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I. INTRODUCTION

D EVICE-FREE LOCALIZATION (DFL) [1] of objects or

people moving in confined areas covered by a wireless
network is made possible as the presence of obstacles affects
the radio waves nearby [2], [3] in terms of signal strength in
a way that strongly depends on the target position. Without any
additional sensor hardware, DFL methods enable the estimation
of the target location by simply measuring the received signal
strength (RSS) in both static [4] and dynamic [5] environments.
In line with the rapidly evolving software-defined radio (SDR)
paradigm, the DFL technology is expected to provide a pro-
tocol-independent infrastructure that supports sensor-less local-
ization and context recognition services tailored for industrial
and smart workspace applications. Despite some recent attempts
to model the fading effects induced by moving bodies on short-
range radio propagation [6], these mostly addressed inter- [7]
and intra-body [8] area communication systems for modeling
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body-induced propagation losses for narrow [9] or wide-band
[10] applications with the purpose of mitigating these effects.
Another important topic discussed so far is modeling of body
effects for critical network layout optimization [11]. A unified
physical model, for the prediction of the correlation between
the target location and the corresponding wireless field pertur-
bation, is still controversial as pointed out in [12] or too com-
plex to be of practical use in most scenarios, as based on ray
tracing techniques [13] or uniform theory of diffraction [7]. We
introduce here a novel and analytically tractable model for pre-
diction of the body-induced propagation loss found in DFL ap-
plications, modeling both the dominant static component and
the stochastic fluctuations of the power loss as a function of
the target location. This model, that extends the validity of the
one employed in [14], [15] for objects placed only along the
line-of-sight (LOS) path, is exploited to analytically compute
the Cramer-Rao Lower Bound (CRLB) to evaluate the theoret-
ical limits to localization accuracy over the whole 2-D link area.
The propagation loss by body shadowing greatly affects the RSS
[16] evenwhen considering amultipath environment where sev-
eral rays contribute to the received power. Therefore, in this
letter, electromagnetic (EM) field perturbations are modeled as
a combination of multipath and diffraction terms. The diffrac-
tion component, not considered in previous DFLmodels [12], is
defined here in closed form according to the simple knife-edge
diffraction theory [17] and embeds information about the target
location and size. Instead, multipath fading contributions uni-
formly impair radio communications for target located inside a
link sensitivity area that depends on the link geometry and ob-
ject size. In [11], the movements of the human body are only
considered in predetermined perpendicularly crossing and par-
allel paths with respect to LOS path, while the human body
is approximated by a homogeneous shape and its effects are
computed by using ray-tracing techniques. With respect to [15],
where the RSS perturbations were measured along the LOS path
during a training stage and [14], [18], where large obstacles are
placed along the LOS path by exploiting geometrical theory of
diffraction methods, the proposed model is able to predict the
induced power loss for any target (i.e., small or large) placed in
the 2-D area surrounding the link. Experimental results confirm
that the model can effectively capture the relationship between
the target position and the link RSS.

II. DIFFRACTION MODELS FOR DFL
We assume a radio link arranged in the 3-D space

as in Fig. 1. The target is modeled as a perfectly EM absorbing
rectangular 2-D surface [14] that is orthogonally placed w.r.t.



Fig. 1. Geometry of the radio-link layout.

the LOS segment connecting the transmitter (TX) and re-
ceiver (RX). In the literature [17], 2-D diffraction is widely
used to make deterministic prediction of diffraction losses.
This approach shows reasonably good results even if the 2-D
approximation of a generic 3-D target ignores important pa-
rameters such as polarization, permittivity/conductivity values,
surface roughness, thickness and shape [19]. The link is lo-
cated at distance from the floor without walls or ceiling and
the corresponding Fresnel’s ellipsoid [14] does not have any
contact with the other parts of the scenario except for the afore-
mentioned target: where is the wavelength while
is the RX-TX distance. According to standard short-range

propagation models [20], ground reflections are ignored, too.
The target barycenter is located in in the 2-D
horizontal space, with off-axis displacement . The target can
assume any orientation w.r.t. the LOS (i.e., the ob-
ject/person can turn while standing in ). The 3-D body shows
an equivalent 2-D surface having height and width

, where the semi-size changes
w.r.t. with and .
The electric field at the RX can be predicted as generated by a

virtual array of Huygens’ sources located on the obstacle plane
and not belonging to the obstacle itself. The electric field
due to the diffraction effects caused by the elementary Huy-
gens’ source of area having generic coordinates

is given in [14] as

(1)

where is the electric field at the RX due to the TX when
no obstacle is present. The following variable substitutions
are used: and where

is the Fresnel’s radius and
the distances w.r.t. the TX and RX, respectively. Eq. (1) is
valid when hypotheses ,

and hold true. These are realistic
assumptions for the target positioned on, or nearby, the LOS
(i.e, for small enough ) and wavelength much smaller than the
distances . By using (1), the electric field at the RX
is [18], while through the Fresnel cosine

and sine integrals [21] we get the electric field ratio
as

(2)

where , ,
and . de-

pends on the position and on the physical dimensions of the
obstacle and . For tall objects (i.e., )
placed near the LOS (i.e., ), an approximation of (2)
is found by using the asymptotic approximations [21] for
and (i.e., for ) as

(3)

with spatial frequency and
with

. This approximation captures the
physical effects of an obstructing target located inside the link
sensitivity area where the target influences the RF field.
This area is an eye-shaped zone centered on the LOS, with
length and width varying with (see Section IV). This
novel result extends the validity of the approximation adopted
in [15], [14] including not only the LOS (i.e., ) but also
the area near the LOS (i.e., ). The approximation
(3) overestimates the true field ratio along the LOS and can be
safely used only for tall obstacles that have semi-size .

III. STOCHASTIC MODELING OF HUMAN-INDUCED FADING
Assuming that the RX can measure the perturbation

according to (2) by observing the received
signal power , the aim of this section is to introduce an
analytically tractable model that relates to the location and
use it for localization of the target in DFL systems. The RSS
measurement , in logarithmic scale, observed over the link
sensitivity area can be modeled as a Gaussian random
variable [22]

(4)

where and refer to the case of being
outside (i.e., empty scenario) or inside the link sensitivity area

, respectively. The first term is a constant that de-
pends only on the geometry of the scenario and on the prop-
agation coefficients [18] while the second term is

with as in (2);
denotes the linear-to-dB conversion operator. The randomness
of measurements and the other scattering effects found in the
empty scenario are modeled by the Gaussian disturbance

with zero mean and variance . Multipath fading and
other random effects, not included in the diffraction model (2)
but dependent on the target presence in , are modeled by
the Gaussian noise with and

being the residual stochastic multipath fading terms [15].
The target-induced perturbations are evaluated in terms of

the average path-loss and power fluctuations assuming that the
target is standing in with varying orientation . To this aim,
the RSS mean and the variance are computed by averaging
over the azimuth . In case of target being outside ,
the RSS mean and variance are and

, respectively. These terms can be evaluated
from measurements performed during the calibration phase



when the link area does not contain any target. On the contrary,
the target presence modifies both the mean
and variance according to

(5)

(6)

where the RSS average and variance
increments are highlighted. Pertur-

bations of the RSS average and variance in (5)–(6) are there-
fore due to a combination of multipath reflections and diffrac-
tion effects. As confirmed by the results of Section III-A the
multipath terms and do not depend on the object
position [22] and can be easily estimated from measurements
during the calibration phase (i.e., they are not relevant for lo-
calization). On the other hand, the diffraction term
provides a simple but effective tool to predict the power pertur-
bation as a function of the target position and size. For the sake
of simplicity, here we approximate the expectations in (5)–(6)
by assuming that the target orientation can only take its extreme
values with equal probabilities

. Under these assumptions,
and can be expressed as

(7)

(8)

with ,
and defined in (2). The

sensitivity area depends on and therefore on ,
too. However, following the same approach of (5) and (6),
for and respectively, the equivalent semi-size

can be used to produce the same
average field ratio caused by the moving target.

A. Model Calibration and Validation

To validate the model of Section II, several RF experiments
and EM simulations have been carried out as summarized in
Fig. 2. Each RF test consists of two sets of RSS measurements
performed in a large hall. RSS data are acquired by pre-cali-
brated SDR devices (USRP N210) equipped with 2 dBi ver-
tical monopole antennas and using a single unmodulated car-
rier waveform at frequency GHz. The first data set
is collected with no target to compute the reference values
and . The second data set corresponds to a target located in-
side the link sensitivity area. Two experimental tests have been
conducted (s.1 and s.2 in Fig. 2). For both tests, the obstacle
has maximum and minimum semi-sizes m,

m m) while m; the same link-de-
pendent parameters are used: dB, dB,

m and m. RF data are collected to obtain
and for some known position , along and near the LOS.
Fig. 2 shows the measured and predicted values of the average
RSS increase , according to (7), for target located along

Fig. 2. Predicted average field ratio along and across the LOS path. Measure-
ments and PEC simulations are superimposed for comparison.

the LOS (on top, for ) and for target traversing
the LOS (at bottom, for ). Fig. 2 compares also
the results of the EM simulations obtained with the commercial
software tool FEKO. In this case, a 2-D perfect electric con-
ductor (PEC) surface is used instead of the absorbing one de-
fined in Section II but with the same physical dimensions as in
Fig. 1. Two scenarios are simulated: i) 2-D PEC obstacle over a
concrete floor (i.e., an infinite homogeneous semi-space placed
below the link at distance , with EM parameters and

) and ii) 2-D PEC obstacle without floor. With re-
spect to the measured values, the extra attenuation induced by
the PEC obstacle is apparent due to the different composition
of the obstacle, while the diffraction model (2) better approxi-
mates the effects of the human body.

IV. PERFORMANCE BOUNDS TO POSITIONING ACCURACY

We consider the estimation of the target position from the
RSS observations over links by exploiting the knowledge
of the mean and variance functions

, as defined in (5)–(6). The maximum positioning ac-
curacy, that can be reached by any unbiased localization algo-
rithm, is evaluated using the CRLB approach. The likelihood
function of the -th link is

(9)

Assuming that the power measurements are independent, the
joint log-likelihood function is .
The CRLB matrix provides a lower
bound to the covariance matrix for any unbiased esti-
mator of the target position [23] as

. The Fisher Infor-
mation Matrix (FIM) ( ) has elements
defined as .
According to (9), the FIM entries are

(10)



defined
By differentiation with respect to the target coordinates 
and , and using (7)–(8) with and
as in Section III, it is

(11)

with and . The partial derivatives
, are shown in (12)–(13) with definitions as in (2)

(12)

(13)

with ,
and being the first

derivative of the generic . By substituting (11) into (10), it
is straightforward to obtain and then .
The CRLB matrix is numerically evaluated to analyze the lo-

calization accuracy in term of Root Mean Square Error (RMSE)
of the position estimate along the two spatial coordinates,

and
, and the overall 2-D position accuracy

. The single
link ( ) CRLB is shown in Fig. 3–4 for an obstacle with
the same size as in Section III-A. In Fig. 3, the lower bound
to is shown for a target located along the LOS (

). Different dimensions of the target are also considered
to highlight their effects on the CRLB: in the central part of
the LOS path (i.e., between 2 and 3 m) large obstacles give
better positioning accuracy than smaller ones. Outside this
zone, there are large CRLB fluctuations even if, in practice,
the observed accuracy is comparable. In Fig. 4, the limit to
the position accuracy is evaluated for different
positions . As expected, the localization accuracy is highly
space-varying: the model predicts a higher sensing capability of
the radio link near the TX and RX, compared to the sensitivity
that is observed for targets located in-between. The localization
accuracy is reasonably high when the target is near the TX
and the RX: e.g., the CRLB is 6 cm for cm and

cm. For target in-between, the reduced sensi-
tivity may be counter-balanced by improving the multiplicity
of the links, as in the 4-node ( ) layout of Fig. 5 where

Fig. 3. CRLB to the location accuracy vs. the target coordinate
, for a target located along the LOS ( ) with different dimensions.

Fig. 4. CRLB to the positioning accuracy vs. the target location
for the single link topology. The area is highlighted.

Fig. 5. CRLB to the positioning accuracy vs. the target location
for a 4-node (2x2: 2 TX, 2 RX) network topology.

the CRLB for cm is 43.4 cm for while it
is m for .

V. CONCLUSIONS

An ad-hoc physical model, based on the EM diffraction
theory, has been proposed to describe the fluctuations of the
radio signal caused by the presence of a target between the
transmitter and receiver. The model, that has been validated
experimentally by several indoor field tests, relates the RSS
measurements to the target size, orientation and position.
Closed-form derivation of the CRLB has been obtained for
single and multi-link scenarios as a pre-deployment predictor
of the localization accuracy.
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