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A framework for the power management in a smart campus environment is proposed, which enables the

integration of renewable local energy sources, storage banks and controllable loads, and supports Demand
Response with the electricity grid operators. We describe the system components, including an Energy Man-
agement System for the optimal scheduling of power usage, a telecommunication infrastructure for data ex-
change, and power production/consumption forecast algorithms. We also analyzes relevant use cases and
propose quality metrics for the performance validation of the framework.

1 INTRODUCTION

The incorporation of Smart technologies in build-
ings is considered as the key factor for the achieve-
ment of the objectives of energy efficiency, integra-
tion of Renewable Energy Sources (RESes), and re-
duction in the emissions of pollutants. Nowadays,
the prevalent amount of energy usage is due to build-
ing conditioning and management in urban centres,
rather than to transportation and industrial plants (Ya-
mamoto and Graham, 2009). Therefore, in order to
ensure environmental sustainability and to adhere to
the concept of Nearly Zero Energy Buildings (NZEB)
(Kurnitski et al., 2011), novel infrastructures combin-
ing Smart Grids and Information and Communication
Technologies (ICT) must be designed.

Though several studies on methodologies for op-
timal energy management of smart buildings and mi-
crogrids have appeared and demonstrators for spe-
cific use cases have recently been proposed (Noritake
etal., 2013; Lu et al., 2010; Koss et al., 2012), the de-
sign of a general framework for the energy manage-
ment of a smart campus still needs to be addressed.
Such framework must take into account the multi-
ple entities interacting in the Smart Grid ecosystem
(e.g. Distribution and Transmission System Opera-
tors, utilities, users, and third party services). More-
over, it must provide effective management tools for

the local schedule of the energy usage at the users’
side, supporting the integration of distributed energy
sources (e.g. photovoltaic and wind power plants),
energy storage banks, and various categories of con-
trollable loads (including water/heat pumps; Heating,
Ventilating and Air Conditioning (HVAC) plants; tri-
generation plants; and electric vehicles). Such local
Energy Management System (EMS) must ensure to
the users quality of service guarantees while enabling
Automatic Demand Response (ADR) with variable
energy tariffs and interactions between users and util-
ities/grid operators in case of emergencies. To these
aims, the framework must also include prediction
models for energy production/consumption patterns
and building thermal inertia based on weather fore-
casts and expectations about building occupation, and
a system to collect human feedbacks about the per-
ceived thermal comfort, as well as all the data on en-
ergy consumption and thermal conditions of the con-
trolled spaces. A suitable ICT infrastructure is needed
to support data storage/retrieval and the communica-
tions required by the EMS to coordinate generators,
loads and field sensors/actuators.

In this paper, we propose an energy management
framework for a smart campus that addresses all the
above mentioned issues. However, the proposed solu-
tion can be easily generalized for application in resi-
dential buildings. The framework has been designed



to be implemented in a set of demonstrators, includ-
ing a group of buildings in Politecnico di Milano and
a private house. After providing an overall view of
the related work in Section 2, in Section 4 we first
introduce the general framework concepts, then we
describe the optimization approach implemented by
the Energy Management System and the ICT infras-
tructure for data transmission and management. We
analyze some relevant use cases in Section 3. Finally,
Section 6 concludes the paper.

2 RELATED WORK

The research community has recently investigated
several optimization methodologies for the energy
management of residential, industrial and commercial
scenarios, with real-time or day-ahead approaches.
They are often based on the users’ behavior profil-
ing with the purpose of inferring the main habits and
automatically act on them to reduce energy dissipa-
tion, e.g. by switching off stand-by devices (Nesse
et al., 2014; Nguyen and Aiello, 2013). The main
drawback of the analyzed proposals w.r.t. the col-
lected knowledge, is that data are stored with ad-hoc
solutions that usually do not support data sharing and
access by multiple entities. In the context of “Smart
Office” scenarios, in (Zarkadis et al., 2014) data from
multiple sensors and actuators has been recorded for
6 years in a building of the EPFL campus. The col-
lected data include room temperature, presence, light-
ing level, windows opening, blinds position, electric
lights and heating power; weather data have been col-
lected as well, and includes ambient temperature, so-
lar radiation on a horizontal surface (direct and dif-
fuse components), wind speed and direction and rain
alarm. The main goal of the proposal is to validate
control algorithms for the actuation of solar shadings,
electric lighting and heating equipment. It was shown
that such control algorithms were able to significantly
reduce the energy consumption while maintaining the
same comfort level or even improving it. In (Coun-
sell et al., 2009) the authors describe a case study
about the refurbishment of a 1960’s student accom-
modation. The refurbishment was predicted to pos-
sibly achieve a standard called Code for Sustainable;
building information modeling and visualization are
used for analyzing and comparing different design
solutions. (Bull et al., 2012) presents a proposal to
evaluate the role of Apps as an enabler of behavioral
changes with specific aim of reducing energy con-
sumption in buildings.

Our proposal includes an integrated data reposi-
tory collecting all the relevant information gathered

by different sources and available to be accessed by
different actors.

A mixed integer linear model for the joint op-
timization of gas and electricity bills of a univer-
sity campus building has been presented by Guan et
al. (Guan et al., 2010). The building is equipped
with a controllable combined heat-power system, bat-
tery storage and a photovoltaic plant. The opti-
mizer can run either under assumption of “a priori”
knowledge about future events, or assuming a “sce-
nario tree”,in which multiple possible future produc-
tion/consumption patterns are considered, each one
weighted with its probability of occurrence. This way,
uncertainty about future energy usage is taken into ac-
count. Our approach also uses a linear program, but
our EMS relies on energy production/consumption
forecast models. Moreover, the optimization proce-
dure is repeated multiple times during the schedul-
ing horizon, and decisions are dynamically updated.
Other recent works addressing Smart Office environ-
ments include studies on energy saving strategies for
lightening management based on room occupancy (by
Stojanovic et al. (Stojanovic et al., 2011)) and some
demonstrators deployed in office buildings aimed at
the development of self-sustained distributed energy
systems (Noritake et al., 2013; Lu et al., 2010; Koss
etal., 2012).

For what concerns residential environments,
Bozchalui ef al. (Bozchalui et al., 2012) and Kriett
et al. (Kriett and Salani, 2012) provide optimization
models for the usage of individual electrical appli-
ances and combine multiple objectives such as the
minimization of energy consumption, energy costs,
carbon emissions, and peak load. Our proposed EMS
also optimizes different objective functions, including
energy costs, the comfort of the buildings’ occupants,
and the fulfillment of ADR requests from the Distri-
bution System Operator (DSO).

3 USAGE SCENARIOS

The interaction between the smart campus and
the grid comprises three major usage scenarios: the
market-driven, the demand response, and the emer-
gency scenarios. In the market driven scenario, the
EMS can decide to buy (or sell) any amount of power
subject only to the contractual limits. Depending
on the contract, the campus can either have pre-
determined flat or time-varying tariffs. These, in turn,
can be known in advance for the whole optimization
horizon, either because specified in the contract or be-
cause they depend on the day-ahead market. Alterna-
tively, the tariffs can be only partly known because



they depend on the real-time energy market.

In the demand response scenario, the DSO period-
ically issues Demand Response Events (DRE). Each
DRE is targeted towards one or more Point of Deliv-
ery (POD), i.e. an electricity subscriber, and is char-
acterized by a manifest specifying: an upper limit to
the active power that the subscriber can drain from
the grid, an upper limit to the active power that the
subscriber can inject into the grid, an amount of re-
active power that the customer should inject into the
grid. The DRE is also associated to an initial time,
a final time, and an economic incentive. The DRE is
issued 1.5 hours to one day in advance with respect to
the start time, and the EMS is not required to explic-
itly accept or refuse the DRE offer, but is expected to
take the offer into account when optimizing the cam-
pus behavior. At the end of the DRE, the DSO checks
what PODs complied to the manifest and subtracts the
incentive from the subscriber’s bill.

In the emergency scenario, the DSO takes full
control of the subscriber’s load. The DSO can either
detach the subscriber, limit the power generation, or
change the amount of reactive power.

It is worth noting that the EMS has a much finer
control of the campus behavior than the DSO during
the emergency scenario, thus DREs should be seen as
a way to avoid emergency situations while sacrificing
energy efficiency as little as possible.

4 THE ENERGY MANAGEMENT
FRAMEWORK

4.1 System Overview

The energy management framework involves
Distribution and Transmission System Operators
(DSO/TSO), which are responsible for the electricity
dispatchment; the retail users (equipped with local
generation and storage capabilities); the energy
utility, which sells electricity to the retail users; the
energy market (both on real-time or day-ahead basis);
and third party services (e.g. a weather forecast
provider).

With reference to Figure 1, the framework in-
cludes the following domains:

e Demand Side Management Domain: it consists
of the energy dispatchment and management in-
frastructure of the DSO and its interfaces with the
TSO.

e Back-End Domain: it comprises the EMS for the
energy usage schedule, a data repository for infor-
mation storage/retrieval, and multiple interfaces

for the collection of input data provided by exter-
nal entities. Such data include weather forecasts,
historical data about the usage patterns of electric
vehicles, historical/current energy tariffs, predic-
tions about the future energy production of local
energy sources and about the energy consumption
due to uncontrollable loads.

e Front-end Domain: it includes field sen-
sors/actuators and communication gateways
which convert the scheduling outputs provided
by the EMS into commands to control the field
devices.

e Application Domain: it comprises all the soft-
ware applications that support interactions be-
tween users and the energy management system,
including interfaces for the setting of users’ pref-
erences about the management of their electrical
appliances, for the collection of users’ feedbacks
about their perceived comfort level, and for data
monitoring.

4.2 The ICT Infrastructure

The ICT infrastructure has been designed by priori-
tizing the following goals:

1. The field devices must work even if there is no
input from the EMS.

2. The infrastructure must provide sufficient flexibil-
ity to accommodate multiple adapters for a wide
variety of field devices.

3. The frequency data is collected from the field de-
vices depends on the specific field device and is
independent from the EMS decisions.

4. The EMS makes its decisions on the basis of
snapshots of the state at a given time and of the
available forecasts of the future energy produc-
tion/consumption due to generators/loads.

5. The EMS provides a schedule of all the power
consumption set points of the various field devices
over a given time horizon. The field actuators map
these set points into commands to be issued to the
devices.

6. The running frequency of the EMS and the opti-
mization horizon can change over time.

On the basis of the stated goals, the ICT infras-
tructure leverages the two main functional elements in
the back-end: the data repository and the EMS. The
data repository collects data from the field gateways,
which read the field sensors, from the forecast mod-
els, and from the EMS, which logs its decisions. Such
data is read by the forecast models, by the EMS, and
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Figure 1: The framework architecture

by the various Business Intelligence and data presen-
tation applications.

The Energy Management System is expected to
run at every time slot, but it can be configured to run
less frequently. The EMS collects data from the data
repository and DRE manifests from the DSO and exe-
cutes an optimization algorithm, which schedules the
power demand by passive loads, such as HVACs and
EVs, and the storage of the power generated by RE-
Ses.

In general, the EMS’s decisions are based on pre-
dictions and the field devices cannot always comply
to the EMS decisions. For example, the production
from PV units or the demand by EVs can be less than
expected. Therefore, the EMS pushes the schedule
for each field device to a controller that transforms
the chosen set points into constraints to the maximum
power that the device can drain or inject into the sys-
tem.

Prediction errors are dealt with in two ways. Small
errors are managed by running the EMS frequently
and by using up-to-date data at each iteration. This
way, the EMS can continuously update its decisions
to cope with changed conditions and avoid accumu-
lating large errors, thus limiting inefficiencies. Large
errors, such as a completely wrong weather forecast,
are dealt by each controller, which can lift the EMS
constraints if the controlled field device cannot pro-
vide a minimum service. This happens, for exam-

ple, with the HVACs. In case the allocated power
would result in a too low (or too high) temperature
and, consequently, in a too high discomfort, the con-
troller can remove the constraint and make the system
work freely.

The back-end domain includes the data repository,
the EMS, and all the forecast models. The data repos-
itory can be either in the campus data center or at
any laaS or Paas provider. All the components of
the back-end communicate with external data sources,
such as the DSO or the weather forecast service, with
the data presentation applications via the Internet and
with the field front-end by means of the campus LAN.

The gateways and the controllers are physical de-
vices equipped with the networking interfaces re-
quired to communicate with the sensors and actuators
and with the back-end. In addition, they are equipped
with sufficient computational capabilities to perform
some predefined automated control operations, such
as lifting power constraints if some target values of
the sensors are not met. Generally, controllers also
behave as gateways.

4.3 The data repository

As discussed, the proposed framework includes a data
repository collecting all the relevant information ex-
ploited by the different actors, i.e., the EMS, the other
controllers (thermal, EV charger totems) and data an-
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Figure 2: The data repository

alytics/KPI evaluators. The data stored in the repos-
itory, depicted in Figure 2, consist of the following
pieces of information:

e clectricity market prices;

e data collected from sensors monitoring the build-
ing thermal conditions, energy consumption
(within the buildings and from the EV chargers)
and the users’ feedback on their thermal comfort;
the data are processed to be cleaned, integrated
and summarized, in order to be exploited by the
EMS and the other controller. Such data consti-
tute the actual status of the system, and incremen-
tally contributes to the definition of the historical
data, used by the EMS to make forecasts on future
energy requests/thermal conditions;

e weather forecasts to enable the estimation of en-
ergy production from photovoltaic sources;

e buildings models and templates, actuators and
sensors technical features and space occupancy
patterns.

In line with the definition of a flexible frame-
work, which should fit various application environ-
ments possibly characterized by different peculiarities
that might affect the overall EMS strategy, the archi-
tecture of the data repository has been organized in
two layers.

At the bottom layer, which collects data from
the field, sensors organized in wired/wireless sensor

networks have been deployed to continuously mon-
itor the smart campus spaces, the EV recharge sta-
tions and the energy production sensors. Different
technologies have been adopted (e.g. Zigbee and Z-
Wave), exploiting existing solutions and deploying
new ones, thus integrating an ecosystem of monitor-
ing solutions. Gateways gather data from field sen-
sors and transmit them to the central data repository; a
polling-based acquisition approach has been adopted
to efficiently manage the data acquisition given the
high number of sensors. Moreover, the users’ thermal
comfort is collected by means of a mobile app to have
a feedback on the perceived conditions of the spaces
being controlled by the EMS optimization strategies.
All this data needs to be be cleaned and summarized
before being stored into a relational database, for fur-
ther exploitation. Therefore, a NoSQL datastore solu-
tion has been adopted, suitable for storing wide data
sources constituted by semi-structured heterogeneous
data. We opted for the NoSQL-based Cassandra (Lak-
shman and Malik, 2010) distributed database man-
agement system, which is designed to handle large
amounts of data providing high availability and fault
tolerance. Within the framework, we define a set of
distributed algorithms to perform data cleaning and
summarization. Moreover, the system supplies on-
line data analysis using an sql-like query language and
supports batch processing over its distributed file sys-
tem. The Cassandra File System also enables the us-
age of powerful Big Data frameworks, useful to carry



out data analytics and KPI evaluations to improve the
EMS mission.

Once the data have been summarized, they are
pushed into a Postgresql database, where they re-
main available to be used by the controllers and the
EMS. This relational database is the second layer
of the data repository architecture and stores all the
1) structured static data, including buildings templates
and models, actuators and sensors technical features
and occupancy patterns, ii) structured data related to
weather forecasts, electricity prices, DSO requests,
and iii) semi-structured real-time data, coming from
the lower layer.

Altogether, the main purpose of the data reposi-
tory is to collect data coming from the whole demon-
strator and to supply each controller with the summa-
rized information it needs, offering a comprehensive
view of the overall system. The two-layer architecture
allows for gathering both raw data (to be processed in
parallel) and summarized data (that should be more
reliable) thus optimizing the data analytics and KPI
extraction processes, to better support the EMS.

4.4 The EMS Optimization Model

The EMS optimization algorithm must allocate the
power demand of users over a scheduling horizon
(e.g. 24 hours) divided into a set X of time slots
of fixed duration (e.g. 15 minutes). Users have two
different kinds of loads: fixed and adjustable. Fixed
loads are non-manageable appliances (e.g. lighting)
and are characterized, in each time slot k € X, by
their overall power consumption p,f . Adjustable loads
are manageable appliances whose consumption can
be modified by the EMS. In our framework, we con-
sider two different sets of adjustable loads: electric
vehicles and thermal units. In the first case, the EMS
must decide the charging schedule of a set 4V of elec-
tric vehicles. Each vehicle v, powered with a bat-
tery of capacity CEY, arrives at the charging station
at time ALY and departs at time DEV. The State Of

Charge (SOC) of its battery at the arrival time is SEV

. . oEViarget
and its charge target is S, 48 Moreover, each ve-

hicle is characterized by its maximum and minimum
charge rates, respectively - """ and t="""" and by
its charge efficiency n£Y. In case of the thermal units,
which are used to heat and cool buildings and are rep-
resented by the set U, the EMS must decide their op-
erating plan. In this case, each unit u is characterized
by a set of possible operating plans 7, each one char-
acterized, in each time slot k € X, by a known power
consumption p’ and thermal comfort g’,,.

In our framework, local PhotoVoltaic (PV) plants
are used to generate electric energy that can be either

used locally or injected into the grid. PV sources are
characterized by their total amount of power which
is predicted to be generated in each time slot k € K
prY. In order to optimize the usage of PV plants (e.g.
minimize the power exchange with the grid, increase
the percentage of energy used from PV generation) a
storage bank is used. This bank is characterized by a
set of parameters: its capacity CFV, its state of charge
at the beginning of the time horizon & SV, its max-
imum/minimum charge/discharge rates, respectively
,CPV,max’ ,CPV,min’ ﬂPV,max and 6PV,min and, ﬁna]ly, its
charge/discharge efficiency n*V.

The proposed framework supports demand re-
sponse services. Specifically, in case of system emer-
gencies or in response to supply conditions, the grid
operator may request to reduce/increase the power de-
mand and supply of users, providing an economic in-
centive in case users meet such requests. In order to
enable demand response services, the operator must
specify:

o the set of time slots where it sets an upper bound
on the power demand XV C X, the upper limit
of the power demand TUVI;U and the reward paid to

. .. . U .
incentivize users to meet its request r;” ;

e the set of time slots where it sets a lower bound
on the power demand K¥L C K, the lower limit
of the power demand ni’L and the reward paid to

. . . . L
incentivize users to meet 1ts request ri ;

o the set of time slots where it sets an upper bound
on the power supplied to the grid K%Y C X, the
upper limit of the power supply ni’u and the re-

ward paid to incentivize users to meet its request

z,U.
Vk 5

o the set of time slots where it sets a lower bound
on the power supplied to the grid K> C X, the
lower limit of the power supply ni’L and the re-

ward paid to incentivize users to meet its request
z,L
r k-

Whenever a new time slot starts, the EMS re-
ceives the energy production/consumption forecasts
computed by the prediction modules of the frame-
work, the amounts of energy generated and consumed
in the previous slot, the current state of charge of the
storage bank and of the batteries of the electric ve-
hicles plugged for recharge. The EMS then runs a
Mixed Integer Linear Programming (MILP) model to
schedule the energy usage plan over the horizon X.
The optimization model is defined as follows.



Constraints description

Thermal units In our system, the model has to de-
cide the optimal operating plan of the thermal units.
To this end, a set of binary variables, B, is defined
for each unit u € U and each possible planz € 7: B,
is equal to 1 if plan ¢ is chosen for the thermal unit
u and 0 otherwise. Such variables are subject to the
following constraints:

Y Bu=1 Vueu o))
teT
which guarantee that only one operating plan is cho-
sen.

EV charging station  In order to model the charg-
ing station of electric vehicles, three sets of variables
are introduced. Firstly, a set of binary variables, ",
is defined for each time slot k € X: wfkv isequal to 1
if the station is charging the storage system of the EV
v at time k and O otherwise. The charge rates must be
decided by the model as well. They are represented
by the continuous non-negative variables cfkv which
are bounded, for each k € X, according to the follow-
ing constraints:

TfVl11ti1mEV < LEV Yve VY k: AEV <k< DEV

EV,
AV <ol e Yk ALY <k <DEV (2

EV 0

BV = Ve V,k: k<AL | k> DEV

The state of charge of vehicles is represented by the
continuous non-negative variables svk which are de-
fined for each EV v and each time slot k. The SOC of
an EV in a time slot depends on the SOC of the same
EV in the previous time slot and on the charge rates,
according to the following constraints:

SEV = SEV Vel e v k=AY
3)

sEY = E(‘,i 1)+T]VV EV WweVk:k>ALY

The state of charge of the battery of each EV is
bounded according to the following constraints:

EY <CEV wew ke x 4

Finally, the SOC of the battery of each EV must be
greater than or equal to the SOC target by the end of
the charging window:

sy > spvreset gy e 9k =Dy )

Photovoltaic panels and storage bank  Two set
of binary variables, (x)f V and le) V are introduced to
model the storage bank of the PV: " is equal to 1
if the battery is charging at time k and O otherwise,
while (Sf V' is equal to 1 if the battery is discharging at
time k and O otherwise. Such variables are subject to
the following constraints:

VotV <1 Vkex (6)
which guarantee that in every time slot, the storage
bank can be in only one of three possible modes:
charge, discharge and off.

The charge and discharge rates must be decided by
the model as well. They are represented by the con-
tinuous non-negative variables ck and d,f V. Such
variables are bounded according to the following con-
straints:

PVmin . (ofv < Cfv < gPVimax ., (va Vke X

(N

ﬁPV,min . GEV < d]I;V < 19PV,ma.’c .

oy’ Vke X
A continuous non-negative variable st" is defined for
each time slot k, which represents the state of charge
of the storage bank at time k. The SOC of a stor-
age system in a time slot depends on the SOC of the
same storage bank in the previous time slot and on the
charge and discharge rates, according to the following
constraints:

V=SV 4PVl — n%d,fv WeV k=1
®)

PV_ PV +nPV PV _

sy ardl’ ke Kik>1

The state of charge of the battery is bounded accord-
ing to the following constraints:

sV <c? vke x )

Finally, the following balancing constraints have to be
verified:

i +dt =Y +ofV (10)

where ok is the overall net output power of the sys-
tem composed of the photovoltaic panel and the stor-
age bank.

Energy Balancing The following constraints force
the balance between the input and output electric
power of the system in each time slot:

oy =u+ Y Y Bupbi+rf+ Y & vk (b

ucUreT vev



where y; and z; are, respectively, the power demand
and supply of users at time k. The left hand side of
constraints (11) represents the input power (power de-
mand of users and overall net output power of the PV
and storage bank system), while the right hand side
is the sum of the output power (power injected into
the grid and power consumed by thermal units, fixed
loads and electric vehicles).
The grid operator may send emergency signals to the
EMS to request to increase/decrease its power de-
mand/supply. To this end, we define the binary vari-
ables E,%U (&%’L) which are equal to 1 if the power de-
mand reduction (increase) request at time k is met and
0 otherwise. Similarly, in reference to the power in-
jected into the grid, we introduce the binary variables
i’U (&Z’L) which are equal to 1 if the power supply
reduction (increase) request at time k is met and O
otherwise. The following constraints guarantee that
if the power demand at time k is less (greater) than
ﬂ:Z’U (ﬂ:z’L), then the energy reduction (increase) re-
quirement is met and the corresponding variable ﬁiU

(&i"[‘) is set to 1. Similar constraints are also defined
in reference to the energy injected into the grid.

e <mVEY +xPP(1-gY) ke U (12

e >mtEr vke k0 (13)

a<mlel oV -gY) vke x*U (14
g > e vke x°F (15)

where 7" is the mandatory power limit which must
be always fulfilled.

The grid operator may incentivize users to meet its
requests via economic rewards earned in the case they
fulfill its bounds on the power demand and supply.
The overall reward, r, is defined as follows:

r= Z r[}{’,U(\;i,U_F Z FZ'L _]\{x.,L_‘_

kexU ke KL
z,Ugz,U z,Lez,L (16)
+ ) T+ Y g
ke K=V ke K=k

where rz’U, ri’l“, r,i"U and r;:’l‘ represent the re-
wards paid by the retailer to incentivize users to meet
its requests on the power demand and supply profiles.

Objective function

The objective of the EMS is to decide the schedule
of electric resources over the horizon X with the goal
of minimizing the difference between the total cost
of users and their (thermal) comfort. To this end, the
objective function is modelled as follows:

min o Y (eEBy —eFlz) —r) — Yy y Burqlyy

keX ueUreT ke X
an

where ¢£8 and ef! are, respectively, the cost of the

energy absorbed from and injected into the grid at
time k, and o is a weight used to control the trade-off
between costs and comfort. The first objective of (17)
represents the total cost incurred by the system which
is obtained as the difference between the daily bill
and the incentives, while the second one represents
the thermal comfort of users.

S FRAMEWORK VALIDATION

The proposed framework will make it possible to
gain insight into several open problems in the context
of Demand Response.

In the market-driven and in the demand response
scenario, the optimizer tries to strike a balance among
heterogeneous needs such as the thermal comfort
level, the availability rate of electric vehicles, and the
availability of power from renewable sources. Thus,
one of the goals of the proposed framework is cut
the Smart Campus energy costs without penalizing
the comfort of the various campus users. The actual
trade-off depends on empirical constants that try to
model the cost of a decrease in user comfort, the most
important of which is parameter o in (17). A too
high cost of discomfort results in a limited freedom
of choice and in limited savings. On the other hand a
too low cost, results in unsatisfied users. We plan to
make an extensive measurement campaign to assess
the impact of the cost of discomfort on the resulting
savings.

In the Demand-Response scenario, the optimizer
takes into account the availability of the DSO incen-
tive and modify its behavior accordingly. Since the
framework makes it possible to schedule a large num-
ber of devices and also to exploit various ways to ac-
cumulate thermal and electrical energy, we expect that
in many situations the EMS will be able to comply to
the DSO requests without jeopardizing the user sat-
isfaction. In this way, the DSO obtains a change in



electric usage with no need of emergency actions. On
the other hand, if the incentive is too low, the cam-
pus will not change its consumption pattern, possibly
resulting in thecnical problems and in emergency ac-
tions by the DSO. If the incentive is too high, the EMS
might lower the campus user comfort level in order to
obtain the incentive. This case could be undesirable
for the campus users, who may be more willing to
take a risk of an unlikely emergency action rather than
experiment a low discomfort for a long time. We plan
to study the impact of different incentives on the dis-
comfort and on the willingness to experiment discom-
fort in exchange for a lower probability of emergency
actions. The goal is to provide data to the DSO re-
garding the effectiveness of a DSO-driven incentive-
based policy to increase system availability.

6 CONCLUSIONS

This paper proposes an energy management
framework for a smart campus including local re-
newable energy sources, a storage bank, and sev-
eral controllable loads. The framework incorporates
an optimizer which schedules the usage of electrical
loads, of various predictors for the energy produc-
tion/consumption patterns, and of a repository and an
ICT infrastructure for data collection. The paper dis-
cusses relevant use cases and proposes quality metrics
for the performance evaluation of the proposed frame-
work.
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