and the granular material 

behaves as a dense gas. Consequently, we begin with the stress 

relations of kinetic theory, extended to include an additional 

length scale in the rate of collisional dissipation,14,15,18 and 

modify them to incorporate the deformation of a contact during a 60 

collision.32 When the contact is compliant, the time interval 

between two successive collisions is equal to the time of free 

flight, tf, plus the duration of the contact, tc. 

 The time of free flight is ( ) ( )π1/2 1/2/ 24 /d GT , where G is 

the product of the volume fraction and the radial distribution 65 

function at collision and T is the one-third the mean-square of the 

velocity fluctuations – the granular temperature.36 For the volume 

fraction dependence of the radial distribution function g0 of two 

colliding spheres, we adopt the expression of Vescovi et al.,19 

which smoothly interpolates between the form due to Carnahan 70 

and Starling, appropriate at small volume fractions, and that 

which diverges at a critical volume fraction:20 

 
( )

( )0 3

2 2
f 1 f ,

2 1 c

g
− ν

= + −
ν − ν− ν

 (1) 

where ( )( ) ( )
2

f 0.8 0.4c c c= ν + ν − ν − ν ν − . For rigid contacts, 

shearing ceases at the critical volume fraction and the system is 75 

said to be jammed. For deformable contacts, discrete numerical 

simulations show that the value of the critical volume fraction 

depends only on the coefficient of friction.21
 

 The duration of a collision is proportional to the ratio of the 

particle diameter to the elastic wave speed in the particle: 80 

c = (E/ρp)
1/2, where E the Young’s modulus of the material of the 

spheres.30 We take the coefficient in the proportion to be 1/5, 

which provides the best fitting with the simulations of simple 

shearing shown later. Consequently, the frequency of collisions - 

the inverse of the time interval between two successive collisions 85 

- is reduced for deformable particles with respect to that for rigid 

particles by the factor 
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Because the collisional stresses, the collisional rate of dissipation 

of the fluctuation energy, and the flux of fluctuation energy are 90 

all proportional to the frequency of collision, the constitutive 

relations of extended kinetic theory for rigid particles, a 

modification of those of Garzo and Dufty,4 must be multiplied by 

the factor of Eq. 1 when applied to deformable spheres. 

 The rigid and deformable contributions to the constitutive 95 

relation for the pressure p and the shear stress s are best seen 

when the inverses of these are written as the sums of the inverses 

of the two contributions: 

 ( )
( )
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2 1 ,
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p e G T ET
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and 100 
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1 1

1/2
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8
,

5 3
p p

JG J
s T d u E d u

− −
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 (4) 

respectively, where the dependence of J on the coefficient of 

restitution is given by

( ) ( ) ( ) ( ) ( )2 2 21 / 2 1 3 1 96 24 1 20 1J e e e e e = + + π + − − − − −
 

.15 The first terms on the right-hand sides of Eqs. 3 and 4 are the 5 

inverses of the constitutive relations for rigid spheres; the second 

terms are the inertial-elastic contributions,37 called the 

intermediate contributions by Chialvo et al.,21 who explored 

shearing of deformable spheres in discrete numerical simulations. 

Unlike the fits by Chialvo et al. to the constitutive relations,21 the 10 

expressions in Eqs. 3 and 4 depend also on the granular 

temperature; this permits the analysis of inhomogeneous shearing 

flows, such as those between rigid, bumpy boundaries,38 in which 

the temperature is not proportional to the square of the shear rate. 

 A consequence of the extension of the frequency of collisions 15 

from rigid to deformable particles is that the pressure and the 

shear stress are no longer singular at ν = νc. For volume fractions 

close to the critical, G tends to infinity; hence, the first terms on 

the right hand side of Eqs. 3 and 4 vanish, while the other terms 

remain finite. 20 

 Similarly, the expressions of the rate of collisional dissipation 

of the fluctuation energy Γ is 

( ) ( )
( )

1 1
2 2

1/ 2
1 3/ 2

1/ 2

12 1 5 1
5 ,

2
p p

G
T E T

L L

− −

−
   − ε − ε ν
   Γ = ρ ν + ρ

π      

 (5) 

where ε is an effective coefficient of restitution, which takes into 

account the additional dissipation of the fluctuation energy due to 25 

the rotation and contact friction of the particles.39,40 In Eq. 5, L is 

an additional length scale related to the correlation of collisions at 

volume fractions larger than 0.49.14 It is determined by a balance 

between the ordering influence of the shearing and the 

randomizing influence of the collisions: 30 

 
0 1/ 2

,
u d

L f d
T

′
=  (6) 

where discrete numerical simulations indicate that the coefficient 

f0 is singular at random close packing:20 
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 (7) 

 When the flow interacts with boundaries, there is a flux of 35 

fluctuation energy directed either into or out of the flow.38,41,42 In 

such situations, the granular temperature must be determined as a 

solution of the differential equation that expresses the balance of 

fluctuation energy. The constitutive relation for the inverse of the 

flux of fluctuation energy Q for deformable spheres is 40 

 ( )
1 1
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1 1/ 2

1/2

4 5
.

6
p p
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where ( ) ( ) ( ) ( )
2

1 / 2 9 1 2 1 128 56 1M e e e e= + + π + −  − −   .15 

Here, we have ignored the contribution to the energy flux 

proportional to the gradient of volume fraction,4 which is 

negligible for dense flows. 45 

Deformational regime 

In this case, the mean separation distance, at least along the 

direction of the principal compression axis, is zero. Volume 

fractions larger than νc can be achieved in a disordered assembly 

of particles only if some particles deform. Therefore, an elastic 50 

component of the stresses associated with such persistent 

deformations develops. For isotropic compression of an isotropic 

aggregate, the elastic contribution to the pressure is proportional 

to the product of the normal component of the contact force P, 

the separation between the centres d, the number of contacts per 55 

sphere Z, and the number of spheres per unit volume ( )3
6 / dν π

:43 

 
2

,e

P Z
p

d

ν
=

π
 (9) 

For linear contacts, P is related to the normal component of the 

contact displacement δ through the contact stiffness πdE/4: 33 60 

 ,
4

P dE
π

= δ  (10) 

 The contact displacement can be related to the volume fraction 

at fixed coordination number by treating the particle deformations 

as overlapping. Then, the ratio of the total overlapped volume to 

the particle volume gives the increase in the volume fraction from 65 

the critical value, 

 
( ) 22

3

2 / 2 / 3
1 1 6 ,

/ 6
c

Z d
Z

d d

πδ − δν δ 
= + +  

ν π  
�  (11) 

in which that the ratio δ/d is small. Then, with Eq. 10, pe is 

proportional to the square-root of the product of (ν-νc) and Z. 

Discrete numerical simulations of simple shearing of frictional, 70 

deformable spheres33 indicate that the coordination number is 

approximately linear in the increase of volume fraction from νc, 

with a slope of about ten, at least for the softest particles. With 

this, we find that the elastic pressure is roughly equal to the 

product of E and the excess of the volume fraction above the 75 

critical. On the basis of fitting with numerical simulations, we 

adopt the expression 

 ( )0.6 .
4

e cp E
π

= ν − ν  (12) 

For stiffer particles, the coordination number scales with the 

square root of the increase of volume fraction from νc,
29,33 but the 80 

pressure still increases linearly with the difference ν-νc in steady, 

homogeneous shearing.29 Consequently, we assume that Eq. 12 

holds for any value of the particle stiffness. 

 The shearing forces individual particles to make and break 

chains of frictional contacts, sometimes violently;44 so that a 85 

component of the stresses associated with the transfer of 

momentum is still present at ν > νc, with the frequency of transfer 

equal to the inverse of the contact duration. We model this 

elastic-inertial pressure in the same way as we model the inertial-

elastic pressure in the collisional regime, taking ν = νc. The total 90 

pressure is the sum of the elastic-inertial and the purely elastic 
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components, 

 
( )

( ) ( )
1/ 2

1/ 25 1
0.6 .

12 4

c

p c

e
p ET E

π ν + π
= ρ + ν − ν  (13) 

The first and second term on the right hand side of Eq. 13 can be 

identified with, respectively, the intermediate and quasi-static 

pressures of Chialvo et al.21 5 

 We take the constitutive relation for the elastic-inertial shear 

stress to be the inverse of the inertial-elastic contribution to Eq. 4 

with ν = νc. Once again, the total shear stress is the sum of two 

components: the elastic-inertial and the purely elastic. In the 

steady state, both the purely elastic shear stress and the purely 10 

elastic pressure pe are proportional to the stiffness, so they are 

proportional to each other. Hence, the total shear stress may be 

written as 

 ( )
1/ 2

.
3

c
p e

J
s E d u p

ν
′= ρ + η  (14) 

where η is the constant of proportionality. Discrete numerical 15 

simulations of unsteady, homogeneous shearing in the rate-

independent regime,29 indicate that the ratio of the purely elastic 

shear stress to the purely elastic pressure is proportional to the 

anisotropy of the contact network. Because the ratio of the 

elastic-inertial shear stress to the elastic-inertial pressure is 20 

sensitive to this anisotropy in the same way, we determine η from 

this ratio: 

 
( )1/ 2 1/ 2

4
.

5 1

d uJ

e T

′
η =

π +
 (15) 

The values of η obtained from Eq. 15 in simple shearing20 with 

different particle friction coefficients are in agreement with the 25 

measurements of the constant stress ratio obtained in numerical 

simulations when ν > νc and the particles are sufficiently rigid.21 

 Because of the energy released by the breaking of chains, the 

rate of dissipation of the fluctuation energy and the fluctuation 

energy flux also persist at volume fractions larger than the 30 

critical. We take the dissipation rate to be the inverse of the 

inertial-elastic contribution to Eq. 5 with ν = νc, 

 
( )
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2

1/25 1
,

2

c

pE T
L

− ε ν
Γ = ρ  (16) 

and we assume that the correlation length is still given by Eq. 6, 

with f0 evaluated at ν = νc. Finally, we take the flux of fluctuation 35 

energy to be the inverse of the inertial-elastic contribution to 

Eq. 8 with ν = νc, 

 ( )
1/25

.
6

c
p

M
Q E dT

ν
′= − ρ  (17) 

Modifications for Hertzian contacts 

Real spheres interact through Hertzian contacts. In this case, the 40 

duration of contact is45 

 
( )

2/5
2

1/10

5 1
1.47 ,

4 3
c p

d
t

E T

 π − ψ
= ρ  

 
 (18) 

where ψ is Poisson’s ratio, and we have assumed the pre-

collisional velocity equal to (T/3)1/2. Then, Eq. 2 becomes 
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 (19) 45 

Using this, the derivation the constitutive relations for the inertial 

stresses, the rate of dissipation and the flux of fluctuation energy 

is straightforward. 

 For Hertzian spheres, the normal contact force is43 

 

3/ 222 6
,

19 3

Sd
P

d

δ 
=  

− ψ  
 (20) 50 

where S is the shear modulus. Equation 20 must be used instead 

of Eq. 10 in Eq. 9 to calculate the purely elastic pressure. If the 

relation between the volume fraction and the coordination 

number is approximately linear, we obtain 

 ( ),
1

e c

S
p ∝ ν − ν

− ψ
 (21) 55 

where the coefficient of proportionality is of order one. This 

dependence has been observed in the numerical simulations.21 

Simple shearing 

We next test the theory against numerical simulations of steady, 

homogeneous shearing of compliant, frictional spheres that 60 

interact through linear springs and dashpots in parallel.21,33,34 In 

this case, Young’s modulus is E = 4k/(πd), where k is the stiffness 

of the normal spring.33 

 In simple shearing, the volume fraction and the granular 

temperature are uniform, so that the balance of fluctuation energy 65 

reduces to 

 ( ) ,es p u′− η = Γ  (22) 

where we have assumed that the work of the purely elastic shear 

stress is completely recoverable and does not produce fluctuation 

energy.31,32 This gives 70 
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for volume fractions less than the critical, and 
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c

T J
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for volume fractions larger than the critical. Equations 23 and 24 

imply that in simple shearing, the granular temperature, made 75 

dimensionless with the product of the particle diameter and the 

shear rate, is a function only of the volume fraction, and constant 

for ν > νc. 

 In Fig. 1a and 1b, we compare the predicted dimensionless 

granular temperature with the measurements in discrete 80 

numerical simulations of simple shearing: in Fig. 1a, when  
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Fig. 1 Dimensionless granular temperature as a function of the volume 

fraction: predicted (lines) and measured by Ji and Shen33 and Chialvo and 

Sundaresan34 (symbols). Here, and in the following plots, the measured 5 

results are for dimensionless particle stiffness equal to: 101 (hollow upper 

triangles); 102 (hollow lower triangles); 103 (hollow diamonds); 104 

(hollow squares); 105 (hollow circles); 106 (stars); 107 (solid circles); 108 

(solid squares); 109 (solid diamonds); 1010 (solid lower triangles); 1011 

(solid upper triangles). 10 

e = 0.7 and µ = 0.5, so that νc = 0.587 and ε = 0.5321,40; and, in 

Fig. 1b, when e = 0.7 and µ = 0.1, so that νc = 0.613 and 

ε = 0.59.21,40 The numerical simulations have been performed for 

dimensionless particle stiffness k/(ρpu’2
d

3) ranging from 10 to 

107. 15 

 The agreement is good when µ = 0.1, and acceptable when 

µ = 0.5, at least for volume fractions less than the critical value. 

As anticipated, the dimensionless granular temperature is nearly 

constant beyond the transition, although its value increases with 

the dimensionless particle stiffness and seems to saturate, if the 20 

spheres are stiff enough. We associate the deviations from the 

numerical simulations with multiple interactions, which are not 

presently incorporated in the inertial parts of the constitutive 

relations. 

 We could certainly improve the agreement with the  25 

measurements by modifying the function f0 in the correlation 

length, which has been accurately tested only against the results 

of numerical simulations of frictionless particles,19 to incorporate 

the influence of the particle friction, and by modelling the role of 

multiple interactions, at least in the dissipation rate. We prefer to 30 

avoid those additional complications for several reasons. First, 

the agreement between the theory and the numerical results is less 

adequate when µ = 0.5, ν > νc and the particles are stiff. In that 

case, the elastic-inertial component is a small fraction of the total 

stress, so that a poor estimate of the granular temperature does 35 

not substantially affect the predictions of the pressure and the 

shear stress. Also, a friction coefficient of 0.5 is rather large; most 

real particles are characterized by friction coefficients closer to 

0.1.46 Finally, the measurements of Ji and Shen33 differ from 

those of Chialvo and Sundaresan34 for the same dimensionless 40 

stiffness of 106, indicating an uncertainty in the measurements. 

We postpone the refinement of the model to improve the 

prediction of the granular temperature for large friction and to 

include the role of multiple collisions to future work. 

We can re-write the full constitutive relations for the pressure and 45 

the shear stress in dimensionless terms using the density and 

diameter of the spheres, the shear rate, and the particle stiffness 

instead of Young’s modulus, making use of Eq. 15: 
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if ν < νc, while 50 
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if ν ≥ νc; and 
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if ν < νc, while 
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if ν ≥ νc. In simple shearing, these are functions only of ν, 

through Eqs. 23 and 24, and the dimensionless stiffness.

 Figures 2a and 2b show the predicted dimensionless pressure 

and shear stress, compared with the results of numerical  
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Fig. 2 Dimensionless (a) pressure and (b) shear stress as functions of the 

volume fraction as predicted (dotted lines) and measured by Ji and Shen,33 

Chialvo et al.,21 and Chialvo and Sundaresan34 (symbols), when e = 0.7 5 

and µ = 0.5. The symbols have the same significance as in Fig. 1. Also 

shown are the theoretical curves for perfectly rigid particles (solid lines). 

simulations of simple shearing,21,33,34 for a range of dimensionless 

stiffness, k/(ρpu’2
d

3), from 10 to 1011 when e = 0.7 and µ = 0.5. 

Also shown are the curves for rigid particles, that is, for infinite k, 10 

for which the collisions are instantaneous and binary and no 

disordered assembly is possible beyond νc. The predictions agree 

well with the simulations. The volume fraction at which the data 

depart from the rigid curve increases with the particle stiffness. 

For real spheres, the collisions can be considered instantaneous 15 

and binary up to volume fractions close to the critical value. 

 If the stiffness and the particle diameter are used to scale the 

stresses, the results from the numerical simulations collapse at 

volume fractions larger than νc, where the purely elastic stresses 

dominate, as already observed by Ji and Shen.33 The agreement 20 

between the predictions and the numerical simulations is again 

remarkable (Fig. 3). 

 Figure 4 shows the comparison between the present theory, the  

 

 25 

Fig. 3 (a) Pressure and (b) shear stress made dimensionless using the 

particle stiffness and diameter versus volume fraction as predicted (dotted 

lines) and measured by Ji and Shen,33 Chialvo et al.,21 and Chialvo and 

Sundaresan34 (symbols) when e = 0.7 and µ = 0.5. The symbols have the 

same significance as in Fig. 1. 30 

constitutive relation for the pressure suggested by Chialvo et al.21  

through fitting with their simulations, and the measurements in 

discrete numerical simulations21,33,34 when e = 0.7, µ = 0.5, and 

the dimensionless stiffness is 106. The data tests the validity of 

the linear dependence of the purely elastic pressure on the volume 35 

fraction against the power law dependence with an exponent 

equal to 2/3 suggested by Chialvo et al.21 

 Figure 5 shows the comparison between the predicted 

dimensionless pressure and shear stress and those measurements 

in discrete numerical simulations by Chialvo et al.,21 Chialvo and 40 

Sundaresan,34 and Shen (personal communication) for various 

dimensionless stiffness, when e = 0.7 and µ = 0.1. 
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Fig. 4 Dimensionless pressure as a function of the volume fraction as 

predicted by the present model (solid line), the model of Chialvo et al.21 

(dotted line) and measured by Ji and Shen,33 Chialvo et al.,21 and Chialvo 

and Sundaresan34 (symbols) when e = 0.7, µ = 0.5 and k/(ρpu’2d3) = 106. 5 

Inhomogeneous shearing in the deformational 
regime 

In inhomogeneous, steady flows, in which ν > νc, the shear rate  

is small and the production of fluctuation energy is negligible. In  

this case, that the balance of fluctuation energy is, simply, 10 

 
d

,
d

Q

y
− = Γ  (27) 

where y is taken to increase in the direction of increase of the 

volume fraction. That is, the diffusion of the fluctuation energy 

balances its dissipation.42 Using Eqs. 16 and 17, we obtain 

 

2

2 2

d 1
,

d

T
T

y
=

λ
 (28) 15 

where ( )2 2
/ 3 1dLM  λ = − ε  . Equation 28 can be solved to 

determine the distribution of the granular temperature in the flow. 

As a first approximation, we take the correlation length L to be 

constant and equal to its value in simple shearing, determined 

using Eq. 24 in Eq. 6, 20 

 
( )26 1 0.49

1 .
15 0.64

c

c

L

d

− ε ν −
= +

− ν
 (29) 

With this, λ is constant and the solution to Eq. 28 is 

 exp .
y

T
 

∝ − 
λ 

 (30) 

 

 25 

Fig. 5 Dimensionless pressure (a) and shear stress (b) as functions of the 

volume fraction as predicted (dotted lines) and measured by Chialvo et 

al.,21 Chialvo and Sundaresan,34 and Shen (personal communication) 

(symbols) when e = 0.7 and µ = 0.1. The symbols have the same 

significance as in Fig. 1. 30 

Creeping flow 

Given the distribution of temperature, we seek to determine the 

velocity profile in the creeping bed below an inclined, collisional 

shearing flow that is driven by gravity.47 There the stress ratio is 

given by Eq. 15, and is proportional to the ratio of the shear rate  35 
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Fig. 6 Normalized stress ratio versus normalized inertial parameter in an 

annular shear cell for e = 0.7 and µ = 0.5 and: (a) UR/UM = 1 and R = 25 

(dotted line), R = 50 (solid line), R = 100 (dashed line) and R = 200 (dot-5 

dashed line); (b) R = 50 and UR/UM = 1 (solid line), UR/UM = 0.1 (dashed 

line), UR/UM = 0.01 (dot-dashed line) and UR/UM = 0.001 (dotted line). 

to the square root of the granular temperature. If there are no 

sidewalls in such a flow, the ratio of the shear stress to the 

pressure is constant and equal to the tangent of the angle of 10 

inclination of the free surface. Then, the shear rate in the bed is 

directly proportional to the square root of the granular 

temperature and the velocity decays exponentially, with a decay  

length equal to 2λ. For e = 0.7 and µ = 0.5, the decay length of 

the velocity is roughly equal to two diameters, close to what is 15 

observed in the creeping flow of glass spheres.47 

Annular shear flow 

Another interesting flow is annular shearing. This was 

investigated by Koval et al.35 in two-dimensional discrete element 

simulations of compliant, frictional, circular disks and modelled 20 

by Kamrin and Koval48 using a second-order differential 

equations for the shear rate. Here, we focus on the three-

dimensional case, in which spheres are sheared between two 

coaxial cylinders, with the gravity acting perpendicular to the 

plane of shearing. We solve for the flow field in a plane 25 

perpendicular to the axis of the cylinders. In doing this, we take R 

to be the radius of the inner cylinder, which is rotating at constant 

angular velocity, and 2R to be the radius of the outer cylinder, 

which is fixed, as in Koval et al.35 In this case, y is the radial 

coordinate, with y = 0 at the centre of the cylinders. The shear 30 

stress in the flow is distributed according to 

 

2

,R

R
s s

y

 
=  

 
 (31) 

where sR is the value of the shear stress at the surface of the inner 

cylinder; while the pressure p is essentially constant.35 We 

assume that the volume fraction is everywhere larger than νc. 35 

This is the case when the tangential velocity of the inner cylinder 

UR is less than a certain value UM.35 The numerical simulations 

indicate that sR is independent of the angular velocity of the inner 

cylinder, so sR = sM, and the ratio sM/p is equal to the value η in 

simple shearing.35 With the stress ratio given by Eq. 15, and 40 

Eq. 30, we obtain 

 

( )
( )

21/2

1/2

1/2

5 11
exp ,

4 2/

M
R

p

e s R y R
I T

J p yp

π +   − 
= −   

λ  ρ
 (32) 

where ( )
1/ 2

/ / pI d u p′= ρ  is the so called inertial parameter.49 

 We assume that the slip velocity of the particles at the surface 

of the inner cylinder is proportional to the square root of the 45 

granular temperature, as is the case for collisional flows over 

bumpy walls.41 Then, UR/UM = (TR/TM)1/2 and Eq. 32 can be 

written as 

 

2

exp ,
2

R

M M

I U R y R

I U y

  − 
= −   

λ  
 (33) 

where 50 
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J p p

π +
=

ρ
 (34) 

is the value of the inertial parameter at the surface of the inner 

cylinder when UR = UM. When UR = UM, the granular temperature 

at y = R is TM, and, from Eq. 13, has the value 

 
( )

2

22

144
.

25 1
M

c p

p
T

e E
=

πν + ρ
 (35) 55 

 If the value of R is changed at constant angular velocity, with 

UR = UM, e = 0.7 and µ = 0.5, we may employ Eqs. 31 and 33 to 

obtain the curves shown in Fig. 6a. If R is kept constant and the 

ratio UR/UM is changed at constant pressure, we obtain the curves 

of Fig. 6b. The quantities s/sM and / MI I  are the shear stress 60 

and the inertial parameter, normalized by their respective values 

at the inner cylinder. These are in qualitative agreement with the 

results of the numerical simulations of Koval et al.,35 shown in 
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their Figures 8b and 10. In both cases, the ratio s/sM, is less than 

unity; that is, the ratio of the shear stress to the pressure is less 

than the yield stress ratio in shear. 

Conclusions 

We have proposed constitutive relations for the steady, shearing 5 

flows of deformable, inelastic spheres that extend kinetic theories 

of granular gases to incorporate correlated, non-instantaneous 

collisions and rate-independent, elastic stresses. The latter are 

associated with the development of persistent deformations of the 

particles at volume fractions larger than a critical. The 10 

deformability of the particles plays a crucial role in the model. It 

permits a smooth transition between the collisional and 

deformational regimes and results in stress components in the 

deformational regime that contain both static contributions from 

particle elasticity and dynamic contributions from the momentum 15 

transfer associated with the release of elastic energy by the 

breaking of force chains. 

 The theory has been tested against previous numerical 

simulations of steady, homogeneous shearing of inelastic, 

frictional spheres that interact through linear elastic contacts with 20 

stiffnesses that range over eleven orders of magnitude. The theory 

also has the capacity to reproduce the exponentially decaying 

velocity profile in erodible beds and the dependence of the 

velocity on the radius and the angular velocity of the inner 

cylinder in annular shear flows. Although the constitutive 25 

relations have been developed for dry granular flows with inertial 

and frictional-elastic interactions, they are also relevant to the 

description of shear thickening in dense suspensions.50,51 In such 

systems, a rapid increase in viscosity accompanies the jamming 

of frictional particles. For the slow shearing of compliant, 30 

frictional spheres, we anticipate that constitutive relations similar 

to those derived here, with the inertial interactions replaced by 

viscous interactions at volume fractions less than the critical, will 

predict the increases in viscosity seen in the numerical 

simulations and physical experiments.52 35 

 A final remark concerns the dependence of the viscosity – ratio 

of the shear stress to the shear rate – on the granular temperature 

predicted by the theory. When shearing takes place at a volume 

fraction below the critical, Eq. 4 shows that the viscosity is 

proportional to T1/2; that is, it increases with the granular 40 

temperature. This is the dependence of the molecular viscosity on 

the thermodynamic temperature seen in molecular gases. On the 

contrary, when shearing takes place at a volume fraction above 

the critical, Eqs. 13 through 15 show that the viscosity is 

inversely proportional to T1/2; that is, it decreases with the 45 

granular temperature. This is the dependence of the molecular 

viscosity on the thermodynamic temperature seen in liquids. 

Interestingly, statistical physics models for the viscosity in liquids 

introduce a potential energy to predict the decrease of the 

viscosity with the temperature.53 Here, we have obtained a similar 50 

result by means of mechanical arguments. Therefore, at least with 

respect to the dependence of the viscosity on the temperature, the 

critical volume fraction distinguishes between granular gases and 

granular liquids. 
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