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I. INTRODUCTION

HANKS to the increasing availability of inexpensive
small-scale hardware devices with wireless communi-
cation capabilities, distributed sensor networks are steadily
gaining popularity in a wide range of application scenarios,
including security, environmental monitoring and elderly care.
Acoustic source localization is a feature that is often required
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in these scenarios [1], as it is used, for example, for automati-
cally pointing a video camera towards the active speaker in a
tele-conference [2], [3], [4], [5]; to detect and localize intru-
sions in areas where vision-based systems area likely to fail
due to poor illumination or occlusions [6], [7], [8]; to monitor
the environment [9], [10].

In this manuscript we propose a technique for the 3D localiza-
tion of acoustic sources using a distributed network of compact
microphone arrays. Numerous algorithms have been developed
for the localization of acoustic sources. Among the most popular
of them are those based on the local (at node level) computation
of the Generalized Cross Correlation (GCC) [11] (or modified
versions thereof [12], [13]). These techniques are roughly split
into two categories: 1) those based on Steered Response Power
(SRP) [14], [15]; and ii) those based Time Difference Of Ar-
rival (TDOA) [16], [17], [18], [19]. In its original formulation,
SRP localizes sources through an inverse mapping of the GCC
samples onto candidate source locations. Building the GCC map
and searching for its maximum, however, is a computationally
intensive task if approached in a brute-force fashion. This is why
the following proposed improvements focused on the reduction
of the computational cost [20], [21], [22]. In a distributed sensor
network scenario, however, the fact that each microphone array
has to transmit the whole GCC to the central processing node,
is an inherent disadvantage because it has an evident impact on
bandwidth requirements.

Methods based on TDOAs aim at localizing the source from
the sole knowledge of the propagation delay of the acoustic
wavefront at different microphone pairs. The TDOA is esti-
mated at each microphone pair as the lag corresponding to the
maximum of the GCC computed on signals acquired by the con-
sidered pair. In a typical scenario, TDOAs are computed be-
tween a reference microphone and all the remaining ones. Dif-
ferent methodologies of this sort have been proposed, based
on both Maximum Likelihood Estimation [23], [24], [25], [26],
[27] and Least Squares method [16]-[18], [28]-[31]. The main
advantage of these techniques is their modest computational
cost, as they do not require either building an inverse map or
performing an exhaustive search. Instead, they typically localize
the source through the minimization of a cost function, and the
most computationally efficient approaches are those based on a
closed-form optimization (e.g., [29], [30]). Furthermore, band-
width requirements turn out to be rather modest, because what
is being transmitted over the network are TDOA values only.
It is well-known in the literature, however, that TDOA-based



methods tend to be sensitive to reverberation and background
noise [32]. Moreover, most of the referenced techniques assume
that all the microphones are synchronized, whereas in a dis-
tributed sensor network scenario only microphones in the same
node are synchronized.

In this manuscript we propose a TDOA-based methodology
for the localization of acoustic sources in moderately rever-
berant environments, which is suitable for distributed sensor
networks. Two are the main challenges that we tackle, while
keeping computational cost at bay: i) robust TDOA estima-
tion in reverberant environments; ii) source localization using
TDOAs coming from unsynchronized microphone arrays. As
far as the first challenge is concerned, reverberation severely
impacts on the GCC generating multiple spurious peaks, among
which the correct TDOA must be selected. In this manuscript,
robustness against reverberation is obtained through a method
inspired by the DATEMM (DisAmbiguation of TDOA mea-
surement in Multisource MultiPath) algorithm [33], [34], [35],
[36], [37]. In its original formulation, DATEMM selects the
TDOAs to be used for localization from a number of candidate
peaks in the GCC exploiting geometric constraints. In this man-
uscript, we rethink the DATEMM algorithm in order to render it
suitable for the scenario of distributed networks of small micro-
phone arrays, where the reduction of computational complexity
is of utmost importance. In particular, from DATEMM we in-
herit the zero-sum condition (TDOAs over closed-loop micro-
phone paths must add to zero) and propose a two-step proce-
dure: the zero-sum condition on cyclic paths is first used for
narrowing down the set of GCC peaks; we then define and use
criteria based on the overall shape of the GCC and on the mag-
nitude of the peaks of the candidate TDOAs to select the final
TDOA estimates. This second step is partially inspired by pre-
vious works [38], [39], [40], [41]. Notice that one key feature
of this approach is that TDOA selection can be performed lo-
cally (at node level), and many operations can be implemented
in the form of simple sums and lookups on precomputed tables.
The impact on the computational cost is therefore very modest
compared to the original DATEMM algorithm.

In order to perform source localization, we start from the
space-range method introduced in [19] for 2D geometries and
further investigated in [42], and re-formulate it to render it suit-
able for 3D localization. We will see that, in the 3D geometric
space, TDOA measurements and microphone positions define
the surface of a hyper-cone, whose apex corresponds to the
source location. Therefore, localizing the source means finding
the hyper-cone that best fits the measurements through the min-
imization of a cost function. As done in [19], we show that this
representation can be fruitfully used to accommodate the case of
unsynchronized sensor nodes. TDOAs coming from unsynchro-
nized sensors, in fact, suffer from a shift along the range axis
(which is only one of the dimensions of the space-range frame).
The cost function can therefore be defined to accommodate this
shift, and enable simultaneous source localization and realign-
ment of measurements. In this work, however, the cost function
is modified to account for all the possible TDOAs within each
sensor node. Therefore, with respect to [19], we relax the con-
straint of having to work with a reference microphone for each
node.

In order to further improve the localization accuracy, we in-
clude an a-posteriori refinement step, which is based on the
evaluation of the residual of the hyper-cone fitting cost func-
tion. If the residual exceeds a prescribed threshold, we search
for the sensor nodes that are responsible for corrupted TDOAs,
and remove their contribution to the cost function. Localization
is then recomputed without such contribution. Simulations and
experimental results show that this refinement procedure greatly
improves the localization accuracy.

This manuscript is organized as follows. Section II provides
a brief overview of some state-of-the-art techniques, formulates
the problem and introduces the notation used throughout the
manuscript. Section III explains the overall localization pro-
cedure detailing each step. An analysis of the computational
complexity is given in Section IV. Section V describes some
experiments and compares localization accuracy and computa-
tional cost with a well-known state-of-the-art technique. Finally,
Section VI draws some conclusions.

II. PROBLEM FORMULATION AND BACKGROUND

In this manuscript we discuss the problem of acoustic
source localization using Distributed Sensor Networks (DSN)
in the presence of reverberations. Our goal is to achieve
state-of-the-art localization accuracy and robustness with a
significant reduction of the computational complexity.

With reference to Fig. 1, let us consider a spatial distribution
of L independent and unsynchronized nodes. Each node is
equipped with a compact microphone array that accommodates
N® microphones, I = 1,..., L. Let mgl) = [mgl), yi(l), zi(l)]T
i =1,...,N® be the 3D coordinates of the ith microphone
of the /th array. We assume that only the microphones that
belong to the same array (node) are synchronized. This means
that we can only estimate TDOAs of microphone pairs that
belong to the same array, i.e., only the TDOAs 7:7;(;) computed
between the ith and jth microphones of the same node / are
available. The source is assumed to be at the unknown location
Xs = |zs,¥s,zs|T. With no loss of generality we center
the reference system at the first microphone of the first array,
ie., mgl): [0,0, O]T. With reference to this scenario, in this
Section we briefly outline some state-of-the-art methods for
TDOA extraction in challenging situations. We then introduce
the framework for source localization from TDOAs, pointing
out the problems that need to be addressed for distributed
sensor networks.

5

A. TDOA measurements in adverse environments

The TDOA measures the difference between the times of ar-
rival of an acoustic wavefront at two given microphones. In
ideal conditions (no reverberation or any other forms of interfer-
ences) TDOAs are quite straightforwardly estimated using the
Generalized Cross Correlation (GCC). Given the time-discrete
signal sgl) (n) acquired by the ith microphone in the Ith array,
the GCC between the 7th and jth microphone of the same array
is computed as

RY(n)=F!

ij
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Fig. 1. Setup of the distributed acoustic sensor system.
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Fig. 2. Graph representation of a microphone array. Each graph node is a mi-
crophone, while each branch is a TDOA. Dashed and solid lines represent two
different closed circuits. The sum of signed TDOAs over closed circuits must
be zero.

where F is the Discrete Fourier Transform (DFT), F ! is its
inverse and the superscript # denotes complex conjugation.
The discrete-time TDOA estimate (expressed in samples)
corresponds to the time lag ﬁg? that maximizes the GCC. The
time-domain TDOA is given by ﬁ(j) = ﬁg) /Fs, where Fy is
the sampling frequency.

In the presence of reverberations, the GCC presents multiple
secondary peaks, the magnitude of which could be even larger
than that of the direct path of the target source. Even in such ad-
verse conditions, however, the GCC is still informative, as peaks
related to reverberation can be removed using some geometrical
and mathematical considerations based on signal propagation.
A popular algorithm developed for this purpose is DATEMM
[33], [34], which exploits two criteria: the raster condition and
the zero-sum condition. The former compares the autocorrela-
tion with the GCCs for discarding the GCC peaks generated by
reflections. The latter aims at matching peaks in the GCC to each
source that is present in the environment. The zero-sum condi-
tion exploits the fact that the sum of TDOAs over closed paths
of three or more microphones (i.e., paths that begin and end at
the same microphone) is bound to be zero (see Fig. 2). After
enabling the selection of feasible paths, DATEMM aggregates
further compatible microphone paths in order to extend the set
of available measurements.

Implementing the raster and the zero-sum conditions could be
too demanding for a DSN. In order to reduce the computational
cost, in [35] the authors show that the use of the sole zero-sum
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Fig. 3. Relation of the range differences measured between microphones m

and mgl) in the Ith array and the global reference microphone m(ll).

condition is, in fact, sufficient for discarding wrong TDOAs.
The goal of [34], [35], however, is to collect the largest number
of correct TDOAs without worrying about outliers. This, in a
scenario like ours, would cause the TDOA selection process to
become overwhelming. Moreover, as shown in Section V-A,
just a few correct TDOAs are sufficient to accurately localize
the source but the presence of even a single outlier in the TDOA
set (e.g., a TDOA related to a reflected path) would severely
affect the localization accuracy. This is why the selection of
accurate TDOAs is very important to us, and we base that upon
criteria related to the quality of selected measurements, which
are inspired by [39], [41] and are based on the overall shape of
the GCC from which the TDOAs have been extracted.

B. Localization from unsynchronized TDOAs

In [19], we proposed an algorithm for source localization that
envisions the collaboration between unsynchronized arrays. In
that setup, however, a reference microphone for each array was
defined. In this manuscript we remove that condition, and define
a single global reference microphone.

With no loss of generality, we set the origin of the time axis on

the global reference microphone mgl). Moreover, TDOA mea-

surements 7~_1(Jz) are converted to range differences ?"g) =7 ﬁ(j),
by simply scaling each value according to the propagation speed
of sound 7. If we define with r the range difference between a
microphone located in a generic point x = [x,%, z]7 and the

reference one, we can write that

(1)

[xs = x| = [lxs —my || = 7. ()

By inserting rg = —||xs — mgl) |l into (2), after expanding and
rearranging the terms we obtain

(r—z5) +(y—ys)’ +(z—25)" = (r—rs)*.  (3)

Eq. (3) describes a hyper-cone in the space-range refer-
ence domain (x,y,z,7), with apex in the source location
(zg,ys, 25, Tg). For the ith microphone in the /th array we can
write that

(@) —2)? 4 (1) —ys)?+ (2 — 25)? = (r{V —rs)%. (@)

The term r,l-(l) represents the range difference between the ith

microphone in the /th array and the global reference microphone
(1 . o _ OIS D

m; ’,ie,r;’ = |[xg—m;’||—|xs—my; ’||. Due to the lack of

synchronization, ;* cannot be directly measured. However, as

shown in Fig. 3, it is possible to relate 'rl(l) to the range difference
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Fig. 4. Overall system block diagram.

-

! ! .
lxs — mg )H —|lxs — m; )|| measured between the pair
of microphones mgl) and mgl). In particular, we can write

r = fxs — m"| — [1xs —m{"||+
Hixs —mi? |~ flxs —m{?] =
=740, ®
where
ry) = lxs —ml| ks — i, ©

By using (5) in (4) we finally obtain

@ —as+ @ —p+ (5 -2 =)
l ! 1
= (7 +|lxs - m{V|| - xs — m{V)| - rs)?.

In doing so, we do not need to explicitly estimate the range
offsets (as done, e.g., in [43]), since (6) constrains r](!) to xg.
Therefore, in (7) the only unknowns are zg, ys, s and rg,
i.e., the coordinates of the source in the space-range reference
frame. Notice also that (5) assumes the knowledge of the mi-
crophone locations in a common reference frame. Several al-
gorithms are available in the literature for the self-localization
of arrays [44]-[47]. This problem, however, goes beyond the
scope of this manuscript. We, therefore, assume the arrays to be
calibrated in advance.

As we can see, the 3D acoustic source localization problem
has now become that of finding the hyper-cone that best fits
the data [z{", 50", 2V, FV1T, i = 1, NO 1 = 1,.. L,
where ?fj) denote the measured range differences. The first three
coordinates of the hyper-cone apex X5 = [23, s, 2s]? yield
the estimate of the source position xg.

III. SOURCE LOCALIZATION SYSTEM

The acoustic source localization system that we propose is
based on the scheme of Fig. 4. As a first step, TDOAs are es-
timated from the acquired signals. In order to do so, GCCs are
computed for all the microphone pairs of the same node. Mul-
tiple TDOA candidates 7 are estimated from the peaks of the
GCCs. Then, a TDOA disambiguation system is applied to se-
lect physically acceptable TDOA combinations 7+ that are re-
ferred to the same source. At this point, 3D source location

estimate X are computed from the selected TDOAs through
the minimization of a suitable cost function. The residuals of
the cost function 51(‘;') are used for computing a reliability index
related to the estimated source location. If this index exceeds
a prescribed threshold I'., the TDOAs that pertain the sensor
node that introduces the highest residuals are marked as out-
liers. This check is repeated iteratively until the reliability index
goes below the threshold or a minimum number of sensor is
reached. Eventually, the outliers are removed from the set of
TDOAs, and source localization is repeated in order to obtain a
refined estimate. In the following we provide a detailed descrip-
tion of each algorithm’s step and analyze the system computa-
tional complexity.

A. Computation of the TDOAs

The first step is the computation of the GCC for all the “intra-

node” microphone pairs, for a total of w GCCs per
array. In the DSN scenario each node is usually equipped with
just a few microphones (in our experiments N = 4, VI). As
TDOAs are independent from one node to another, for nota-
tional compactness, in this subsection we will drop the index
! and focus on a single array.

In real environments GCCs exhibit many peaks (as men-
tioned in Section II), which complicates the selection of the
correct peak. In order to solve this problem, we apply a dis-
ambiguation method that aims at selecting a small trusted set
of TDOAs belonging to a single active source for each array.
This is done by first selecting feasible TDOA sets, then ranking
them and selecting the best one.

TDOAs disambiguation. Disambiguation begins with the
selection of the TDOAs associated with the three largest peaks
of each GCC, as proposed in [35]. More formally, considering
the GCC R;;(n) between microphones ¢ and j, we select the
TDOA candidates ?ZZ = ﬁfj /Fs, 0 =1,2.3, where Ti;?j is the
lag associated to the oth peak in R;;(n). Considering all the
closed paths of three or four microphones, we build all the K
possible sets of three or four TDOA candidates. Denoting with
Ti the kth candidate set, we check the zero-sum condition for
each of them. The choice of checking the zero-sum condition
only on paths of three or four microphone has a twofold reason:
the former being that sensors are typically equipped with a small
number of microphones; the latter is that, as shown in Section V,
an accurate localization is possible with just four microphones



per node. Theoretically, for each feasible set 7, the zero-sum
condition

2k = E 7"";:0

Tfj €Tx

should be exactly verified. In practice, due to noisy TDOAs, z,
generally differs from zero. For this reason, in order to prelim-
inarily purge unfeasible measurements, we discard all the sets
T such that |z;| > T",, T", being a tolerance threshold (I', = 3
samples in our experiments). After this step, we are left with just
a few sets of physically feasible TDOAs 7.

Selection of TDOAs. The zero-sum condition is necessary
but not sufficient for determining the TDOAs that are associ-
ated to direct path from the acoustic source [34]. Consequently,
in order to select the set 7 that most likely contains TDOAs
belonging to the real source, we cannot rely only on TDOA dis-
ambiguation. Instead, we compute three additional quality mea-
sures associated to each 7. The rationale behind the selected
quality metrics is that a TDOA corresponding to a direct path
usually corresponds to the largest peak of the GCC [34]. More-
over, as shown in [40], TDOAs coming from large GCC peaks
with are more reliable than others. The first quality metric is
the average of normalized GCC peaks associated to TDOAs in
set Tr:

(1) 1 Ri;(nf;)
— _— 8
W 2 o) ®
I ETh

where |7z is the cardinality of the set 7% (i.e., |Tx| € {3,4}
depending on the considered closed-path length) and 77, is the
lag associated to TDOA 77;. What q(l) €10,1] descrlbes is the
magnitude of peaks of TDOAs in the set 7. The second quality
metric is the average between GCC maxima

(2) 1
= E max|R;;(n)], 9
qk |7—’;:| “ [ .7( )] ( )
3T

which is closely related to g, ) This quantity rates the GCCs
that originate TDOAs, instead of rating TDOAs. The third
quality measure is defined as the product of all ratios between
first and second peak, over all the GCCs used for generating
the TDOASs in the set Ty:

max[R;;(n)]

(3) _
L £¥ max(Ri;(n)]
3?;;&%

(10)

where maxs[-] extracts the second maximum value. The first-
to-second peak ratio is proved to be an effective measure of the
quality of the GCC [40]. Notice that the product is extended
to three or four values, depending on the considered closed-
circuit length. This results in a different weighting for circuits
of different length.

In order to associate a global quality measure to each 7z, we
use a linear combination of the above quality values:

Qk — ZAPQk ’

(11)

where ), is the weight of the quality measure q(p ), which are
to be experimentally determined and tuned to fit a specific envi-
ronment. Eventually, we find ¥ = arg max @, which denotes

k
the closed TDOA path 75 with the highest quality score.

B. Source Localization

Consider a source located at xs = [z3, ¥s, zS]T. If all range
differences were noiseless, the hyper-cone equation (4) would
be exactly satisfied. However, finite sampling frequency, finite
bandwidth of the source and noise in the acquisition circuitry
produce inaccuracies in the measurement chain. For this reason
we define the Hyper-Cone Equation (HCE) metric as

2 2 2
VX)) =@ ) oy
2

—F =) (12)
which measures how well (4) is satisfied by the point X =
[xT, 7|7 = [z,y,27]|T in the space-range domain. Here, ac-
cording to (6), 'rj(-l) =|x - mgl)H —|x = m§1)||. The corre-
sponding cost function is defined as

L NONO
EDIDID I EHC ) M)
I=1 i=1 j=1
where Pi(;) is an indicator function defined as
@ 70
0 otherwise

The set 7(” is obtained from the set T(l), and is defined to
contain the TDOAs relative to the best closed path accordm%

to the metric (11) for the Ith sensor node. In particular, T
contains: the TDOAs T(Jl) € T ; the TDOAs 7() = — i(]-
such that TZ(Jl € 7%1) ; and the zero-valued TDOAs 71;; = 0 for
which a TDOA with subscript ¢ (in any of the two positions)
exists in '7'—(” More formally,

T” [ = 0

l] ’ ]L
U {Tz‘(i

As an example, if T =

@) (1)
i ETE }U

l 1 1
o) =0: 3 et a3
{7'1(12)72”3 75}, then TV =

3 H ()
{7'12 7'23 7'31)} U {7'21 7'?5 ) )} U {7'11 72(2)7':'53

Itis important to observe that the dependency of the cost func-
tion in (13) from the global reference point mgl) is purely geo-
metrical. Thus, the cost function can be correctly evaluated even
when no TDOAs referred to the microphone at mgl) are consid-
ered (i.e., when 7'11 ¢ T(l i=2,...NQ),

The source location x g, along Wlth the term rg, is estimated
as

= arg min .J(X). (16)

X

Xs = [%5,7s]”

However, as J(X) is non-linear, we cannot exploit a trivial
closed-form solution to find its minimum. For this reason, the
minimization of J(X) is accomplished as in [19], where an iter-
ative optimization is formulated starting from a Taylor expan-
sion of the cost function. The rationale behind the minimiza-



tion approach is to approximate the cost function through lin-
earization, find the minimum of the approximated cost-function
in closed-form, update the linear approximation and iterate the
process until convergence.

To provide the reader a better insight into the minimization
procedure, let us consider the first order Taylor expansion of
the HCE metric around a given initial guess point X g

el (X) = el (Xs0) + Vel (X)| (X ~Ks0), (17)
5,0
where
0 _ o) 9P aeDix) 9 (x)
Vel (X) = [ 200 2l i 2] )

We can rewrite (17) using vector notation as

E(X) ~ E(X_SAO) + VE(X)IX&O - (X — Xsyg) s (19)
where we stack all the terms 6(7) (X) with Pi(;) # 0 into the
column vector £(X) and we build the Jacobian matrix Ve(X),
whose rows contain the gradient of the elements in (X} com-
puted using (18). Evaluating (19) in X5 leads to

e(Xs0) + VeX)lx,, - (Xs — Xs,0) @ e(Xs) =0, (20)
where £(Xg) = 0 holds by definition in case of noiseless mea-
surements. Rearranging the terms of (20) we obtain

Ve(X)|x,, - (Xs — Xs0) =~ —e(Xs0),
which leads to
Xs~Xso— Vel (X)xs, - e(Xs0). (21

where

Vel (%) 1x,, = [ VeT (X)), - Ve®),,,] Ve (X))

X5,0

23)
Notice that (21) provides us with a closed form solution for X g
if the HCE cost function were linear. Since it is non-linear we
need to resort to an iterative procedure. We estimate the source
position at iteration v with the linear model (21), we linearize
the HCE metric around the new source position estimate ac-
cording to (19), and iterate the process until convergence. More
formally, we can describe this iterative method by means of a
single update equation. The update equation at the iteration v
+ 1, starting from the estimate Xsﬂ, at the iteration v, is de-
fined as

E(XS.U)a

XSU+1*X5117VET( )X
S,v

(23)

The iterative process stops when IIXS w1 — Xs »|| goes below
a prescribed threshold. The source position is estimated consid-
ering the first three components of the vector XS = XS w1 at
the final iteration.

It is worth noticing that, according to (23), the source position
estimate depends on the initial guess X g ¢ (i.e., the initialization
point of our algorithm). In our experiments, X s o was chosen
as the center of the volume of potential source locations, still

Xs,0

enabling the iterative algorithm to always converge to the global
minimum in a few steps. This proves that the iterative method
does not strongly depend on the initialization point. Therefore,
we can conclude that, even though the proposed cost function is
non-linear, it is actually fairly smooth, thus easy to minimize.

C. Location Estimate Refinement

The estimate X5 of the source position can be inaccurate due
to the presence of outlier measurements. For example, the dis-
ambiguation procedure could fail for some sensors and lead to
TDOAs associated to an image source that satisfies the zero-sum
condition. In this paragraph we exploit the structure of the cost
function J(X) to detect potential outliers. This process is based
on the following considerations, confirmed by the experiments
of Section V:

» asmall set of correct TDOAs is preferable to a larger set
that includes potential outliers. In fact, a small number of
nodes and TDOAs are sufficient to guarantee good local-
ization accuracy, while the presence of just a few outliers is
sufficient cause of relevant localization errors. This is quite
common to most regression problems [48];

+ if most of the measurements are associated to the correct
source gosition an analysis of the distribution of the resid-
uals 5 of the cost function in (13) can be used for de-
tectlng potentlal outliers (which are expected to produce
higher residuals [48]);

 the last condition is often verified if: i) the sensors are
sufficiently far from one another; ii) the spatial node dis-
tribution enables the observation of the scene from mul-
tiple points of view. Under these assumptions, we trust
that some sensors will be in good visibility conditions and
produce correct TDOAs. The remaining sensors are more
likely to be affected by reverberation and to produce out-
liers. Anyway, as different nodes are unlikely to be in the
line of sight of the same image source, most of the coherent
measurements are expected to come from the real source
to be localized.

These considerations suggest us how to define a suitable
reliability index. As already explained, the source localiza-
tion problem can be seen as a hyper-cone least-square fitting
problem. At the end of the localization iterative procedure, the
set & = {sz(-j-) (Xs) : Ti(j) € ’7_“(1),1 = 1,... L} represents how
well each TDOA measurement fits the hyper-cone in terms of
least-square residuals. It is thus possible to check the value of
each component of £ to detect whether some measurements
are not compatible with the others. As suggested in [48] for
generic fitting problems, we compute the standard deviation of
the set £ as

gg — — (24)

where || is the cardinality of the set, € is an element of the
set, and £ is the average value of the set. The standard devia-
tion is then compared to a threshold T's. If o¢ > T'¢ the esti-
mate requires to be refined. In order to do so, we search for the
TDOA associated to the maximum value in &£. This points to
the sensor node that worst fits the hyper-cone. We then remove
all the measurements associated to this sensor, as they are likely



to identify a reflected source. We do so by deleting the corre-
sponding 65-? values from &£ and re-computing og. We iterate
this procedure until g < I'y or a minimum number of sen-
sors has been reached. At the end, the source location is re-es-
timated using the algorithm in par. 3.B. As noticed before, the
choice of the global reference point is independent of the set of
TDOAs used for localization. Therefore, the global reference
microphone mgl) can be selected as reference even when the
first sensor node is an outlier.

Notice that the TDOA outlier identification procedure is com-
putationally efficient (details are provided in Section IV). The
values of &, in fact, are already available after the initial lo-
calization. Moreover, the re-estimation only happens once, i.e.,
when all the outliers have been purged. The proposed technique
is therefore suitable for the considered distributed sensor net-
work scenario, as all the computations take place in the node
used for the localization, without requiring any further data ex-
change between nodes. To summarize, the pseudo-code of the
algorithm is shown in Alg. 1.

Algorithm 1: Pseudo-code of the proposed localization system

Data: Microphone positions mgl) v and acquired signals
{1 )

S N(Z)( )
Result. Source location estimate X g
Forl =1,...,L do

Compute the GCCs R(l)( )

Perform peak-picking and TDOA disambiguation to
obtain the sets 7 of candidate TDOAs

Perform TDOA selection on 7 to obtain the set of
TDOAs Tz.

end
Compute the source location estimate X g and the residuals
O x
&5 (Xs)
Compute the variance o, of the residuals 5( )(XS)
if 5. > I'; then
while #. > I'. and Number of used arrays > 2
do

Remove the array with the highest contribution to
J(X)

Recompute o,
end
Compute the refined source location estimate Xg
end

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we analyze the computational cost of the pro-
posed system. We first provide details about all the functional
blocks composing the algorithm, then we estimate the com-
plexity of the whole system.

A. Complexity of the individual components

For simplicity, we assume that the number of microphones in
the sensor nodes is constant, i.e., N& = N for] = 1,...L.

Signals at the microphones are analyzed on a frame-to-frame
basis, and the length of the frames is A /2 samples. For each
frame, the following operations are required:

GCC computation. The GCC (1) is computed for all the mi-
crophone pairs, whose number is F = N(N — 1)/2 for each
sensor node. We distinguish among the following steps:

+ computing FFTs (Modified Split-Radix alg. [49]): N X

L x 3 M log, (M) multiplications/additions;

* computing the cross-spectra: 4 x F x L x M multipli-

cations and 3 X F' x L x M additions;

* spectral processing: 4 x F' x L x M multiplications, 3 x I

x L x M additions, F' x L x M square roots, and ' x L x M
divisions;

» computing IFFTs: F' x I, x ?;3—4]% log, (M) multiplications/

additions;

TDOAs disambiguation and selection. In each node, there
exist G = (Y)EU = (Myand 0y = (V) B3R! = 3(%)
independent closed paths (loops) of 3 and 4 microphones, re-
spectively. Therefore, starting from 3 peaks extracted from each
TDOA, the number of candidate loops of length 3 is Q3= 33Cj;
and that of length 4 is Q4= 3Cy. The resulting L x (Q3 + Q)
combinations can be stored in a lookup table, which can be com-
puted offline. The computational cost of disambiguation and se-
lection, at run-time, can be summarized as follows:

+ extracting the highest peaks from each GCC: F' x L X

(M — 1) additions (to compute numerical derivatives), F'
x L x (M — 2) comparisons (to compute the sign of
derivatives), A7 comparisons (to find the highest peaks);

« selecting loops that satisfy z;, < T',: (3xQ3+4xQ4)x L

comparisons;

* computing max [R;;(n)] for all the sets 7y: (3 X Q344 X

Q4) x L comparisons;
« verifying the zero-sum condition: (3 < Q3 +4 X Q4) x
L additions, and (Qs + Q4) x L comparisons;

+ computing qk (8) (3 x Q3 + 4 x Q4) x L additions,

comparisons, and divisions;

+ computing qk (9) (3x Q3 +4xQy) x Lsums, (Q3 +

Q4) X L d1v1s1ons
 computing qk (10) (Qs +Q4) x L divisions, (3 x Q3 +
4 x Q4) x L multiplications;

 computing the quality values Q; (11): 3x (Q3+Q4)x L

multiplications, 2 X (Q3 + Q4) x L additions;
* extracting the best Q. score: (Q3+@4)x L comparisons.
» Source localization. The minimization of the cost function
(13) follows an iterative procedure, based on the computa-
tion of the first-order Taylor expansion of JJ(X). Here we
give an upper bound of the complexity, corresponding to
the case in which all ava1lable TDOA measurements are
used for each node (i.e., P = 1,Vi,Vy, V). Bach itera-
tion of the minimization procedure involves the following
operations:
+ computing the residuals (12): 8 x I, x N2 additions, 4 x
L x N? multiplications;

+ evaluating (13): L x N2 multiplications and additions;

+ computing the Jacobian matrix Ve: 108 x L x N2 addi-
tions; 64 x L x N2 multiplications; 6 X L x N 2 divisions;
16 x L x N? square roots;



+ computing the pseudo-inverse (22): 16 x (L x N?) mul-
tiplications and 16 x (L x N? — 1) additions for the term
[VeT Ve]; 376 multiplications and 103 additions for its in-
version; 16 x L x N? multiplications and 12 x L x N?
additions for determining VaT;

+ applying the update equation (23): 4 x L x N? multipli-
cations, 3 x L x N2 + 4 additions;

Reliability check. The computation of the reliability consists
of evaluating (24), which, in the worst case, involves: L x N2 4
1 additions, L x N? multiplications, 1 division and 1 square
root. Finally, L x N? comparisons are needed for detecting the
potential outliers.

B. Overall computational cost

Assuming that all the basic operations (additions, multiplica-
tions, divisions, comparisons, square roots) have the same cost,
we can estimate the computational cost in terms of the total
number of operations. We denote with I, the average number of
iterations needed for (23) to converge to the optimum solution.
Moreover, we set to L — 2 the maximum number of nodes that
can be discarded after repeating the reliability check. Thus, in
the worst case, the check is repeated exactly L — 2 times, and the
localization step is performed twice. Under these assumptions,
the number of operations required by each functional block are
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ALMN |2(N —-1) + 9 log, (M) (25)
for computing the GCCs;
M + L[810(C3 + 3.8Cy 4+ 5.4C5Cy) ] +
+ L[N(N —1)(M — 1.5)] (26)
for the TDOA disambiguation and selection;
2 x I, x (2T5LN? + 467) 27)
to execute 2 source localizations; and
(L —2) x 3(LN* 4-1). (28)

to perform L — 2 reliability checks.
The total number of operations required for executing the
complete system is thus given by the sum of the terms (25)-(28).

V. EXPERIMENTS

In this section we evaluate the proposed localization system.
After presenting some preliminary simulations aimed at val-
idating specific steps of the system, we test the localization
method in a real scenario. Results of the experiments are com-
pared to those obtained through the state-of-the-art Stochastic
Region Contraction (SRC) algorithm [20].

A. Simulative Validation

In this paragraph we are interested in assessing the validity of
the iterative method used for the minimization of the cost func-
tion proposed in Section III-B. Although the cost function has
already been validated in [19] for 2D geometries, here we aim at
testing the minimization algorithm under several operation con-
ditions. Moreover, we aim at validating the reliability criterion
introduced in Section III-C.
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Fig. 5. Simulation setup. (a) geometry of the setup (b) {th sensor node.

For this set of tests, we considered the simulation setup in
Fig. 5-(a), where L = 4 sensor nodes were employed to lo-
calize a source xg ina 3 x 3 x 3 m? cube. Each node consists of
N = 4 microphones, disposed as in Fig. 5(b). The first micro-
phone of the /th node (i.e., mgl)) is placed at one vertex of the
cube, as in Fig. 5(a). We tested 500 source positions, uniformly
distributed within the cube. We simulated the measurement of
the TDOAs by corrupting the nominal values Ti(;) with L.I.D.
additive zero-mean Gaussian noise. We set the standard devia-
tion to o, = o/, o, = 0.7 cm, which corresponds to an error
of approximately one sample at Fy; = 48 kHz. Throughout this
paragraph, we will specify the error on the TDOAs by means
of the term o,, which refers to the standard deviation of the
error on the nominal range differences rg) =7n- Ti(;). For each
test source position, we obtained a set of 6 TDOAs for each
sensor node, for a total of 24 TDOA values. With the aim of
simulating the TDOA selection procedure, for each test posi-
tion the source was localized using different subsets of TDOAs
extracted from the 24 available. More specifically, we extracted
subsets of V; = 3,4,5,6 TDOAs chosen from V,, = 2,3,4
sensor nodes. For each pair (V;,V;,) we simulated Z = 5000
Monte-Carlo trials, where both the active sensor nodes and the
subset of TDOAs were randomly selected at each repetition. No-
tice that the case (V; = 6,V,, = 4) coincides with that of using
all the 24 measurements; while V; = 3 and V; = 4 represent
the number of TDOAs that define the loops considered in the
TDOA disambiguation procedure. For each source position we
computed the Root Mean Square Error (RMSE)

1 4

Blxs) = | 5 2 I%s(i) — x|,

i=1

where Xg(i) denotes the estimate of the source at the ith
Monte-Carlo trial. Moreover, we computed the Cramer-Rao
Lower Bound (CRLB) [17], given by the terms 03 (x5), o2 (Xs)
and o2(xg). They represent the lower bound on the variance
of an unbiased estimator of the source position, for the z, ¥,
and z coordinates, respectively. In all the considered tests, the
bias of the estimation turned out to be negligible (< 0.15 mm
for all the spatial dimensions). It follows that the proposed
estimator can be considered unbiased. Moreover, the RMSE
corresponds to the variance of the estimator, thus the term

Y(xs) = y/oi(xs) + 07(xs) + 02(xs) represents the lower
bound for the RMSE, i.e. F{xg) > X(xg).
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The results of the simulation are shown in Fig. 6, which re-
ports the average RMSE E for the considered configurations,
obtained by averaging FE(xg) over all source positions. The
dashed line in Fig. 6 represents the average lower bound B,
whose value was computed averaging 3(xg) for all the tested
positions. We observe that, when all the 24 TDOAs are adopted
for the localization, 7 approaches the bound B, thus confirming
that the minimization procedure converges to the optimum so-
lution. Moreover, we notice that reducing the number of mea-
surements used for the localization has a limited impact on the
accuracy. In fact, even in the most challenging case with V;, = 3
and V,, = 2, corresponding to localizing with only 6 TDOAs,
E maintains below 8 cm.

We now focus on the reliability function defined in (24). Con-
sidering again the setup described before, we conducted several
tests. First, we investigated the behavior of the function o¢ when
the TDOAs are affected by L.I.D. additive zero-mean Gaussian
noise. The results are shown in Fig. 7, which shows o¢ and
E as a function of the standard deviation o, of the noise ap-
plied to the nominal TDOAs. The results were obtained con-
sidering V; = 6 and V,, = 4, averaging the outcomes of 5000
Monte-Carlo trials. Notice that both o¢ and E are directly pro-
portional to o,.. Consequently, the reliability function can be in-
terpreted as an indicator of the accuracy of the localization. In
fact, in the absence of outlier measurements, we expect small
values of o¢ (e.g., 0g¢ < 20 cm when o, < 4 cm). In the real-
istic case of noise of standard deviation ¢, = 0.7 cm, we ob-
tained o5 2~ 3 cm and E = 2.7 cm.

In order to gain more insight into the function ¢, we studied
its behavior also in presence of outlier measurements. In par-
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Fig. 8. o¢ (a) and RMSE localization error F (b) as a function of the range dif-
ference error A R and number of corrupted TDOAs O (a) reliability (b) RMSE.

ticular, we computed the value of o¢ when a number O of
TDOAs (considered as outliers), randomly selected from the
full set of measurements, were corrupted with a bias equal to
AT = AR/7. As before, we specify the bias on the range dif-
ferences, by means of the term AR. Similarly to the previous
tests, for each (O, AR) pair we run 5000 Monte-Carlo trials.
Results are shown in Figs. 8(a) and 08(b), which show the reli-
ability o¢ and the average RMSE E, respectively, as a function
of O and AR. We first notice that the trend of E is highly cor-
related to that of ¢, thus confirming the validity of the latter as
an indicator of the reliability of the estimation. We can also ob-
serve that ¢ rapidly increases in the presence of outliers. As an
example, when O = 6, which equals the number of TDOAs
measured in one sensor node, we obtained g ~ 22 cm for
AR =10cm; o ~ 44 cm for AR = 20 cm; ¢ ~ 85 cm for
AR = 40 cm. In the light of these considerations, it is reason-
able to mark as unreliable an estimation if o¢ is above a certain
threshold I'z. The analysis of Fig. 8 confirms that the presence
of biased TDOAs introduces relevant localization errors, which
is one of the assumptions which the localization refinement step
is based on (see par. III-C).

Finally, we show an example of detection of potential
outliers from the TDOA measurements, focusing on two
realizations of the previous simulation. In particular, we ran-
domly selected one source position xg, and we considered the
cases of introducing 3 outliers within 1 and 2 sensor nodes,
adding a bias AR = 40 cm to the corresponding TDOAs. The
resulting RMSEs are E(xs) = 52 cm for the first case, and
E(xs) = 74 cm for the second case. The reliability function is
og = 47 cm and og = 75 cm, respectively. These values are
considerably higher than the threshold I's = 10 cm, selected
as the value of oz which corresponds to TDOAs affected by
1.I.D. additive Gaussian noise with o, = 2 cm. The localization
results are thus marked as unreliable, and we detect the outliers
by observing the individual contributions of the cost function,
i.e., the values in the set £. Fig. 9 shows the terms £2,¢ € &,
grouped by sensor nodes, in the case of one (a) and two (b) cor-
rupted nodes. The height of the peaks associated to the outliers
makes possible to detect them. In these two particular cases,
outliers are present in the second node (case in Fig. 9-(a)); and
in the second and fourth nodes (Fig. 9-(b)). Fig. 9 confirms
therefore that it is possible to identify the nodes containing the
outliers, as assumed in par. I1I-C.

B. Experiments in a Real Setup

We now consider the implementation of the localization
system in a real setup. I = 4 sensor nodes with N = 4
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microphones, with the same internal geometry of the nodes
in Fig. 5, were installed in a medium-sized reverberant office
room. The room measures 7 x 7 x 3m?® and we estimated a
reverberation time RTgq = 0.73 s. Each sensor accommodated
4 identical Beyerdynamic MM1 measurement microphones,
with a capsule of 9 mm of diameter. Similarly to the setup
in Fig. 5, the nodes were placed at 4 vertices of a volume
of size 3.8 x 2.5 x 1.8 m? delimiting the potential positions
of the source. We defined 36 test source positions within the
volume, disposed on 3 horizontal rectangular grids at dif-
ferent heights from the bottom side, namely at z = 0.4 m,
z = 0.7 mand z = 1 m. Each grid arranged 3 x 4 sources with
a spacing of 0.75 m on the = coordinate and 0.9 m on the y
coordinate. A small loudspeaker (whose cone has a diameter
of 4 cm) was moved in all the 36 positions, and emitted 30 s
of white noise and 30 s of a speech signal at the sampling
frequency I'; = 48 kHz. Acquired signals were segmented in
frames of length 4096 samples, corresponding to a duration
of about 170 ms. As far as the speech signal was concerned,
we discarded the silent frames using the technique described
in [50]. For all the tested source locations, the estimate was
accomplished with the proposed methodology and with the
Stochastic Region Contraction (SRC) method, presented in
[20]. SRC is a relaxation of the SRP technique, which revealed
to be particularly suitable for real-time applications. For the
tests we adopted the SRC Matlab implementation released by
the authors! selecting 3000 initial random points (i.e., using
the default parameters of the implementation). The metric
used for the evaluation is the RMSE. In order to quantify the
computational complexity of the algorithms under analysis, for
each frame analyzed we kept trace of: the average number of
evaluations Ig of the SRC functional; and the average number
of iterations I, required for minimizing (13).

Fig. 10 shows the RMSE obtained with the proposed local-
ization system (a,b,c) and with SRC (d,e,f). Each group of three
diagrams refer to the three grids at different heights from the
bottom of the volume. For each source position, the radius of
the circle represents the RMS localization error. Notice that the
proposed algorithm achieves performances comparable to that
of SRC for all the considered source positions. The localization
of speech sources, shown in Fig. 11, where the diagrams are or-
ganized as in Fig. 10, confirms this fact. Due to the nature of
speech signals, which yield noisier GCC functions, the RMSE
is slightly higher than the one obtained with the random noise
signal.

Thttp://www.lems.brown.edu/array/download.html
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As far as the computational cost is concerned, SRC required
on average I, = 32327 evaluations of the functional; while
an average of I, = 10 iterations guaranteed the convergence
of the gradient method used for minimizing the proposed cost
function. Each evaluation of the SRC functional requires 5 op-
erations for each microphone pair [20], thus, in the considered
setup, the complexity of SRC is equal to BLN(N — 1) x I
operations. Both proposed technique and SRC rely on the com-
putation of LN(N — 1) GGCs, which, according to (25), re-



TABLE 1
AVERAGE COMPUTATIONAL COMPLEXITY OF THE
PROPOSED AND THE SRC APPROACHES

[ Technique | Steps | N. of operations |
TDOA disamb. and selection 661 - 103
First localization 9.103
PROPOSED Reliability check 195
Final localization 9.103
total 679 - 103
| SRC | total | 7758 - 103 |
TABLE II

RMSE ON x, y AND z COORDINATES CONSIDERING BOTH RANDOM NOISE
AND SPEECH. RESULTS ARE SHOWN USING SRC AND THE PROPOSED
SYSTEM BEFORE AND AFTER THE LOCALIZATION REFINEMENT STEP

RMSE, RMSE, RMSE.
[em] [em] [em]
proposed el
Random | (before ref.) 18.85 13.28
Noise proposed e
(after ref.) 4.02 345 6
SRC 3.94 3.96 5.01
proposed >
(before ref.) 32.60 2272 3.63
Speech Sroposed
4.83
(after ref.) 5.04 4.59
SRC 5.60 5.52 6.12

quire 22 16 - 10% operations. The complexity of the remaining
steps is summarized in Table I, which compares the number of
operations required by the proposed method and by SRC (ex-
cluding the GCC step). For the proposed method, the TDOA
disambiguation and selection is dominant in terms of opera-
tions. Indeed, the cost of localization and the refinement turn
out to be almost negligible in evaluating the overall complexity
of the system. For the considered scenario the cost of the pro-
posed technique turns out to be over 10 times smaller that of
the SRC method. For the sake of comparison, we can also es-
timate the number of operations required by the standard SRP
method, which estimates the source position evaluating the SRP
functional in all the points that sample the volume of interest.
Assuming a sampling of 2 cm? of the considered volume (3.8 x
2.5 x 1.8 m*), SRP would require I, = 2137500 evaluations
of the functional, corresponding to ~~ 256 - 10° operations. This
suggests that SRP is less suitable for real-time operation in this
specific scenario.

Table II details the RMSE scores on the three spatial coor-
dinates for both the proposed and the SRC algorithm. As for
the proposed method, we included the localization results be-
fore the reliability check, i.e., before discarding potential out-
liers from the set of measurements. The comparison with the
results obtained after the reliability check highlights the impor-
tance of this operation, which leads to a significant reduction
of the RMSE. This is especially true for the localization of the
speech source, where the reliability check allows to reduce the
RMSE from values > 22 cm to about 5 cm.

Also interesting are results in Table III, which details the per-
centage of localizations accomplished by using 4, 3 and 2 sensor
nodes, adopting the proposed method. The percentage of local-
izations of the random noise source with 4 nodes is very high
(= 84%), meaning that in most of the cases the reliability check

TABLE III
PERCENTAGE OF LOCALIZATIONS USING A DIFFERENT AMOUNT OF
ARRAYS FOR BOTH RANDOM NOISE AND SPEECH SIGNAL

4 Arrays 3 Arrays 2 Arrays
Random 83.95% 5.13% 10.92%
Noise
Speech 66.05% 3.88% 30.07%
TABLE IV
PERCENTAGE OF REMOVED OUTLIERS

AR [cm] | TPR | TNR | FPR | FNR

5 91.1% | 100% 0% 8.9%

10 96.9% | 100% 0% 3.1%

is positive and no refinements are necessary. When the speech
source is considered, this percentage drops to about 66%, con-
firming that the TDOAs extracted from the GCCs are less reli-
able in this case. When the reliability check fails, the localiza-
tion is more likely to be performed through 2 nodes instead of
3. This is not unexpected, as 2 is set to be the minimum number
of nodes used for localizing a source. In fact, a single node may
lead to very inaccurate estimates, particularly when the source
is in far field with respect to that node. Consequently, when the
reliability check fails twice, the 2 remaining nodes are always
used for the localization, even if a further reliability check would
possibly fail again. Nevertheless, in almost all the cases, we ob-
served that the TDOAs coming from the 2 remaining nodes are
free of outliers.

Finally, Table IV shows some statistics about the ability of
the proposed algorithm to detect the presence of outlier mea-
surements in the real case scenario. To this purpose, we consid-
ered a node as affected by outliers if at least one of the range
differences measured by the sensor node were affected by an
error greater than A R with respect to the ground truth. We then
checked whether our algorithm was able to detect the outlier
exploiting the reliability index (24). More specifically, consid-
ering all the source positions and realizations, Table IV reports:
i) the true positive rate (TPR), which is the percentage of nodes,
averaged over all the realizations, affected by outliers that were
correctly detected; ii) the true negative rate (TNR), which is the
percentage of nodes, averaged over all the realizations, not af-
fected by outliers correctly classified as outlier-free; iii) the false
positive rate (FPR), which is the fraction of nodes, averaged
over all the realizations, not affected by outliers but detected
as outliers; iv) the false negative rate (FNR), which is the frac-
tion of nodes, averaged over all the realizations, affected by out-
liers that were detected as non-affected. Results are reported for
two different values of AR, i.c., for both a more strict and less
strict outlier detection definition. Clearly, our goal is to maxi-
mize the TPR and TNR, while minimizing the FPR and FNR. It
is interesting to notice that we always detect (thus correctly ex-
ploit in our cost function) the nodes not affected by outliers (i.e.,
TNR = 100%). Additionally, we detect more than 91% of the
outliers, thus keeping less then the 9% of them after refinement.
This is the reason why the refinement step greatly improves lo-
calization accuracy.

VI. CONCLUSIONS

In this manuscript we proposed a system for the localization
of acoustic sources based on TDOA measurements that works



in a distributed sensor network scenario. The localization algo-
rithm is based on the use of the four-dimensional space-range
reference frame. Here, TDOA measurements describe the sur-
face of a hyper-cone, whose apex is the source location. Local-
izing the source, therefore, corresponds to finding the apex of
such cone. A cost function is defined at this purpose. In order to
improve the robustness against reverberation, a geometrically
motivated TDOA selection step is implemented. An estimate
refinement step follows the localization to further improve the
accuracy. The refinement is based on the analysis of the distri-
butions of the residuals of the hyper-cone fitting function. Sim-
ulative results prove the accuracy of the localization function,
showing the effect of the reliability-based refinement. Experi-
mental results validate the localization system in a real-world
scenario, comparing the proposed methodology with Stochastic
Region Contraction (SRC), an effective implementation of SRP.
Results confirm that the proposed technique attains at least the
same accuracy of SRP, while saving computational power. The
clear subdivision of tasks between sensor nodes and central
nodes, the reduced cost and the small amount of information
exchanged between nodes, make the proposed algorithm suit-
able for the considered scenario of distributed sensor networks.
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