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I. Introduction

Circuit simulation is at the heart of much of electri-
cal engineering today. Both in academia as well as 
in industry, whenever one has to design a circuit 

to serve some specific function, the use of a circuit simu-
lator is indispensable. However, the sense that the 
term 
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“circuit” carries has changed and is still changing with 
the progress of technology. Thirty years back, a circuit 
would have meant a collection of passive and active com-
ponents connected in series or in parallel. Then switching 
circuits came into use which can toggle between two or 
more different configurations depending on the state of 
the switches. 

For some time, there were analog circuits and digital 
circuits, treated separately. But the trend was towards 
very large scale integration as seen in extremely complex 
System On Chips (SOCs) or CPUs comprising billions of 
MOS transistors [1]–[4]. Presently the trend is towards 
putting the digital and analog domains together to form 
“mixed signal” circuits. Naturally, there is a need to 
develop circuit simulators that can take into account the 
complexity that such systems offer. 

Typical examples of very complex circuits are SOCs. 
They are composed of a number of heterogeneous parts 
that, in the “traditional” design paradigm, would be built 
and assembled using different production technologies 
and on different physical “objects”. SOCs are examples 
of the “ultimate” evolution of Moore’s law, where the 
largest number of different components, hierarchically 
organized as heterogeneous subsystems are “crammed” 
on the same circuit [2]. Interconnection of all these het-
erogeneous parts requires special techniques [5]–[7], and 
efficient design and testing methodologies must be avail-
able [8]–[11]. SOCs are very complex, and very expensive 
to design, test and produce [12], [13]. 

As the intricacy of the design increases, simulation 
tools become evermore important: high complexity cor-
responds to high design and implementation costs and a 
“faulty” design can have severe economic consequences; 
simulators are the only tools that can help designers in 
the assessment of the functional aspects of their circuits 
[14]–[16]. 

Simulation has two different important roles in any 
electronic design flow; it is a direct front-end helper tool, 
used to verify design assumptions and new “unexplored” 
ideas; at the same time it is a powerful and indispensable 
back-end tool used to verify post design, or even post 
layout, system operation. 

Complex systems are usually designed as a hierarchy 
of interconnected less complex subsystems and each 
subsystem is often designed using different tools cor-
responding to different perspectives and, ultimately, to 
different levels of abstraction and description languages. 
These are used to describe the same entity in different 
contexts or different entities in the same context. Each of 

these languages (SPICE-LIKE, VERILOG-A, DSPF, VERILOG, 
VHDL, SYSTEM-C) has its standard set of simulation tools 
that allows a wide range of analysis methods, with each 
analysis providing the answer to a specific design prob-
lem. Interconnections of different subsystems can still be 
simulated, but only few analyses are “transversally” avail-
able since the representation of each subsystem is based 
on different theoretical paradigms and many situations 
are still not completely or efficiently covered by current 
simulation tools. 

In general, all the aforementioned languages have a one 
to one correspondence with different modelling philoso-
phies, yielding sufficiently complex models to describe all 
features that need to be checked, but, at the same time, 
sufficiently simple to be simulated in a reasonable design 
cycle time. These languages basically rely on the funda-
mental lumped model description. 

A. Geometry vs. Topology in Simulation:
The Lumped Model Description
Traditional circuit theory textbooks define as circuit a
region of space where electromagnetic phenomena can be
conveniently described using a lumped model approxima-
tion. Lumped models are based on the idea of considering
these regions sufficiently small, with respect to charac-
teristic wavelengths, that it is possible to approximate
propagation delays as “very small” and thus negligible if
compared to the other timing characteristics of the model.

The circuit is then partitioned in terms of the compo-
nents and their interconnections, and single components 
are characterized once and for all at their ports and for 
each silicon technology both by direct measurement in 
specific test circuits and by simulation using field solv-
ers (i.e., Maxwell equations). The lumped circuit model 
paves the way to circuit theory and to “spice-like” circuit 
simulation, thus solving the problem of understanding 
complex electromagnetic physical systems that would be 
too complex or inconvenient to solve using Maxwell equa-
tions [14], [17]–[22]. 

Even if the lumped model allows a much simpler 
description of a circuit, large ones are still character-
ized by an enormous number of variables and, corre-
spondingly, of Ordinary Differential Equations (ODEs) or, 
more in general, Differential Algebraic Equations (DAEs) 
[23]. This is even more relevant if parasitic elements are 
considered. These are parts of the circuit that are not 
introduced by the designer but that end up being pres-
ent because of the structure and geometry of the circuit 
itself once it is implemented as a real physical entity. The 



effect of these parasitic components can in some cases 
be crucial so that their inclusion in the circuit description 
becomes mandatory. 

B. Simulation of Different Functions
and Design Strategies
Lumped models greatly simplify our problem but still
leave a large number of equations to solve. Models even
simpler than “analog” lumped circuits are thus needed.
This is possible by adopting a more high-level functional
based approach. For example, some parts can be mod-
elled in a “digital” way, with only two states represented
as 0 and 1 (sometimes adding the pseudo states “X”,
unknown, and “Z” high impedance, if needed) where
each state is usually mapped to different voltage values
and the dynamics ruling their changes is not of interest.
With this restriction, simulation can be greatly simpli-
fied: each change in the value of a digital signal can be
seen as an event that occurs in zero time in the simplest
case, or in a finite amount of time if a more detailed
model is needed [24], [25]. The digital subsystems are
usually the most complex in terms of number of compo-
nents and topology; however, thanks to this high level
modeling action, the whole circuit is partitioned in dis-
tinct areas governed by different modelling paradigms:
digital variables do not admit time derivatives and their
variations can be seen as “events” that are caused and
have effects on the analog part of the circuit that is mod-
eled by DAEs [24], [26], [27].

Further simplifications are possible: if a detailed knowl-
edge of the inner workings of some parts of the circuit is not 
needed or is not available, it is common to describe these 
subunits in a functional way using a behavioral description. 
This is typical, for example, when there are parts that have 
not yet been designed, but just defined in a general way, 
so that only their final behavior is known. Simulation of 
these parts requires yet another simulator, that can also be 
event driven. Analog and digital subsystems can be both 
described using a behavioral language, what is important 
for the designer is that all these can be simulated along 
with all the other subsystems in a so called “mixed mode” 
or Analog Mixed Signal (AMS) simulation. 

C. Whole System Simulation
A complete heterogeneous circuit can thus be modelled 
and described using three different methods: analog, digi-
tal and behavioral. What every designer wants is the pos-
sibility to intermingle these different descriptions in any 
possible way, and to simulate the resulting model with 
the desired level of precision and in a reasonable amount 
of time. Efficient AMS simulation [28] is one of the main 
goals of companies and researchers working at the design 
of Electronic Design Automation (EDA) tools [29].

The simulation tools that a designer would like to have 
ready for use in a AMS project, should be capable of per-
forming a basic set of analysis: 

■ search for the operating (i.e. equilibrium) points of
the circuit;

■ computation of the transient time domain behavior
of the system starting from any initial condition.

These two basic analyses, respectively known as DC (or 
in some cases OP) and TRAN are available in any AMS 
capable simulator and are simple extensions of their coun-
terparts in the fully analog domain. In the TRAN analysis 
switching can be simply taken care of by appropriately 
defining the termination conditions in the ODE solver, and 
by making the initial condition of each phase of the evolu-
tion equal to the final condition of the preceding phase; 

These first analyses are not sufficient, there are other 
simulator capabilities in the wish list of many designers: 

■ search for the steady state behavior in the time
domain, i.e., locate the periodic orbits and their sta-
bility. This is done in the analog domain by using
what is known as the “shooting method”. For AMS
systems, special techniques have to be adopted,
which are outlined in Sections IV-A, IV-B and IV-C;

■ computing the frequency response of the system
and the relevant transfer functions. This can be
done by the periodic small signal analysis, that can
be extended to AMS as outlined in Section IV-D;

■ computation of periodic noise and phase noise,
extension of these methods to AMS circuits is out-
lined in Section IV-E and IV-F respectively;

■ in case the orbit of the system turns out to be ape-
riodic, one would like to calculate the Lyapunov
exponents which quantify the rate of divergence
of arbitrarily close trajectories. This is briefly dis-
cussed in Section IV-G.

This second set comprises analysis methods that are 
used in the fully analog domain, are needed in many dif-
ferent applications, from RF to DC/DC power supplies, 
and are still lacking [30] in the AMS domain. 

Among these, steady state methods are, possibly, 
the most important (see e.g., [17], [31] for a brief but 
nonetheless technical overview of several different algo-
rithms),1 there is extensive literature on these methods, 
and many extensions and generalizations have been pro-
posed in the last 20 years. See e.g., [23], [32]–[35], for the 
time domain methods, such as Shooting (SH) and derived 
algorithms, or, in the frequency domain, harmonic bal-
ance [18], [36]. Noise analysis and jitter computation 

1Several companies selling circuit simulators such as MENTOR GRAPHICS, 
CADENCE, SYNOPSYS, ORORA DESIGN, SOLIDO DESIGN, BERKELEY DE-
SIGN have tackled the problem of fast and efficient AMS simulation of 
large circuits and published white papers on this topic. However, to the 
authors knowledge, they did not consider steady state algorithms.



methods are also very important and many different 
algorithms have been proposed [37]. 

All these steady state and noise/jitter analysis methods 
were born and specifically designed for circuits described 
by strictly analog models. Extension to systems described 
also by digital parts has been done only in part and often 
resorting to “workarounds” such as macromodels. In 
other words: no push-button steady state and noise/jitter 
analysis methods seem to be currently available for circuits 
described by analog, digital and behavioral parts. 

The main reason for this is that most algorithms used 
to perform steady state and noise simulations require 

continuity of the system equations and this is intrinsically 
in contradiction with the AMS model. 

In the last decade several researchers have investigated 
this problem in the field of circuit analysis, among the 
most relevant works are those by Hiskens (see e.g. [38], 
[39]) and, more recently, by Banerjee (see e.g. [40]–[42].) 
These authors have focused most of their attention to 
power conversion circuits such as buck and boost DC-DC 
converters, and provide solid theoretical foundations for 
steady state and noise analysis of this class of circuits. 

What was still lacking was a more general approach 
capable of unifying in a direct and straightforward way 

The Netlist of the Oscillator

parameters VDD=1
verilog_include comb.v
r1 x gnd resistor r=10
c1 x gnd capacitor c=1
l1 x gnd inductor l=1
sw x vdd y gnd SW
+ noisetype=0
vr vdd gnd vsource vdc=VDD
A2d1 x gnd a2d dignet="cnt.X"
+ vt=0
D2a1 y gnd d2a dignet="cnt.Y"
+ vl=0 vh=VDD
model SW vswitch ron=5 roff=100M
+ von=0.6*VDD voff=0.4*VDD

The VERILOG
 Description of the Digital Part of the Circuit

module cnt;
reg X, Y;
reg [1:0] Count;
initial begin

Count = 0;
Y = 1;

end
always @(posedge X) begin

Count[0] = ! Count[0];
Count[1] = (!Count[0]) Count[1];

end
always @(Count) begin

if( Count[0] && Count[1] )
Y = 1;

else
Y = 0;

end
endmodule

zcd
cnt
2bit

Digital

R2

R3R1

Eo

x1
x2

L

C SW
+
–

Figure 1.  The schematic of a circuit with a digital Finite State Machine (FSM) part. A zero crossing detector (zcd) is used as 
input to a 2 bit digital counter (cnt), that closes switch S  when both its bits are high. ,C 1F=  ,L 1H=  ,R 101 X=  ,R 100 M2 X=  

,R 53 X=  .E 1Vo =

Complex systems are usually designed as a hierarchy of interconnected  
less complex subsystems and each subsystem is often designed using different 
tools corresponding to different perspectives and, ultimately, to different  levels 

of abstraction and description languages.



any kind of lumped model circuit, including power con-
version ones, into a single homogeneous class. 

A framework for the extension of steady state and noise 
algorithms to generic non-continuous circuits and sys-
tems was proposed in the last three years by the authors 
[43]–[53] and has been successfully implemented in the 
PAN academic circuit simulator. The circuit simulator PAN 
thus represents the first circuit simulator that includes all 
the classical “spice-like” features augmented with power-
ful extensions to mixed-mode circuit simulation. 

II. A Motivating Example
The system shown in Fig. 1 is a very simple circuit 

which can be modeled using a few simple equations. 
Since it has a rather evident distinction between “what is 
analog” and “what is digital”, it is well suited to introduce 
AMS simulation. Despite its simplicity the circuit is non-
linear and switching:

■ the energy in a linear LC  tank slowly decays
through resistor ;R1

■ a zero crossing detector (zcd) is used to reveal sign
changes (from negative to positive) of the state
variable ;x1

■ a 2 bit counter (cnt) is triggered by zcd;
■ the output of the 2-bit counter feeds a logical AND

gate;
■ when the output of the AND gate is high, switch S

is connected to ,R3  whose resistance is very low;
■ when the output of the AND gate is low, S  is con-

nected to ,R2  whose resistance is high.
A switching connection is present, so that when E0  is 

connected to R3,  the energy lost by the LC tank is restored; 
this happens, thanks to the counter and the AND gate, once 
every four consecutive zero crossings of the x1  voltage. 

This circuit is an (AMS) oscillator, and its steady state 
behavior will be shown in Sec. IV. Moreover, using the mod-
elling framework that is introduced in the next Section, this 
AMS circuit will be simulated as if it were fully analog. 

The zero crossing detector, the 2 bit counter and the 
AND gate constitute the digital part of the circuit that can be 
described using the VERILOG language. This part interacts 
with the analog one, described, in the PAN simulation envi-
ronment, using a “spice-like” netlist. Even though the circuit 
is switching, the designer does not have to be even aware of 
this, and is only required to model his/her circuit through 
the usual well known formal languages. Even if the extended 
analysis heavily relies on the non-trivial formalism needed 

to describe switching dynamical systems, the designer can 
be, in principle, completely unconcerned with it. 

III. Modelling AMS Circuits as Hybrid Systems
A circuit appearing as an interconnection of analog and 
digital/behavioral parts can be schematically represented 
as in Fig. 2. It is assumed that the state variables corre-
sponding to the analog part are continuous in time, while 
variables of the digital/behavioral part are quantized and 
are discontinuous in time. In most practical cases the 
time quanta are given by the time period between edges 
of a clock signal.

Each part can be described by appropriate dynamical 
equations. The natural way to represent the analog part 
is using a set of Differential Algebraic Equations (DAEs), 
which derives directly from the Modified Nodal Analysis 
(MNA) method employed in most circuit simulators [54]. 
These are obtained in the form 

( , , , , )
( , , , , ) ,
x f x y t w v
g x y t w v 0  

a a

a a

=

=

o) (1)

where x  are the state variables (usually the voltages across 
capacitors and the currents through inductors), y  are “non-
dynamical” variables, t  is time and ,w va a  are variables 
coming from the digital/behavioral part. The algebraic 
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Figure 2.  The generic architecture of an AMS circuit. The 
time variable t  is assumed, at least in principle, to be avail-
able at both sides of the circuit. In particular, in the digital 
part, both a clock signal td  and the continuous variable t  are 
available. Clock-time can trigger sequential events and the 
continuous variable can be used to store the value of t  at 
specific events if one is interested, for instance, in producing 
delayed digital outputs.

What was still lacking was a more general approach capable of unifying in a direct and 
straightforward way any kind of lumped model circuit, including power conversion ones, 

into a single homogeneous class.



function g  represents a set of constraints that must be ful-
filled along the dynamical evolution of the system. 

A natural way to represent the digital/behavioral part 
is derived from event driven simulation environments. It 
is, in a sense, a mirror image of the DAE describing the 
analog part: dynamical variables correspond to those 
that, in the digital part, describe the sequential part of the 
system, while algebraic ones correspond to variables in 
the combinatorial parts of the circuit. This is equivalent 
to writing a discrete map (·)s  whose variables are con-
strained by expression (·):c

, , , ,

, , , ,

w s w v t x y

c w v t x y 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n n n
d
n

d
n

n n n
d
n

d
n

1

1 1 1 1 1

=

=

+

+ + + + +`
` j

j* 	 (2)

where w( )n  are the variables of the sequential parts of the 
circuits, i.e., the “registers” of the digital system, evalu-
ated at ,t t( )n=  v( )n  the purely combinatorial variables, 
corresponding to the “wires”, and ,x( )

d
n  y( )

d
n  are the vari-

ables coming from the analog part and preconditioned by 
the a d2n  block. 

Obviously, all variables in Eq. (1) and Eq. (2) must have 
consistent initial conditions. Moreover, the analog to digi-
tal and digital to analog mappings must be well defined 
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The a d2n  and d a2n  mapping functions (see also Fig. 2) 
behave as (pseudo) analog-to-digital and (pseudo) digi-
tal-to-analog converters. 

Digital variables act on the analog part of the circuit 
as external parameters that can undergo “instantaneous” 
changes of value. These parameter variations are equiva-
lent to instantaneous changes of the vector field (·)f  and 
algebraic part (·);g  but changes of these parameters, i.e., 
digital variables w  and ,v  can be caused, in general, by 
changes of the analog variables x  and .y  The effects of the 
analog to digital interaction can thus be seen, from the ana-
log side, as equivalent to the jump phenomena described 
by hybrid systems. Discontinuities can occur on all vari-
ables except ,x  which are the electrical state variables 
that are assumed to be always continuous. This situation 
is depicted in Fig. 3 where ( , , , , )h x y t w v 0=  is the equa-
tion of a “surface” that may change with time and repre-
sents the boundary of a discontinuity in the circuit. This 
surface is more appropriately called time-varying mani-
fold and separates (·, ·, ·, , ),f f w v/- - -  (·, ·, ·, , )g g w v/- - -  
from (·, ·, ·, , ),f f w v/+ + +  (·, ·, ·, , ) .g g w v/+ + +  These func-
tions describe how the circuit evolves in each one of the 
two regions, and are commonly known as vector field, in 
the simple case of a system described by ODEs the vec-
tor field is the right hand side of the equation.

At time tB  the trajectory hits this manifold, the vector 
field changes, and all variables, except ,x  may jump to a 
new value. 

This model clearly is “switching”, since we have different 
vector fields on each side of manifold ( , , , , ) ,h x y t w v 0B =   
and “impacting” since we allow discontinuities in vari-
ables describing the digital part, it is thus in the class of 
“hybrid” systems. 

Consider for example the circuit introduced in Sec. II,2

( ) ,
Cx x R
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+ + +
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- =

- =

o

o
* 	 (4)

the effect of the digital part of the circuit on the analog 
one is viewed as a simple time-varying parameter acting 
on the expression of the vector field in Eq. (4).3 

The evolution of the digital variables of the circuit is 
summarized in Table 1.

This hybrid system modeling framework can simi-
larly describe AMS circuits that are much more complex 
and that inherently induce switching, impacts, manifolds 
and reset functions. These events and corresponding 
manifolds are in most cases naturally defined within the 

2In this example, the analog part is described using state equations, and 
not a full MNA formulation, thus avoiding the algebraic part of Eq. (1). 
3Assuming that the logical values true and false at the digital side are 
directly mapped to the real numbers 1 and 0 at the analog side.

Table 1.

w( )n
1 w( )n

2 w( )n
1

1+ w( )n
2

1+ v( )n
1

1+

0 0 1 0 0 
1 0 0 1 0 
0 1 1 1 1 
1 1 0 0 0 

f +, g +

f –, g –

(xC, yC, tC, w +, v +)
(x+, y+, tB, w +, v +)

(x–, y–, tB, w –, v –)

h (x, y, tB, w –, v –) = 0

(xA, yA, tA, w –, v –)x

y

h(x–, y–, tB, w –, v –)∇

Figure 3.  An example of two-dimensional “jumping” trajec-
tory highlighting, as far as the trajectory itself hits the mani-
fold ,h  the continuity of the differential variable x  and the 
discontinuity of the algebraic variable .y



netlists or the behavioral/digital models that describe the 
AMS circuit. With reference to our example, ( )h x  belongs 
to the zero crossing detector and its definition is implicit 
in the VERILOG description of this component. 

This means that it is possible to set up a simulation 
environment that is based on well known and standard 
formal languages and uses all the mathematical tools 
available for hybrid dynamical systems, without requiring 
that the designer changes in any way his/her habits. We 
will see in the following that this is quite appealing since 
it allows to analyze AMS circuits as if they were analog. 

IV. The Analyses That Can Be Extended to AMS
Variational methods are at the heart of many numerical 
time domain simulation algorithms. Most of these analysis 
methods, as they are usually collectively called by design-
ers, are available with different names, different options 
and parameters, and are limited to analog-only circuits, 
in several commercial simulators. These methods are 
well known to analog designers, but may be unfamiliar to 
most other people. For this reason, and in order to better 
appreciate their extension to AMS, a brief review of the 
analog-only version of these analyses is useful. 

A. Variational Models and Switchings
Variational models are, essentially, the linearization of
a system in the neighborhood of one of its trajectories.
Consider a system with state vector ( ),x t  whose evolu-
tion is given by the set of differential equations

( ( ), ), .x f x t t x Rn!=o (5)

Since building a variational model requires lineariza-
tion, the vector field that generates the trajectory must 
have, in each point along this trajectory, a well defined 
derivative, i.e., smoothness of trajectories must be 
guaranteed. 

This is true for conventional “analog-only” circuit mod-
els, even if the possible presence of parts with dynamics 
having very large time scale differences (i.e., “stiff” sys-
tems) may generate numerical problems that are very 
close to those of non-smooth systems but in most cases 
solvable with relatively simple workarounds. 

Non-smooth systems, i.e., those exhibiting non-differ-
entiable or even discontinuous trajectories, such as AMS 
circuit models, do not admit “as is” a variational model. 
This means that simple circuit analysis methods, i.e., 
those that do not require a differentiable system of equa-
tions, can be exported with very little effort to AMS cir-
cuits. This is the case of basic time-domain analysis, i.e., 
solution of a simple Initial Value Problem (IVP), known 
as “transient” analysis which are already available for 
AMS circuits. 

More advanced methods of analyzing the dynamics 
and stability require different mathematical tools. One 
important ingredient of the variational method is the evo-
lution operator called fundamental solution matrix that 
describes sensitivity of system trajectories to initial con-
ditions, i.e., the first-order expansion of the dynamics of 
perturbations around a nominal trajectory. 

Suppose that the system governed by (5) has an ini-
tial condition x0  at time ,t0  and we perturb it to x0r  such 
that the initial perturbation is ( ) .t x x0 0 0p = -  If the origi-
nal trajectory and the perturbed trajectory evolve up to 
a time ,t  the perturbation at the end of the period can be 
related to the initial perturbation by 

( ) ( , ) ( ) .t t t t0 0p pU=

Here ( , )t t0U  is the state transition matrix, which is a func-
tion of the initial state, the initial time, and the final time. 

If the system is Linear Time Invariant (LTI), for which 
(5) takes the form

,x Ax Bu= +o

then the state transition matrix is given by the matrix 
exponential 

( , ) ,t t e ( )A t t
0

0U = -

which can be explicitly evaluated using, for instance, 
MATLAB’S expm function. If the system is not LTI, the 
state transition matrix has to be obtained numerically. 

Now, if the initial condition is located on a periodic 
orbit, and if the system is evolved for the full period ,T  
then we obtain an equation relating the perturbation 
at the end of the period to that at the beginning of the 
period, i.e., 

( ) ( , ) ( ) .T T 0 0p pU=

In this approach, the stability of such a periodic orbit 
is understood in terms of the evolution of perturba-
tion. If the initial condition is perturbed and the solu-
tion converges back to the orbit, then the orbit is stable. 
The stability margin can be assessed from the rate of 
convergence. 

The matrix ( , )T 0W U=  is called the principal matrix 
or monodromy matrix. The eigenvalues of this matrix indi-
cates the stability of the orbit. If all the eigenvalues have 
modulus less than 1, the system is stable. If this matrix 
has at least one eigenvalue whose modulus is greater than 
1, the system is unstable. The computation of the mono-
dromy matrix is thus a significant element for the stability 
analysis of any periodic behavior. 



Now let us turn to the specific problem of AMS sys-
tems. Typically, in such a system a periodic orbit would 
be composed of passages through a number of subsys-
tems. Suppose the state evolves from the instant tA  to the 
instant ,tB  and the state transition matrix for that period 
is ( , );t tB AU  then it evolves from the instant tB  to ,tC  and 
the state transition matrix in that interval is ( , ) .t tC BU  It is 
known that if the evolution from tA  to tC  is smooth (every-
where differentiable), then the state transition matrix 
from tA  to tC  is simply the product of the two matrices 

( , ) ( , ) .t t t tC B B AU U  However, if a switching occurs at ,t tB=  
the evolution becomes non-smooth at that point since the 
governing equations before and after the event are differ-
ent. In such a situation the state transition matrix for the 
evolution from tA  to tC  cannot be obtained as a simple 
product of the state transition matrices across each part. 
One, additionally, has to consider the state transition 
matrix across the switching event. 

The state transition matrix S  that relates the pertur-
bation just after the switching event to that just before is 
given as 

( ) ( ) .t S tB Bp p=+ -

This matrix is called the “saltation matrix” [55]–[57] 
which is expressed as 

( )
  ,S

f t
h

f f
1n

T

t t

T

B2
2h

h
= +

+

-

-

=

+ -

(6)

where 1n  is the n-th order identity matrix, ( , )h x t 0=  
represents the switching condition (a surface in the state 
space of the system), ( , ) ,h x tx t tBdh = =  i.e., the gradient 
of (·, ·)h  with respect to state space, is the vector normal 
to the switching surface, and Th  is its transpose. f-  rep-
resents the right hand side of the differential equations 
before the switching occurred, and f+  represents the right 
hand side of the differential equations after the switching. 
From this expression the saltation matrix can be evalu-
ated for each switching event. 

With this theoretical framework, analog-digital sys-
tems can be subject to the same analyses that are appli-
cable to purely analog systems. The only change is that, 
in finding the monodromy matrix one has to insert the sal-
tation matrices at appropriate places whenever a switch-
ing occurs. Thus, if a periodic orbit consists of passages 
through k  subsystems and k 1-  switching events, then 
the monodromy matrix has to be expressed as 

( , ) ( , ) ( , ) ( , )  .T T t S S t t S t0 0k k1 1 2 2 1 1 1gW U U U= - - 	 (7)

Excellent books that can be used to have a deeper 
insight in these topics are [58], [59]. 

B. Shooting Method
The SH method allows to solve a Boundary Value Problem
(BVP) as a small number of simpler IVPs [60], [61]. In a
general situation, an n -th order ODE allows setting n  inde-
pendent boundary conditions—these can be initial condi-
tions (as in IVPs), final conditions, or a mix of the two. In
the classic ballistic problem one has a fixed position of the 
cannon and of the target which are the boundary condi-
tions, but has freedom in the tilt of the cannon and does
not care about the angle of arrival of the cannonball. If a
first shot misses the target, the gunner will change the tilt
of the cannon, evaluate how much closer or farther he
gets from his objective and finally adjust the tilt in order to
(hopefully) hit the target with the next shot. The key of the
gunner’s method is the perturbation of the initial guess
and evaluation of the sensitivity of the solution (the arrival
position of the cannonball) to this perturbation.

The situation most interesting and useful for circuit 
design can be visualized as a variant of the ballistic 
problem where the gunner is using a boomerang instead 
of a cannon. In this case the boundary conditions repre-
sent a periodicity constraint. Let us consider this situ-
ation with more detail, since it is the basis for all other 
analysis methods. 

The circuit can be autonomous or non-autonomous, sim-
ply meaning, in the second case, that the Right Hand Side 
(RHS) of the equation governing its dynamics has explicit 
dependence on time.4 For the system of state equations 
in (5), a boundary condition ( ) ( )x T t x t0 0+ =  for some 
time value T 5 defines, if it exists, a T -periodic orbit .X  
Using any numerical integration method it is possible to 
find the solution of the IVP from time ,t0  with some initial 
conditions ( ),x t0  to time .t T0 +  Computing in parallel the 
evolution of ( , ),t t0U  i.e., the state transition matrix asso-
ciated to the original nonlinear ODE, provides the sensi-
tivity of this solution to initial conditions. Obviously, with 
AMS systems, this matrix must be obtained through (7). 
Using the sensitivity information in ,U  the initial condi-
tions of the IVP are iteratively corrected until condition 

( ) ( )x T t x t0 0+ =  is (approximatively) met obtaining solu-
tion .X  Along these iterations ( , )t T t0 0U +  converges 
towards the so called W  principal matrix.6 

This is a direct mathematical transposition of the boo-
merang problem: the state transition matrix represents 
a measure of the sensitivity of the final conditions with 
respect to initial ones, i.e. of the boomerang return point 

4Since we are looking for a periodic steady state, in the non-autonomous 
case the circuit is periodically forced.
5If the circuit is autonomous, period T  must also be determined. This is 
normally done augmenting the SH equations with a phase condition (for 
details see [58], [62]).
6The W  principal matrix computed along a periodic orbit X  is a lin-
earized representation of the evolution operator of the corresponding 
nonlinear system in a neighborhood of X  itself.



as a consequence of a specific choice of launch condi-
tions. The sequence of IVPs solved for different initial 
conditions is equivalent to a sequence of tilt adjustments. 

The SH method is available in PAN for analog circuits 
as well as AMS circuits. For instance, if one were inter-
ested in evaluating the periodic steady state of the simple 
AMS oscillator introduced in Sec. II, the following com-
mand would be added in the circuit netlist file 

Sh0 shooting period=(2*pi)*4

+ autonomous=yes

+ minper=(2*pi)*3.2

where Sh0 is the name of the analysis, shooting is the 
analysis type followed by the parameters; period is the 
guess value of the working period; the simulator auto-
matically determines the correct working period of the 
oscillator since the autonomous boolean parameter is 
set to “true”. The minper parameter sets the minimum 
value that can be assumed by the period automatically 
determined by the simulator. This is necessary since the 
oscillator is refilled every 4 oscillations of the LC  tank, 
which resonates at  .sec1 rad 1-

The result of the simulation is reported in Fig. 4.

C. Stability of Steady State Periodic Solutions
Stability of X  can then be determined by observing the
eigenvalues of ,W  known as Floquet (characteristic) multi-
pliers. Stability requires all the multipliers to reside inside
the unit circle (i.e. a modulus smaller than one), with at
most one equal to one if the system is autonomous.

In PAN this kind of stability analysis is a by-product 
of the SH method and can be performed on AMS or non-
AMS circuits by adding the bold option to the SH analy-
sis command 

	Sh0 shooting period=(2*pi)*4autonomous=yes 

	+	 minper=(2*pi)*3.2

	+	 floquet=yes 

For our case study, the Floquet multipliers correspond-
ing to the limit cycle in Fig. 4 are .0 999991n =  (that cor-
responds to a value that is theoretically equal to 1) and 

. .0 175162n =-

D. Periodic Small Signal Analysis
and Time-Varying Transfer Functions
A very important application of variational-based analy-
sis is that given by superposition of a “small” periodic sig-
nal to a large one, such as the situation found in a carrier 
modulation system. In this case, it is possible to extend 
the variational representation to consider also external 
periodic inputs.

From a mathematical point of view there are no partic-
ular limitations on the number of different periodic input 
waveforms, and on the shape of each one of these. From 
a practical point of view, one is typically interested in effi-
ciently estimating the effect of a single simple sinusoidal 
input since the effect of many, more complex, inputs is 
easily computed by superposition. This kind of analysis is 
known as Periodic AC (PAC) [63], [64]. 

The PAC analysis computes the solution of a periodi-
cally driven circuit perturbed by a small sinusoidal input 
at an arbitrary frequency. The nominal unperturbed 
circuit is represented by a linear periodic time varying 
model, whose response to a small periodic perturbation 
is composed by sinusoids at different frequencies; in 
practice PAC computes a series of transfer functions, one 
for each frequency, from the single perturbation source to 
each node of the circuit. 

To exemplify the PAC analysis a sinusoidal current 
generator of magnitude equal to 1 is added in parallel to 
linear resistor R1  in Fig. 1 and the 

Pac01 pac freq=10mHz

command is added in the netlist. The simulation results 
are shown in Fig. 5. As for the previous SH case, Pac01 is 
the analysis name and pac is the analysis type; the freq 
parameter specifies the frequency of the PAC generator. 
Note that the PAC analysis can be performed only after 
a successful SH analysis since the circuit must be linear-
ized along its steady state solution. Furthermore, since it 
is a time-varying linear analysis, magnitudes of the results 
linearly scale with that of the source. 

A generalization of the PAC analysis, which is the con-
ceptual basis for the Periodic Noise (PNOISE) analysis 
described in the sequel, is the periodic transfer function 

x2

w1 + 2w2

x1

Figure 4.  The stable periodic steady state of the AMS oscil-
lator used as a case study. The trajectory is plotted in the 

, ,x x w w21 2 1 2+  space and the black vertical segments are 
guides (not truly part of the trajectory) that represent the dis-
continuities corresponding to changes of the counter value vari-
able .w w21 2+  The computed working period is . .T 22 1049=



analysis that computes the transfer function from every 
source in the circuit at any frequency to a single output 
at a single frequency. It is in some ways the reverse of the 
“one to many” ratio of PAC. 

E. Periodic Noise Analysis
PNOISE analysis is possibly the most well-established tool
to evaluate the effects of small-signal (cycle-stationary)
additive noise sources in circuits characterized by a peri-
odic steady-state behavior [63], [65]. The term additive
means that it is assumed that the noise effects “sum up”
to the large signal solution of the noiseless circuit. This
technique, suited to simulate total noise and phase noise,
is based on the variational representation of the circuit
model equations. The cycle-stationary noise sources are
modeled as a set of sinusoidal equivalent sources and
their power (in a 1 Hz bandwidth) is transferred (fre-
quency-wise) to a given output node of the circuit where
all the resulting power spectral density contributions are
added. In this way the PNOISE analysis inherently handles 
the noise folding phenomenon.

Transfer functions are computed by solving the vari-
ational model in the time/frequency domain. From a 
numerical point of view it is thus equivalent to a number 
of periodic small signal analysis. 

For the chosen AMS reference oscillator, we per-
formed a PNOISE analysis, by assuming that only R1  gen-
erates thermal noise, through the command 

Pnoise pnoise start=10u stop=1 dec=1000

+	 onodes=[”x1”] sweeptype=0

The onodes parameter specifies the node/s at which 
periodic noise has to be computed, sweeptype specifies 
how Power Spectral Density (PSD) of the noise has to be 
referred to: in general it is with respect to the oscillator 
fundamental or the DC component as in this case. If more 
than one uncorrelated noise source are considered, each 
contributes to the total noise through the square sum of 
the time-varying transfer function that relates the noise 
source to the desired output. The obtained PSD of total 
noise across the capacitor ,C  i.e., the additive noise over 
voltage x1  is shown in Fig. 6.

F. Phase Noise Analysis in Demir’s Unified Theory
A rigorous understanding of the phase noise phe-
nomenon in oscillators was developed by Demir et al.
[66]–[68]. Basically, it was shown that, under a set of
hypotheses that will not be discussed here, once the PSD
of total noise was computed, it can be decomposed in its
phase noise and amplitude noise components, by project-
ing the total noise along a function ( ),v t1  referred to as
PPV in literature, which is available if the fundamental
matrix is defined.

For the case study of AMS oscillator we can compute 
the evolution of ( )v t1  through the option marked in bold 
in the command line below (results are shown in Fig. 7) 

	Sh0 shooting period=25 autonomous=yes 

	+	 minper=(2*pi)*3.2 floquet=yes

	+	 eigf=yes 

Note that Floquet eigenfunctions are re-sampled and 
computed on an even time mesh in order to increase effi-
ciency. A suitable analysis parameter controls the num-
ber of time samples.

G. Evaluation of Lyapunov Exponents
(Aperiodic Steady State)
This is not a typical circuit design analysis, even though
it may have some importance in a few situations. Stabil-
ity results found for periodic solutions can be extended to
generic solutions, including non-periodic or even chaotic
ones, through the definition of Lyapunov Exponents (LEs).
These represent a measure of how fast arbitrarily close
trajectories move away from each other, and the number
of LEs equals the dimension of state space, since differ-
ent directions can have different expansion or contraction
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Figure 5.  The amplitude spectrum of the small signal volt-
age across .R1  (see Fig. 1) due to a sinusoidal current gener-
ator of magnitude equal to 1 and frequency equal to 10 mHz  
added in parallel .R1
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rates. Several numerical techniques to compute LEs of 
model-explicit, nonlinear, and finite dimensional dynami-
cal systems can be found in the literature [69]. All of these 
require the system to be ruled by a vector field smooth 
enough to permit the evaluation of the system fundamen-
tal matrix since the definition of LEs is based on the evolu-
tion in time of its singular values. Several attempts have 
been made to extend the computation of these important 
indicators to different classes of discontinuous systems 
[70]–[72]. The saltation matrix operator was applied in 
[73] for the computation of LEs for hybrid neurons.

With PAN LEs can be computed in a straightforward
way through a sufficiently long time domain analysis as 
shown, for the considered case study, by the command 

Tr0 tran tstop=(2*pi)*200 uic=yes 

+ lyapunov=yes

where tstop sets the ending time instant of the analysis, 
uic tells that the initial conditions given by the user must be 
used, otherwise the circuit may not “move” from its equilib-
rium point automatically computed by the DC analysis. The 
lyapunov parameter turns on computation of LEs. 

V. Examples

A. A Digitally Controlled DC/DC Converter
We now illustrate the usefulness of the algorithms just
described on the typical power electronic converter
shown in Fig. 9. Such converters are widely used in indus-
try, and designers need to frequently assess their per-
formance at each step of the design stage. Currently this
is done with approaches such as brute-force simulation
(by exploiting long lasting transient simulations) or aver-
aged modeling.7 We show that far more information can
be extracted using the proposed algorithms. The system
considered is a simple DC/DC converter—a two-phase
boost converter—that supplies the load resistor Ro  at a
voltage level higher than that of supply Eo  [74].

Despite the number of components in this circuit, its 
behavior is quite simple to describe and the few equations 
necessary to model its dynamic behavior are straightfor-
ward to derive. Nevertheless, the circuit is nonlinear and 
switching is controlled by digital logic that produces the 
on/off signals for the switch. If switches S1  and S2  open 
and close simultaneously, the dynamics of the circuit can 
be easily summarized:

■ S1  and S2  closed: currents iL1  and iL2  through
inductors L1  and L2  increase. This happens since
the currents flowing in the inductors follow the
low-resistance path represented by the closed

switches and only a negligible portion of these cur-
rents flows in the diodes that are reverse biased 
since the output voltage is positive. The Co  capaci-
tor discharges through the Ro  load. 

■ S1  and S2  open: i iL D1 1=  and ,i iL D2 2=  i.e., the cur-
rents in L1  and L2  flow through diodes D1  and ,D2  
respectively. The diodes are forward biased since 
in the previous working phase the output voltage 
decreased and the inductors charged. The load 
is then supplied and ,Co  which smooths the out-
put voltage ripple due to the pulsed iD1  and iD2  
currents, is recharged.

In the actual circuit the two switches are not synchro-
nous and S2  is always closed after a /T 2 delay with 
respect to the time instant at which S1  is closed. This 
choice halves the period of the output current ripple, 
improves the converter performance but slightly modi-
fies the chain of events described above, even though 
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the working principle is basically the same. Each switch 
opens when the current flowing through the correspond-
ing inductor reaches the maximum value .imax

The digital controller governing the switches is com-
posed of two identical parts (see the red boxes in Fig. 9), 
one for each phase (switch) of the boost converter. Let us 

The Netlist of the Two Phase Boost Converter

Eo vdd gnd vsource vdc=5
L1 vdd x1 inductor l=1.5mH
S1 x1 gnd vg1 SWITCH
D1 x1 out DIO GD=1k
L2 vdd x2 inductor l=1.5mH
S2 x2 gnd vg2 SWITCH
D2 x2 out DIO GD=1k
Co out gnd capacitor c=10u
Ro out gnd resistor r=40
Il1 il1 gnd ccvs sensedev="L1" gain1=1
Il2 il2 gnd ccvs sensedev="L2" gain1=1
Imax ref gnd vsource vdc=0.1
Clk clk gnd vsource v1=0 v2=VDIG
+ tr=1u tf=1u period=PRD width=PRD/2
X0 clk gnd a2d dignet="Cntr.clk" vt=1/2
X1 il1 ref a2d dignet="Cntr.x1" vt=0
X2 il2 ref a2d dignet="Cntr.x2" vt=0
X3 vg1 gnd d2a dignet="Cntr.g1" vl=0 vh=1
X5 vg2 gnd d2a dignet="Cntr.g2" vl=0 vh=1
verilog_include cntr.v
model DIO nport veriloga="dio.va"
model SWITCH nport veriloga="switch.va"

Switch Model

module SWITCH(p,n,gate);
inout p, n, gate;
electrical p, n, gate;
parameter real VTH=0.5;
analog begin
if( v(gate) > VTH )

v(p,n) <+ 0.0;
else

i(p,n) <+ 0.0;
end
endmodule

Diode Model

module DIO(a,k);
inout a, k;
electrical a, k;
parameter real GDon =1k;
parameter real GDoff=1u;
analog begin

if( v(a,k) > 0.0 )
i(a,k) <+ GDon * v(a,k);

else if( v(a,k) < 0.0 )
i(a,k) <+ GDoff * v(a,k);

end
endmodule

Controller Model

‘timescale 1ns/1ns
module Cntr(clk,x1,x2,g1,g2);
input clk, x1, x2;
output g1, g2;
reg g1, g2;
initial begin
g1 = 0; g2 = 0;
end
always @(posedge clk)

if( x1 == 0 ) g1 = 1;
always @(negedge clk)

if( x2 == 0 ) g2 = 1;
always @(posedge x1) g1 = 0;
always @(posedge x2) g2 = 0;
endmodule
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currents and drive the comparators at voltage levels equal to the corresponding currents.



focus on phase “1” since the same holds, mutatis mutan-
dis, for phase “2”. The F1  FLIP-FLOP is set at each rising 
edge of the ( )v tckl1  clock signal. The FLIP-FLOP closes S1  
by setting voltage vg1  at the logical high level. The CP1  
comparator compares the iL1  current with the imax  maxi-
mum value. When ,i imaxL1 $  the FLIP-FLOP is reset, vg1  
falls to the low logic level and the switch opens. 

To allow a “pen-and-paper” analysis as in [74] and thus 
a direct comparison of results with AMS simulation, at 
first we model the switches and the diodes as behavioral 
ideal piece-wise linear elements through the VERILOGA 
language. More specifically the Sk  switch model is 

i v 0i sw v swk ka a+ =

where ,0ia =  1va =  when v 1Lgk ==  and ,1ia =  0va =  
when v 0Lgk ==  and the Dk  diode equation is 

( )i v vD D v Dk k kk b= =

where gv Ib =  when v 0Dk 1  and gv Db =  when ,v 0Dk $  
with .g g 0D I 2&

In other words, the switches behave as open circuits 
when they are open and as short circuits when they are 
closed. The diodes are modeled as resistors character-
ized by a piece-wise linear voltage-dependent resistance. 

The dynamics of the analog part of the system is given 
by the equations 
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where the analog electrical variables in Fig. 9 are mapped 
as ,x iL1 1=  ,x iL2 2=  x vo3 =  and ( )x1

1k-  is the inverse of 
the diode equation. For the sake of simplicity, the sequen-
tial functions corresponding to the internal evolution of 
the FLIP-FLOPs are not reported. The digital voltages vgk  
become wak  (for , )k 1 2=  adopting a (·)d a2n  block such 
that ( )1 1Ld a2n =  and ( ) .0 0Ld a2n =  It is worth noting that 
the vgk  voltage is mapped to a sequential variable since 
it represents the state of the Fk  FLIP-FLOP, i.e., a single 
digital register. 

After having realized that Eq. ( 8) belongs to the family 
of problems described by (1), we can focus on the switch-
ing manifolds involved in the dynamics of the system 

( )
( )
( )
( )
( ) ,

h x x i
h x x i
h x x
h x x
h x x

0
0

0
0
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max

1 1

2 2
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= - =

= - =

= =

= =

= = (9)

where ( )h xk  (for { , })k 1 2!  induces the reset function 
( ) ,w 0 0La d a2k n= =  i.e., an impact in the digital state 

of the circuit corresponding to the opening of .Sk  We 
remark that, as far as the closing of Sk  is concerned, it 
is not governed by a manifold in the state space but it is 
triggered by the rising front of the ( )v tcklk  external signal. 
The remaining three manifolds rule the switching of the 
diodes characteristics. 

To obtain the large signal steady state solution of the 
converter, we performed the analyses using the instruction 

Tr tran stop=5*100E-6 uic=yes method=2 order=2 

+ Sh shooting method=2 order=2 restart=no

+ floquet=yes period=100E-6 cmin=no

We first performed a time domain large signal analy-
sis (Tr) to start up the converter and then a SH one (Sh) 
using as initial condition the solution at the last time 
point computed by Tr (i.e. using option restart=no).8 In 
Fig. 10 the ( )v to  output voltage, the currents through the 
L1  and L2  inductors and the signals driving the S1  and 
S2  voltage controlled switches are shown. It is easy to 
see that the falling edges of these driving signals are posi-
tioned at the time instants when the currents through the 
L1  and L2  inductors hit the manifolds at i 100 mAmax =  
(see the circuit netlist) [74]. Since this converter shows 
different behaviors and instability depending on the level 
of the switching manifold, we performed a stability analy-
sis by computing the Floquet multipliers while increasing 
imax  from 100 mA till 300 mA as reported in [74]. This 
analysis was first performed with behavioral models of 
the switches and diodes as reported in Fig. 9 and then we 
repeated the same analysis after having substituted these 
ideal elements with accurate MOS transistor and diode 
power models.9 The loci of the most significant Floquet 
multipliers (three: one real and two forming a complex 
pair for some values of the parameter) with behavioral 
elements is shown in blue and those with power MOS 
transistor and diode models is shown in red in Fig. 11. 
It can be seen that the complex pair of Floquet multipli-
ers goes outside the unit circle in both cases giving rise 
to a Neimark-Sacker bifurcation [62]. The behavior with 
power component models is very similar to that with 
behavioral models and shows the effectiveness of the 
approach. We shall underline the versatility of the tool 
and approach since the designer has simply to switch 
through a simple command from ideal models to more 

8Comments concerning the Tr and Sh options method, order and cmin 
can be found in the PAN online help.
9For the sake of conciseness the netlist of the circuit after the insertion 
of MOS transistors and diodes is not reported here but can be down-
loaded from the PAN website.



realistic ones and completely ignore how problem formu-
lation and manifolds modify since this is automatically 
taken into account by the simulator.

To have an idea of the closed loop input (induc-
tor current control level) output (vo  voltage) transfer 
function of the converter we performed a PAC analysis 
through the command 

Pac pac start=1 stop=50k lin=10k 

where start is the starting value of the frequency sweep, 
stop is the final value and lin specifies the type of fre-
quency grid (linear in this case) and the number of fre-
quency samples. 

The ( )u t  small signal at the fu  frequency added to imax  
affects the vo  large signal solution by giving contribu-
tions at each component of the large signal spectrum. If 
for example the DC, the fundamental at f 10 kHzo =  (the 
clock period is 100 µs), and the first harmonic are con-
sidered, we have that the small signal beats with these 
components and effects locate as right sided signals at 

,f f fu o u+  and .f f2 o u+  The moduli of these components 
of the small signal output vo  are shown in Fig. 12 in red, 
green and blue, respectively. It can be easily seen that 
effects due to the ( )u t  up conversion at f2 o  are relevant 
being about 20 dB+  at .40 kHz

B. A Class-D Audio Amplifier
The schematic of the class-D audio amplifier is shown in
Fig. 13. The input signal at node In  is conditioned by the
feed-back loop constituted by the Op  operational ampli-
fier, the ,R Ra b  resistors and the C1  capacitor. The signal
at the output of Op  is compared by the Cmp  comparator
to the sawtooth waveform at the Pwm  node. The model
of the comparator is ideal and implemented through a
behavioral model and generates a digital output, i.e., its
output instantaneously switches between its upper and
lower values (and vice versa). This circuit leads to a DAE
model with a discontinuous vector field. In fact by circuit
inspection, we can see that the instantaneous switching
of Cmp  and of the driven Mp  and Mn  switches leads to a
discontinuous voltage across Lo  and to a discontinuous
current through .C1  Furthermore, the manifold charac-
terizing Cmp  is voltage dependent, i.e., the time instant
at which there is a commutation of Cmp  depends on
the instantaneous value assumed by the voltages at the
output of Op  and at the Pwm  node. The output of Cmp
drives the Mp  and Mn  voltage controlled switches. The
models of these switches are such that Mn  closes when
the driving signal is larger than a given threshold while
Mp  closes when the driving signal is less than this thresh-
old. The sawtooth waveform at node Pwm  has a period
of 1 µs. The pulse width modulated large signal (and
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power) is filtered by the LC  filter made up of Lo  and .Co  
The values of these elements were chosen considering 
the impedance of the load (loudspeaker). The value of 
Rb  was chosen equal to R10 a  in order to have an input/
output gain of the CLASS-D amplifier close to .45 dB+

As for the previous circuit we are interested in the 
input/output small signal periodic transfer function of 
this CLASS-D amplifier when it is driven by a small signal 
superimposed on the large signal. 

We first computed steady state solutions with the 
extended SH method for different frequencies of the 
input sinusoidal small signal. An item of this frequency 
grid is computed through the command 

Sh shooting fund=FREQ restart=no solver=2 

+ method=2 order=2 fft=yes fftharms=32

+ eabstol=10m

where FREQ is a parameter specifying the frequency 
of the input signal, fft=yes turns on Fast Fourier 

Transform to compute the spectrum of large signal peri-
odic steady state solution with 32 harmonics. As in the 
previous case the shooting analysis is restarted from 

The Netlist of the CLASS-D Audio Amplifier

parameters VDIG=1 PRD=1u
Vdd vdd gnd vsource vdc=20
vss gnd vss vsource vdc=20
Rin in neg resistor r=1k
C1 neg o1 capacitor c=1n
Op1 o1 gnd gnd neg vcvs gain1=1M
Rb neg gt resistor r=10k
Lim lm gnd o1 vcvs func=limit(v(o1),-(1-1m)*VDIG,(1-1m)*VDIG)
Cmp gt gnd pwm lm vcvs func=v(lm,pwm) > 0 ? VDIG : -VDIG
+ digital=yes trtime=1n
Sw1 vdd x1 gt gnd VSW1
Sw2 x1 vss gt gnd VSW2
Lo x1 out inductor l=10u/3
Co out gnd capacitor c=10u/3
R2 out x2 resistor r=100
C2 x2 gnd capacitor c=1u
Rl out gnd resistor r=4
Vsaw pwm gnd vsource t=0 v=-VDIG t=PRD/2 v=VDIG t=PRD v=-1 period=PRD
model VSW1 vswitch ron=10m roff=1M voff=-0.1*VDIG von =0.1*VDIG
model VSW2 vswitch ron=10m roff=1M von =-0.1*VDIG voff=0.1*VDIG
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Figure 13.  The schematic of the class-D audio amplifier.
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Figure 14.  Red plot represents the input/output transfer 
function of the CLASS-D amplifier. It was computed through 
a PAC analysis when the CLASS-D amplifier is driven in input 
by a small signal. Black dots and the green square represent 
the result computed by the large signal SH analysis and refer 
to the magnitude of the component of the Out  voltage at 
the frequency of the In  signal computed by the Fast Fourier 
transform. In particular, the green square was obtained by 
setting 10FREQ kHz=  (see the command line in the text).



previous results and these frequencies were chosen in 
order to have periodic solutions, i.e., the period of the In  
signal must be a multiple of the Pwm  waveform (1 µs). 
We then performed a Fast Fourier analysis of the Out  
output waveforms; the obtained modulus of the compo-
nent at the frequency of the In  signal are reported in 

Fig. 13 (black dots). Each of these SH analyses is time 
consuming, a more efficient result can be obtained once 
more through the extended PAC analysis. Fig. 13 shows 
the obtained modulus of the input/output periodic trans-
fer function. As it can be seen from Fig. 13 the modulus 
is “almost flat” till about 50 kHz  then it exhibits a peak 

The VERILOG Code Implementing the Integer Divider (ID) and Phase/Frequency Detector (PDF) Blocks
‘timescale 1ps/1ps
‘delay_mode_path

module pd (up, down);
output up, down;
reg res_n, res_c, up, down, reset, ref, fb, fbx;
reg [15:0] Count;
initial begin

reset = 0; up = 0; down = 0; res_c = 0; res_n = 0; fb = 0; fbx = 0;
end
always @(posedge fb or !res_c) begin

if( !res_c ) Count = 0;
else begin

Count = Count + 1;
if( Count >= 24 ) begin Count = 0; fbx = !fbx; end

end
end
always @(posedge ref or posedge reset or !res_n) begin
if (reset | !res_n) up = 0;
else up = 1;

end
always @(posedge fbx or posedge reset or !res_n) begin

if (reset | !res_n) down = 0;
else down = 1;

end
always @(up or down) begin
if (up & down)

begin
#2 reset = 1;
#2 reset = 0;

end
end
always @ (!res_n) reset = !res_n;
endmodule
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Figure 15.  The block schematic of the PLL (a). The simplified schematic of the VCO modeled through the TSMC 180nm PDK (b).



and then drops with a slope due to the output filter. Fur-
thermore the results from the large signal SH analyses 
almost perfectly overlap the PAC result.

C. A PLL with a Real VCO
Phase Locked Loops (PLLs) are largely used in RF applica-
tions to generate, for instance, periodic signals with very 
good frequency stability. Oscillators with very good fre-
quency stability can be obtained by exploiting crystals; unfor-
tunately they can work only at a relatively low frequency (no 
larger than about 50 MHz). Oscillators operating in the GHz 
range with very good frequency stability can be obtained by 
“synchronizing” them to a reference crystal oscillator work-
ing at a lower frequency. The circuit doing this is referred to 
as PLL. A block schematic of a PLL is shown in Fig. 14 (left). 
The Voltage Controlled Oscillator (VCO) block implements 
the high frequency oscillator, whose frequency can be var-
ied by acting on a voltage controlled terminal through xF . 
The VCO sVCO  output signal drives a digital Integer Divider 
(ID) that generates a periodic waveform (typically a piece-
wise linear signal) at a frequency that is an integer fraction 
of the VCO one. The Phase/Frequency Detector (PDF) block 
compares the time instants at which a rising front of the sID 

waveform produced by ID occurs, with that of the sREF  wave-
form signal generated by the reference crystal oscillator. 
The PDF generates the U  and D  digital output signals that 
drive the Charge Pump (CP). The oI U -^ hD  output current 
is suitably integrated by the Low Pass Filter (LPF) block 
and the resulting xF  closes the loop. If the rising front of sID 

comes after that of sREF,  say with a delay Dt,  the U  signal is 
high in Dt  and the current by CP increases the value of xF 

thus “accelerating” the VCO. On the contrary, if the rising 
front of sREF  comes after that of sID,  the D  signal “deceler-
ates” the VCO.

We simulated a PLL circuit by modeling the PDF and 
ID blocks as digital, the CP one as a behavioral analog 
block and the VCO at transistor level. The VERILOG 
code implementing the ID and PDF blocks is reported 
in the insert. The frequency of the sREF  reference signal 
was set at 50 MHz  and ID divides by 48. When locked 
the PLL forces the VCO to work at 2400 MHz. A detailed 
model comprehending parasitics and bonding of the 
VCO based on the TSMC 180 nm  PDK (Process Design 
Kit) was used [33]. Its simplified schematic is shown 
in Fig. 14 (right). Frequency is varied by acting on the 
nonlinear capacitance of the M osvar 1  and M osvar 2 
capacitors. This VCO was realized on silicon; a micro-
photography is shown in Fig. 15. The complete model 
of the PLL is constituted of 172 capacitors, 220 resis-
tors, 63 inductors, 1 coupled inductor, 50 diodes and 12 
BSIM3 MOSFETS. We applied the proposed approach to 
compute the total noise at the output of the VCO when 
the PLL is locked. Noise is an important figure of merit 

 

for designers since noisy oscillators can interfere with 
adjacent communication channels and compromise 
signal quality. 

Figure 16.  The silicon implementation of the VCO. The same 
layout implements different versions of VCOs that can be 
identified by the spiral inductors that occupy a large portion 
of the chip area. That used in the PLL is the lower left one.

3

2

1

0
40
20

–20
–40

0

130
125
120
115

52 52.005 52.01 52.015 52.02
(c)

[µs]

[mV ]

[mV ]

[V ]

Figure 17.  From upper panel to lower panel: the waveforms 
at the output of ID (sID  in red) and the sREF  reference signal 
(in blue); the sVCO  VCO output waveform; the xF  signal.

–158

–161

–164

–167
104 105 106 107

[Hz]

[dB]

Figure 18.  The PSD of total noise in dB related to the right 
lateral band from the fundamental of the VCO. x-axis shows 
the displacement from the fundamental at .2400 MHz



We first performed a quite long time domain analysis 
to bring the PLL to work sufficiently close to the steady 
state condition. We then performed a SH analysis to deter-
mine the periodic orbit as in the previous examples and 
finally two PNOISE analyses

 Tr tran tstop=TSTOP tmax=0.1/FVCO tmin=100f 

 + cmin=no method=2 order=2 

 Sh shooting restart=no fund=FREF solver=2 

 + floquet=yes method=2 order=2 

 + eabstol=100m save=”Sh.save” 

 Pn1 pnoise start=10k stop=100M dec=200 

 + onodes=[”out1a”,”out2a”] 

 Pn2 pnoise start=40M stop=60M lin=1k 

 + onodes=[”out1a”,”out2a”] 

With respect to the other similar analysis cards shown 
before, in the shooting case results are saved in the 
“Sh.save” file since they can be used as initial guess 
in possible other shooting analyses, saving, in this way, 
the start-up time consumed by the tran analysis. Simula-
tions were performed on a computer equipped with an 
Intel-i5@3.10GHz CPU, 8Gbyte. The start-up phase took 
3400 s, the SH analysis took 83 s and the PNOISE analysis 
took 30 s per frequency point. 

Some results computed by the SH analysis are shown 
in Fig. 17 and the PSD of noise at the output of the VCO is 
shown in Fig. 18. By observing Fig. 17 it can be seen that in 
a working period the VCO output waveform does 48 oscilla-
tions and that the two rising fronts of the ID and sREF  wave-
forms are “synchronised”. Note that these two waveforms 
have different duty cycles. By observing Fig. 17 we see an 
almost flat PSD in the PLL loop bandwidth; the LPF stabi-
lizes the PLL by inserting a zero/pole pair. The zero is at 
100 kHz and the pole at 10 MHz, the loop gain equals 1 at 
1 MHz.  The spike at 50 MHz is due to the switching nature 
of the PLL at the frequency of the sREF  reference signal.

VI. Conclusions
With the current trend towards very large scale circuits 
and systems that include analog, digital, and behavioral 
parts, it is necessary to develop new tools and methods 
for the design of such systems. This new class of analy-
sis and design instruments should be able to locate the 
orbits, calculate their stability, perform periodic noise 
analyses, small signal analysis, etc. So far such a tool was 
not available due to the theoretical difficulties in handling 

such systems. In recent times these issues have been 
addressed theoretically, setting the stage for the develop-
ment of the necessary computational tools. 

In this article we have reported the development of the 
first such design tool, called PAN. We have illustrated its 
usefulness using a digitally controlled DC/DC converter, 
a class-D audio amplifier, a phase locked loop with a volt-
age controlled oscillator. We invite the circuits and sys-
tems designers to try out the program on various systems 
that fit the above description, and to send us feedbacks 
which will enable us to improve the capabilities and user-
interface further. We sincerely hope this development will 
open new vistas in the design and fabrication of complex 
electronic systems. 

With the current trend towards very large scale circuits and systems that 
include analog, digital, and behavioral parts, it is necessary to develop  

new tools and methods for the design of such systems.
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