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Abstract

The electricity produced from renewable energy, in particular from wind and photovoltaic plants, has seen exponential rise in the last
decade. Consequently, the prediction of power produced from these plants is fundamental for the reliability, safety and stability of the
grid. This paper compares three physical models describing the PV cell (corresponding to three-, four- and five-parameter equivalent
electric circuit) and two thermal models for the cell temperature estimation (NOCT and Sandia). The models were calibrated and tested
towards ten monocrystalline and eight polycrystalline modules installed at SolarTechLab at Politecnico di Milano. The hourly error of
the forecasted power output is usually lower than 15 Wh, while NMAE% and WMAE% are in the range of 0.5% and 10%. Low errors,
calculated with actual weather conditions, suggest that the implemented models are accurate, but they cannot be directly compared with
other approaches which adopt weather forecasts. Results show that there is no clear advantage of using complex models, but the data
used for the model calibration mostly affect the model accuracy. It was found that forecasted power output are more accurate using
experimental data and Sandia’s thermal model in monocrystalline cells type, while for the polycrystalline the data from the manufacturer
and NOCT have lower errors.
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1. Introduction

The electricity produced by renewable energy sources
(RES) is constantly increasing world-wide thanks to gov-
ernment policies and technological advancements. Europe
has experienced one of the largest RES growths: in the last
five years the electricity generation by RES, and in partic-
ular by photovoltaic and wind plants, has doubled.

Challenges of controlling and maintaining energy from
inherently intermittent sources and of the grid-connected
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RES penetrating the distribution systems involves many
aspects: efficiency, reliability, safety, stability of the grid
and ability to forecast energy production.

Forecasting of PV/wind electricity production, as an
estimation from expected power production, is very impor-
tant to help the grid operators managing the electric bal-
ance between power demand and supply, and to improve
embedding of distributed renewable energy sources and,
in stand-alone hybrid systems, for the optimum size of all
its components and to improve the reliability of the iso-
lated systems.

In order to make energy supply planning rational, pre-
diction of RES production have to be made based on the
consideration of weather conditions and forecasts. Any
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Nomenclature

a experimental coefficient for high radiation and
no wind in the Sandia thermal model

a solar azimuth angle (�)
aISC temperature coefficient for short-circuit current
b experimental coefficient accounting for the wind

in the Sandia thermal model
b solar panel tilt (�)
bVOC temperature coefficient for open-circuit voltage
c panel azimuth angle (�)
h incidence angle between solar beam and surface

(�)
s glass transmittance
C capacitor of the measurement system (F)
CN net capacity of the plant (W)
DAT calibration from datasheet
eh hourly error (Wh)
eh;abs absolute hourly error (Wh)
EXP calibration from experimental measurements
G normal irradiance on PV cell (W/m2)
GTOT solar irradiation on PV array (W/m2)
GDIFF diffuse irradiance (W/m2)
GREFL ground reflected irradiance (W/m2)
GDNI direct normal irradiance (W/m2)
K glass extinction factor (m�1)
I current (A)
ID current across the PN junction (A)
I0 reverse saturation current (A)
IMPP current at maximum power point (A)
IPV light-generated current (A)
ISC short circuit current (A)
L glass thickness (m)
nair air refraction factor

nglass glass refraction factor
N number of daylight hours
Ns number of cells in series
NOCT nominal operating cell temperature (�C)
n diode ideality factor
nRMSE normalized root mean square error
NMAE% normalized mean absolute error
P m;h average power produced (measured) in the hour

(W)
P p;h average power predicted in the hour (W)
R resistance (X)
ref reference value
RS,c cell series resistance (X)
RSH,c cell shunt resistance (X)
RS,m module series resistance (X)
RSH,m module shunt resistances (X)
Rdis discharge resistor of the measurement system

(X)
Rshunt shunt resistor of the measurement system (X)
S1, S2 switches of the measurement system
T temperature (�C)
Tamb ambient temperature (�C)
TC cell temperature (�C)
V voltage (V)
VMPP voltage at maximum power point (V)
VOC open circuit voltage (V)
Vt thermal voltage (V)
WMAE% weighted mean absolute error based on total

energy production
WS wind speed in Sandia thermal model (m/s1)
z solar zenith angle (�)
output from the weather models must then be converted
into electric energy output. The existing solutions can be
classified into the categories of physical, statistical and
hybrid methods (Ulbricht et al., 2013). In physical models
the ability of a RES plant to convert the introduced mete-
orological resources into electrical power are summarized
by a physical model. These models can be very simple, based
only on the global irradiance on the solar cell, or more
complex if they include additional parameters. As a matter
of fact, it is not easy to predict PV module energy
production since it depends on several parameters as ambi-
ent and cells conditions. For example, the conversion pro-
cess is affected by solar irradiance and uniformity (i.e.
shadowing), soiling, aging, cell temperature, the solar inci-
dence angle and the load condition. Moreover, information
provided by manufacturers are usually limited and referred
only at nominal operating conditions.

Statistical methods are based on the concept of persis-
tence, or stochastic time series. Nowadays the most com-
mon approach to forecast a time series’ future values
approach is the use of machine learning methods. Reviewed
literature shows that artificial neural networks (ANN) have
been successfully applied for forecasts of fluc-tuating energy
supply (Hocaoglu et al., 2008; Izgi et al., 2012; Mellit and
Massi Pavan, 2010). These methods learn to recognize
patterns in data using training data sets. This is the main
drawback: historical data about weather fore-cast and the
real power production and environmental quantities are
necessary to training the ANN and start the forecast of
energy production by RES.

Any combination of two or more of the previously
described methods leads to a hybrid model. The idea is to
combine different models with unique features to over-come
the single negative performance and finally improve the
forecast (Ogliari et al., 2013).

In this paper, the comparison of different physical mod-
els for the prediction of PV performances is performed.

Previous works investigated the accuracy of PV physical
models mainly focusing on the different methods for the
parameters derivation (Celik and Acikgoz, 2007; Ciulla



et al., 2014; De Blas et al., 2002; Lineykin et al., 2014; Lo
Brano et al., 2010; Ma et al., 2013, 2014; Shongwe and
Hanif, 2015; Tossa et al., 2014). In particular, (Ciulla et al.,
2014; de Blas et al., 2002; Lineykin et al., 2014; Ma et al.,
2013) compared the I–V curve obtained by different
approaches based on manufacturer data and eval-uated the
accuracy of each at several solar radiations and operating
temperature. The comparison was carried out in terms of
power and errors in the range of 1% were achieved.
(Shongwe and Hanif, 2015) also evaluated differ-ent
modeling methods (equations) taken from different authors
in the literature in terms of I–V curve. Compared to
previous work, the calibration was carried out both by
manufacturer datasheet and experimental results based on
80 W panel.

(Tossa et al., 2014) applied five different electric models
(one on four-parameter, one on five-, one on seven-
parameter and two including recombination cur-rents) in
terms of energy production of three different solar fields of
about 5 MW each. Results showed that the simpler models
(four- and five-parameter) were the more accurate with
errors in the range of 10%. (Ma et al., 2014) applied a five-
parameter model to experimental measurements on single
panel, string and array in terms of short-circuit cur-rent,
open-circuit voltage and maximum power point. It was
found the model valid for the single panel can be extended
to string and array through a derating factor.

Finally, (Celik and Acikgoz, 2007)) compared four- and
five-parameter analytical models to calculate the operating
current of a 120 W monocrystalline photovoltaic module
under real working conditions. The cell temperature is
measured on the PV panel and used as an input.

This work brings about the following novelties:

� Three different electrical models were compared in terms
of energy production in six different days. Previous works
mainly focused on few conditions and the three-
parameter model was not considered.

� The PV cell temperature is determined through two ther-
mal models: the first is based on Nominal Operating Cell
Temperature (NOCT) and the second by using the
Sandia model. Previous work based their calculations on
measured temperature hence neglecting the impact of this
operating parameter on the power prediction which was
identified as the most significant by (Rus-Casas et al.,
2014).

� The models were calibrated using both I–V curve pro-
vided by manufacturer and measured data. The compar-
ison of the obtained results indicates whether for
European region the information from datasheet is
accurate for the model calibration or actual measure-
ment of PV module performances are necessary. For
example, experimental measurements takes into account
the impact of dust and aging on module performances.

� Models were applied to both monocrystalline and
polycrystalline PV panels in order to outline differences
in the prediction due to PV cell type.
The comparison is based on an experimental activities
carried out at the SolarTechLab, Politecnico di Milano
(SolarTech Lab, 2013) where both monocrystalline and
polycrystalline modules are installed.

Since the aim of the work is the comparison of models
accuracy, the power predictions are based on actual
weather measurements, hence neglecting weather forecast
errors.

The paper is organized as follows: In Section 2 we review
and classify PV cell models proposed in the litera-ture to
predict the output of solar energy production. In Section 3,
the experimental set-up and tests are described. In Section 4
we evaluate the performance of the different PV module
models in term of I–V curve. In Section 6 the performance
prediction comparison of the different mod-els, in term of
hourly error and normalized mean absolute error discussed
in Section 5, is presented.

Finally, we conclude and outline additional research
directions for our future work in Section 7.
2. PV cell models

As discussed in the introduction section, it is becoming
more and more important to improve the precision in the
prediction of PV plants power production in order to
increase their penetration in the electrical grid.

The PV plants power production can be calculated start-
ing from suitable equivalent electrical circuits. The models
of a single PV cell can be used to develop models that rep-
resents a PV module, as well as a PV string, consisting of
several modules connected in series, and PV array, consist-
ing of several strings connected in parallel. In this work,
several PV cell equivalent circuits are described and PV
module equivalent circuits are further derived (see
Section 2.1). Both monocrystalline and polycrystalline
technologies are taken into account.

Several PV cell equivalent circuits are reported in litera-
ture (Celik, 2011; De Soto et al., 2006; Durgadevi et al.,
2011; Farret et al., 2011; Luque and Hegedus, 2013; Nelson,
2003; Rodrigues et al., 2011), differing by the num-bers of
parameters required to characterize them. In partic-ular,
models are characterized by three parameters (Luque and
Hegedus, 2013; Nelson, 2003), four parameters (Luque and
Hegedus, 2013; Nelson, 2003; Rodrigues et al., 2011), five
parameters (Celik, 2011; De Soto et al., 2006; Houabes,
2010), six parameters (Dobos, 2012) and seven parameters
(Luque and Hegedus, 2013; Nelson, 2003). The precision of
the phenomena occurring in the PV cell increases with the
number of parameters, as well as its com-plexity, the
computational load and the amount of infor-mation
required to define its parameters. Usually, the best tradeoff
in accuracy and in ease of use is to adopt an equivalent
circuit characterized by a halfway number of
parameters.

In this work, the three-, four- and five-parameter PV
module electrical models will be discussed and they will
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be applied in order to assess the performances of a
PV-facility. The accuracy of the models is evaluated con-
sidering the actual production measured by an energy
meter.
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Fig. 2. Equivalent circuit representing the five-parameter model.
2.1. PV cell equivalent circuits

The simplest PV cell equivalent circuit is characterized
by three parameters and it is shown in Fig. 1. The circuit
includes a current generator with a diode connected in par-
allel, representing the light-generated current and the elec-
trical behavior of the PN junction, respectively.

The current–voltage characteristic for the PV cell is
defined by Eq. (1).

I ¼ IPV � ID ¼ IPV � I0 � e
V

n�V t � 1
� �

ð1Þ

The three parameters that characterize this model are
IPV, I0 and n which represent the light-generated current, 
the reverse saturation current of the PN junction and the
diode ideality factor, respectively. This model of the PV cell
is the simplest and accounts only for the diode behavior of
the PN junction. Ohmic losses occurring in the PV cells are
not taken into account, making the assessment of the
energy production not very accurate.

The most complex model here considered is the one
based on five parameters. The equivalent circuit (see Fig. 2)
includes two resistances: the first one (RSH,c), also named 
cell shunt resistance, is connected in parallel to the current
generator and second one (RS,c), also named cell series 
resistance, is connected in series to the cell terminals.

The five-parameter model, based on Ipv, I0, n and the two 
resistances RS,c and RSH,c, is described in Eq. (2):

I ¼ IPV � I0 � e
VþRS;c �I

n�V t � 1
� �

� V þ RS;c � I
RSH ;c

ð2Þ

The introduction of the resistance RS,c, makes the equa-
tion implicit. Moreover, the cell I–V characteristic is signif-
icantly affected by these resistance values. The impact of
RS,c is at high cell voltages, where the cell behavior is sim-
ilar to an ideal voltage source, while the impact of RSH,c

occurs at low cell voltages, where the cell behavior is simi-
lar to an ideal current source.

Since the shunt resistance typically assumes very high
values, its impact on the cell I–V characteristic is very
IPV ID
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Fig. 1. Equivalent circuit representing the three-parameter circuit.
low. Therefore, a simpler cell equivalent circuit can be
developed neglecting its contribution: this assumption
leads to the four-parameter model (Luque and Hegedus,
2013; Nelson, 2003; Rodrigues et al., 2011). The equivalent
circuit of the four parameters model is shown in Fig. 3 and
the I–V characteristic is described in Eq. (3).

I ¼ IPV � I0 � e
VþRS;c �I

n�V t � 1
� �

ð3Þ

The cell I–V characteristic depends on solar irradiance
and PN junction temperature. Open circuit voltage and
short circuit current variation as function of T and G are
taken into account as follows (IEC60891, 2010):

ISC ¼ ISC;ref �
GTOT

Gref
� ð1þ aISC � ðT C � T C;ref ÞÞ ð4Þ

V OC ¼ V OC;ref � ð1þ bVOC � ðT C � T C;ref ÞÞ þ A � ln GTOT

Gref

� �
ð5Þ

The subscript ref stands for reference conditions; aISC

and bVOC are the temperature coefficients for short-circuit 
current and open-circuit voltage, respectively. In most
cases, reference values are measured at standard test condi-
tions (STC), that is with Gref equal to 1000 W/m2, cell tem-
perature TC,ref equal to 25 �C and Air Mass equal to 1.5. A 
is the product of the number of cells, Ns, the ideality factor 
of the diode and the Vt.

The short circuit current ISC is proportional to the irra-
diance on the cell GTOT, while GTOT has limited impact on 
the open circuit voltage VOC. On the contrary, the cell tem-
perature TC affects more VOC than ISC.

Variation of the PV cell electric models parameters (I0, 
RSH, IPV) with irradiance on the cell GTOT and its temper-
ature TC is made according to (De Soto et al., 2006).
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Fig. 3. Equivalent circuit representing the four-parameter model.



Fig. 4. Solar characteristics angles.
n ¼ nref ð6Þ

RS ¼ RS;ref ð7Þ

IPV ¼
GTOT

Gref
� ½IPV ;ref � ð1þ aISCðT C � T ref ÞÞ� ð8Þ

I0 ¼ I0;ref �
T C

T ref

� �3

� e
Eg;ref

n�k�T ref
� Eg

n�k�T C

� �
ð9Þ

RSH ¼ RSH ;ref �
Gref

G
ð10Þ

In (9), k is the Boltzmann constant (8.6173324 �
10�5 eV/K) and Eg is the bandgap energy of the silicon, 
that is temperature dependent and it is given, in eV, as:

Eg ¼ 1:17� 4:73 � 10�4 � T 2
C

T C þ 636
ð11Þ

Variation of the ideality factor of the cell (n) and the ser-
ies resistance (RS) with GTOT and TC are neglected (De 
Soto et al., 2006).
2.2. Irradiance model

The PV array irradiance and incidence angle modifier are
calculated according to (De Soto et al., 2006; Duffie and
Beckman, 1991).

The irradiance GTOT is the sum of the solar direct nor-
mal irradiance (GDNI), the diffuse irradiance (GDIFF) and the 
ground reflected irradiance (GREFL) as expressed by Eq. 
(12):

GTOT ¼ GDNI � cosðhÞ þ GDIFF �
1þ cosðbÞ

2

� �
þ GREFL

� 1� cosðbÞ
2

� �
ð12Þ

As for h, it is solar incidence angle on the cell, and it is
calculated by:

cosðhÞ ¼ cosðzÞ � cosðbÞ þ sinðzÞ � sinðbÞ � sinða� cÞ ð13Þ

being, (i) z the zenith angle, (ii) b the PV module tilt, (iii) a 
the azimuth angle and (iv) c the angle between the module 
and the south direction as shown in Fig. 4.

The reflectivity factor commonly taken into account was
neglected since PV panels considered in this work are placed
on a welded steel bar grating. Experimental mea-surements
in the laboratory assessed that the reflectance of this surface
can be neglected.

The irradiance on the cell surface (G) takes into account
the transmittance of the glass, which depends on the beam
incidence angle. It is obtained multiplying the two compo-
nents of irradiance on PV array (i.e. the reflected irradiance is
neglected as already pointed out) by the transmittances of the
glass at the beam incidence angle and at the average angle for
isotropic irradiance, respectively, as reported in (14):
G ¼ sb � GDNI � cosðhÞ þ sd � GDIFF �
1þ cosðbÞ

2

� �
ð14Þ

Eq. (14) is usually represented in terms of incidence
angle modifiers (Ks) and transmittance of the glass for nor-
mal incidence (s0):

G¼ s0 � Ks;b �GDNI � cosðhÞþKs;d �GDIFF �
1þ cosðbÞ

2

� �� �
ð15Þ

Eq. (15) takes into account also the transmittance of the
glass, which depends on the beam incidence angle.
Transmittance is characterized at normal incidence angle
(s0) and with the incidence angle modifiers (Ks) which are 
calculated as

s0 ¼ e�K�L � 1� nglass � 1

nglass þ 1

� �2
" #

ð16Þ

Ks ¼
s
s0

ð17Þ

Concerning the calculation of the incidence angle mod-
ifier for direct irradiance (Ks,b), the numerator of Eq. (17) is 
calculated using an optical model of the air-glass interface
that takes into account both the reflective losses at the
interface and absorption within glass, as:

s ¼ e�
K�L

cos hr � 1� 1

2

sin2ðhr � hÞ
sin2ðhr þ hÞ

þ tan2ðhr � hÞ
tan2ðhr þ hÞ

!" #
ð18Þ

where K is the glass extinction factor, L is the glass thick-
ness, h and hr are the angles of incident and refracted
beams measured with respect to the normal at the surface;
the latter are related by the Snell’s law



 

 

 
 

 

sinðhrÞ ¼
nair

nglass
� sinðhÞ ð19Þ

Concerning the calculation of the incidence angle mod-
ifier for diffuse irradiance (Ks,d), in Eqs. (18) and (19) the 
average angle for isotropic irradiance is considered as the
incidence angle h.

Incidence angle modifier is close to 1 for incidence angles
till 50� degrees, then it quickly drops. As it is possi-ble to 
note in Eqs. (16) and (18), transmittance depends on the
physical characteristics of the glass which are barely
available in datasheet and whose measure requires specific
tests on glass samples. In this work, typical values for the
glass refractive index and extinction factor are taken into
account (De Soto et al., 2006).

Anyway, a sensitivity analysis has been performed taking
into account the typical range of glass thickness in PV appli-
cations, varying the extinction factor between 0.1 times to
10 times the value reported in (De Soto et al., 2006), and the
refractive index from 1.4 to 1.7. The sensitivity analysis
shows that the impact of extinction factor and refractive
index on the incidence angle modifier is limited.

The irradiance on the cell surface is affected by the
amount of airborne dust accumulated on the glass surface,
reducing glass transmittance; this phenomenon is referred as
“soiling”. From the electrical point of view, soiling can
cause a degradation of short circuit current, while open cir-
cuit voltage remains mostly unchanged. Soiling is site-
specific and dust accumulation occurs at different rates
across geographic regions. Chemical composition of dust
and the size of particles, as well as wind speed, the amount
and the time interval of rainfalls and the tilt angle of the
glass surface, play a key role on the dust accumulation pro-
cess (Sarver et al., 2013). Moreover, the degradation in the
PV performances depends also on the distribution of dust
on the glass surface. Several studies reported in (Sarver et
al., 2013) show that in desert areas, characterized by high
soiling conditions and high airborne dust concentrations,
the PV performances can reduce up to some percentage
points a day, while in the more temperate areas the reduc-
tion is usually between 1% and 10% a year. Studies on sev-
eral PV plants located in Europe (Stridh, 2011) and in
North America (Brooks et al., 2013; Cano et al., 2014) point
out that average soiling loss in energy yield are little and tilt-
dependant: about 6% a year for horizontal or low tilted PV
generators and 2% a year for PV generators tilted at
optimum angle (about 30�). Despite soiling depends on 
several environmental and technical factors, models for
predicting photovoltaic energy generation including dust
effects have been developed (Qasem et al., 2011). When
soiling has a significant impact on PV power production,
dust effects can be added to the models to forecast energy
production. In this work, soiling is not included because the
PV modules installed in SolarTechLab are self-cleaning and
it was verified that no significant amount of dust was
accumulated during the whole measurement campaign.
2.3. PV cell thermal models

Junction temperature depends on several parameters as
actual irradiance on the cell (GTOT), ambient temperature
(Tamb), wind speed and direction. In the PV cell perfor-
mance testing, the modeling of the cell itself is the easiest
part, while the measurement of the actual irradiance and the
cell temperature is the most difficult task. Actual irradi-ance,
and also its components, can be measured with sen-sors like
reference cells or pyranometers. The temperature
measurement of a cell cannot be done directly, especially if it
is in a PV module and it is incorporated in the Ethyl Vinyl
Acetate (EVA). Actual cell temperature can be accu-rately
estimated by using a thermocouple on the back side of the
module (IEC60891, 2010), and/or by using a thermal
imaging camera suitably calibrated. Actually, in the exper-
imental measurements carried out in this work, both have
been used. Cell temperature can also be evaluated starting
from the measurement ambient parameters. Two different
models are available: the easiest one is based on the NOCT
which is the cell operating temperature at given conditions
(Tamb@NOCT = 20 �C, GNOCT = 800 W/m2, wind  speed = 1
m/s and module placed on a surface, then in the absence of
thermal convection on the back); typical NOCT are in the
range of 40–50 � C. The calculation of the actual cell
temperature (TC) is based assuming that the difference
between cell and ambient temperature (TC � Tamb) is pro-
portional with the irradiance (GTOT) (Luque and Hegedus,
2013; Nelson, 2003). This correlation is reported in Eq. (20)

T C ¼ T amb þ
ðNOCT � T amb@NOCT Þ

GNOCT
� GTOT ð20Þ

A more complex model based on experimental measure-
ments, which takes into account module installation and
wind cooling effect, was developed by Sandia (Fuentes,
1985). The equation of the Sandia thermal model is as
follows:

T C ¼ T amb þ GTOT � eaþb�WS ð21Þ
where WS (m/s) is the wind speed at a standard attitude of
10 m, a is an experimental coefficient which correspond to
the module temperature with high irradiance and no wind,
while b indicates the impact of the wind over the cell tem-
perature. This model has an accuracy of 95%, which corre-
sponds to an error on the energy production prediction of
3% (Fuentes, 1985). These two empirical coefficients were
calculated with a linear regression of thousands of experi-
mental measurements. Since a and b showed a strong
dependence on several parameters (see Table 1), they must
be determined for each plant in order to make a reliable
prediction. In this work, the coefficients used correspond to
a Glass/silicon cells/polymeric layer and an open rack as for
the model installed. In the future, a control experi-ment will
be performed, however this is beyond the aim of this work.



Table 1
a and b coefficients for different modules and installations (Fuentes, 1985).

Type of module Installation a b

Glass/silicon cells/glass Open rack �0.35 �0.0594
Glass/silicon cells/glass Close roof mount �2.98 �0.0471
Glass/silicon cells/polymeric layer Open rack �3.56 �0.0750
Glass/silicon cells/polymeric layer Insulated back �2.81 �0.0455
Polymeric layer/thin film/stainless steel Open rack �3.58 �0.1130

Table 2
Energy meter ratings and metrological characteristics.

Nominal voltage Vn 3 � 230/400 Vac (direct insertion)
Current ratings Maximum current Imax: 60 Aac

(direct insertion)

Measurement channels
impedance:

Voltage inputs: 1 MOhm

Current inputs: negligible
50/60 Hz networks measures Phase-neutral/phase-phase voltages

Phase currents
Active, reactive and apparent power
cosU and PF
Consumed and generated active
energy
Consumed and generated reactive
energy: four quadrants
Frequency

Accuracy: Active energy: class 1 (class 0.5 on
request)
Reactive energy: class 2
3. Experimental set-up

The experimental activities were carried out at the labo-
ratory SolarTechLab SolarTech Lab, 2013), Politecnico di
Milano, whose geographical coordinates are latitude
45.502941 � N and longitude 9.156577 � E. Fig. 5 shows 
a panoramic image of the PV modules installed at
the SolarTechLab.

A total of 29 photovoltaic modules are installed: ten
monocrystalline, eleven polycrystalline (from three differ-
ent manufactures) and five hybrids (photovoltaic and ther-
mal, PVT). The rated power of the module ranges from 75
to 300 Wp. The I–V curve construction and power predic-
tion have been carried out on one monocrystalline and one
polycrystalline module by different manufacturer both of
nominal power equal to 245 Wp. The two modules have
been installed for two years, therefore a certain decay in
performances compared to datasheet values might be
present.

All modules are oriented as the structure with c equal to
�6�300 (assuming that 0� is the south direction and angles
increase towards west). The connection to the grid is car-
ried out by micro inverters, one for each module. This con-
figuration allows the electrical independence of each module
and it results in the optimization of the production. The
operating parameters of each micro inverter are trans-ferred
in real time, using wireless connection, to a PC to store
them. The energy flows between the PV system and the
electrical grid are measured by an energy meter whose
accuracy class is 0.5 for the active power; its ratings and
metrological characteristics are reported in Table 2.

The environmental conditions are monitored with a
meteorological station equipped with a solar irradiance
sensor, temperature-humidity sensors, wind speed/direc-
tion sensor and rain collector. For the development of
Fig. 5. Panoramic image of
PV predictive models, the solar irradiance, the wind speed
and ambient temperature measures are necessary. Solar
irradiance is measured with three different sensors: a net
radiometer for the measurement of the Direct Normal
Irradiance (DNI) and two pyranometers for the measure-
ment of the total and diffuse irradiance on horizontal
plane. The main characteristics of the sensors together with
the temperature measuring equipment are reported in
Table 3. The meteorological station performs ambient con-
ditions measurements every few seconds. The average,
maximum, minimum and standard deviation of the mea-
sured values by the sensors are calculated every ten minutes
and these values are stored into a database. These average
values are used for the evaluation of PV performances.
the Solar Tech facility.



Table 3
Solar irradiance and temperature sensor characteristics.

Net radiometer (LSI, DPD504) Pyranometer (LSI, DPA253)

Irradiance sensors

Measurements range (W/m2) <2000 <2000
Spectral range 0.3–60 lm 305–2800 nm
Total achievable daily uncertainty <5% <5%
Non-linearity <1.5% <4%
Thermal drift <2% <1.2%

Temperature and humidity sensor (LSI, DMA 875)

Temperature sensor Pt100 1/3 DIN B
Measurements range �30 to +70 �C
Uncertainty 0.2 �C (0 �C)
Resolution 0.04 �C
Response time (T90) 3 min: with filter; 20 s: without (air speed 0.2 m/s)
The characterization of PV modules is carried out by the 
measurement of their I–V characteristic and the module 
temperature. Electric measurements were performed using 
prototype and market-available measuring equipment, 
coordinated by a PC. The operating principle of the mea-
surement instrument is illustrated through the block dia-
gram shown in Fig. 6. Before the beginning of the test, 
the capacitor C is kept uncharged by connecting them with 
the resistor Rdis, through S2. The test starts by opening S2 
and just after closing S1. The current produced by the PV 
module charge the capacitor until voltage reaches the open 
circuit voltage of the PV module. The test stops about 0.5 s 
after the closing of S1.

The capacitance is sized to ensure that the test duration 
is about 0.2 s when the irradiance is 1000 W/m2 and the PV 
module short circuit current is about 8 A, allowing
Fig. 6. Measurement equipment re

Table 4
Characteristic data of the measurement equipment.

Full scale (FS) Accuracy

1–10% of

Voltage input 100 V 1 V
Current input 3 V 30 mV
completing the test even if the irradiance is less than 
1000 W/m2. At the end of the test, S1 opens and S2 closes, 
discharging the capacitor on the dissipation resistor Rdis 
and bringing the hardware in the conditions necessary to 
start a new test. The control unit automatically manages 
the switching devices.

During test, the pairs of voltage and current are mea-
sured and stored by a network analyzer. The analyzer is 
equipped with 12-bit A/D converters that simultaneously 
sample the voltage and current signals at the rate of 
12.5 kSamples/s. The voltage measurement is direct, while 
current measurement is through the shunt resistor Rshunt. 
Table 4 reports the accuracy of the network analyzer input 
channels.

The PC, interfaced with the instrument management 
software, coordinates the measuring systems: it controls
cording the PV characteristics.

FS 10–130% of FS 130–150% of FS

100 mV 1 V
3 mV 30 mV



the on/off sequence of the switches and the download and 
store of the measured data at the end of each test.

At the beginning and at the end of the measurement 
campaign, the calibration of the network analyzer was ver-
ified with a voltage and current source whose accuracies are 
0.25% + 10 mV and 0.25% + 10 mA, respectively.

During the I–V characteristic measurement, the cell tem-
perature was measured using both a thermal imaging cam-
era previously calibrated and four thermocouples placed on 
the back of the PV panels. The four thermocouples have 
been placed according to the normative (IEC60891, 2010) 
on the back of the panel in the center, at the top-center, 
mid-right and bottom-left.
4. VI module parameter

The aim of this work is the comparison of three different 
physical models to forecast the power produced by PV sys-
tem based on monocrystalline and polycrystalline silicon.

Therefore, the abovementioned models were calibrated 
on data reported in the datasheet or with experimental 
measurements carried out at SolarTech Lab at Politecnico 
di Milano (SolarTech Lab, 2013). The number of equations 
required to calibrate the model depends on the number of 
parameters. The following description will deal on the 
calibration of the five-parameter model; the other two 
models are subsets of this.

The approaches adopted for the derivation of the 
parameters follow the methodology presented in (Cubas et 
al., 2014). It can be outlined that several other proce-dures 
are available in literature to determine the five-parameter 
(Blair et al., 2013; De Soto et al., 2006; Laudani et al., 2013; 
Lejeune and Mermoud, 2010). In (Laudani et al., 2013), the 
five-parameter model is derived from the De Soto’s 
approach (De Soto et al., 2006), improving the efficiency of 
the solution algorithm. Latest,(Blair et al., 2013) presented a 
comparison of different pho-tovoltaic model options and 
the results obtained with them. Out of all these procedures, 
the calibration method adopted in this work has good 
accuracy for the considered PV modules with fast 
computation.

Moving to the parameters calculation, when the model-
ing is applied to a module composed by more than one 
cells, Eq. (2) slightly changes into Eq. (22)

I ¼ IPV � I0 � e
VþRS;m �I
n�NS �V t � 1

� �
� V þ RS;m � I

RSH ;m
ð22Þ

being Ns the number of cells in series, RS,m and RSH,m the 
module series and shunt resistances, respectively, that are 
obtained by multiplying by Ns the cell series (RS,c) and 
shunt (RSH,c) resistances. In this particular case, the num-
ber of cells in series is equal to 60 for both the monocrys-
talline and polycrystalline modules.

This equation can be evaluated in the three characteris-
tics point of the I–V curve (Ahemd El Tayyan, 2011; 
Villalva et al., 2009): open circuit voltage (0, VOC), short
circuit current (ISC, 0) and maximum power point (IMPP, 
VMPP) as in  (23)–(25).

0 ¼ IPV � I0 � e
V OC

n�NS �V t � 1
� �

� V OC

RSH ;m
ð23Þ

ISC ¼ IPV � I0 � e
RS;m �ISC
n�NS �V t � 1

� �
� RS;m � ISC

RSH ;m
ð24Þ

IMPP ¼ IPV � I0 � e
V MPPþRS;m �IMPP

n�NS �V t � 1

� �

� V MPP þ RS;m � IMPP

RSH ;m
ð25Þ

The values VOC, ISC, VMPP and IMPP in (23)–(25) are 
derived from the measured I–V characteristic, reporting the 
measured values to STC. In case of the experimental curves, 
they are calculated as the average of ten different 
measurements performed in few minutes to reduce errors 
related to sun irradiance measurements (pyranometer is the 
less accurate instrument).

The calibration of the three-parameter model consist in 
the calculation of the parameters IPV, I0, and n, which is 
carried out by solving the system of Eqs. (23)–(25) consid-
ering RS,m = 0 and RSH,m = 1.

The calibration of the series resistance RS,m can be per-
formed by setting the derivative of the power at maximum 
power point equal to zero (see Eq. (26))

@P
@V

����
MPP

¼ 0 ð26Þ

While the previous four equations are used to calibrate 
the models by all the authors, there are different equations, 
which can be used to calculate the Shunt resistance. In this 
work, the slope of the I–V curve at short circuit current 
conditions (Sera et al., 2007) is assumed as dependent only 
on RSH,m as in (27):

@I
@V

����
SC

¼ � 1

RSH ;m
ð27Þ

Another equation, which can be considered, focuses on 
the derivative of the open voltage with respect to the tem-
perature (De Soto et al., 2006).

The calibration of the parameters based on the experi-
mental measurements was also performed with a fitting 
approach: instead of using only five conditions, the whole I–
V curve is used leading to results which should be more 
reliable.

The comparison between datasheet values of VOC, ISC, 
VMPP, IMPP and the ones PMPP obtained by experimental 
measurements and reported to STC is shown in Table 5. 
While monocrystalline suffer of ISC decay and power loss of 
about 3%, the polycrystalline have lower VOC and power 
loss of about 5%. Therefore, the calculated parameters from 
experimental measurements will include the real per-
formance decay of the PVs due to the exposure to solar 
radiation, while it will not be the case starting from the 
datasheet case. For consistency, the decay will be applied



 
 
 

 
 
 
 
 
 
 
 
 

 
 

Table 5
Measured and data sheet values of VOC, ISC, VMPP, IMPP and PMPP of the monocrystalline and polycrystalline silicon modules in STC.

Monocrystalline Polycristalline

Datasheet Measured Datasheet Measured

VOC (V) 37.10 37.15 37.56 36.79
ISC (A) 8.48 8.37 8.27 8.25
VMPP (V) 31.3 30.4 31.38 30.25
IMPP (A) 7.84 7.84 7.81 7.71
PMPP (W) 245 238 245 233

Table 6
Calculated parameters for different models and PV modules based on experimental data (EXP.) and datasheet (DAT.) @ STC.

Three-parameter Four-parameter Five-parameter

EXP. DAT. EXP. DAT. EXP. A EXP. B DAT. A DAT. B

Monocrystalline

Ipv (A) 8.521 8.480 8.689 8.480 8.642 8.659 8.481 8.485
ID (nA) 245.7 562.5 22.80 6621 22.44 15.60 75.07 4.261
n 1.395 1.457 1.233 1.712 1.233 1.208 1.300 1.126
RS,m (mX) – – 318 �129.7 317 325 19.1 87.8
RSH,m (X) – – – – 82112 1054 215.5 150.8

Polycrystalline

Ipv (A) 8.313 8.270 8.508 – 8.510 8.525 8.269 8.289
ID (nA) 501.3 195.7 2.330 – 4.133 1.658 59.83 144�10�9

n 1.438 1.388 1.095 – 1.125 1.078 1.3000 0.6322
RS,m (mX) – – 400 – 388 405 75.6 363.3
RSH,m (X) – – – – 72123 1148 �610.3 156.3
also in the datasheet case applying the information avail-
able in the datasheet itself. The resulting predicted power 
will be determined as expressed in Eq. (28):

P p ¼ P model � ð1� decayyear � yearsÞ ð28Þ

where Pp is the predicted power, Pmodel is the outcome of
the forecast model, decayyear comes from the information
available from datasheet2 and years is the number of panel
operating years.

Table 6 summarizes the parameters to be adopted in the
models previously described, both for monocrystalline and
polycrystalline silicon modules. They are calculated in two
ways: starting from the I–V measured characteristic (EXP.)
and considering nominal values given in the datasheet
(DAT.). In case of I–V measured characteristic, the cell
parameters are derived both by fitting and equations from
(23)–(27) even if the former is considered more reliable
using more points. Therefore, only the fitting cases will be
presented.

In the characterization of the five-parameter model, sev-
eral approaches are considered. Regarding the calculation
of parameters from the measured I–V curve, case A shows
the results where the whole parameters are derived by fit-
ting, while case B shows the results where Rsh is previously
2 In datasheet, the decay is given for the expected lifetime of the PV
panel (i.e. 20% in 25 years). For simplicity, the decayyear assumed is
determined as simple ratio between the overall decay and over the lifetime.
Other approaches can be adopted as well, but they require additional
information/assumptions.
estimated as the negative reciprocal of the I–V slope at Isc 
and the remaining parameters are derived by fitting. The 
calculation of the parameters from the values published on 
the datasheet takes into account the methodologies pre-
sented in (Cubas et al., 2014). In case A, n is taken equal to 
1.3 and the remaining parameters are calculated, while in 
case B, Rsh was initialized by an empirical estimation, and 
then the whole parameters are calculated.

It can be noted that the characterization of the four-
parameter model starting from the nominal values leads to 
values that have no physical meaning (monocrys-talline 
case) and/or the solution of the system of equations does 
not converge to the proximity of the expected values 
(polycrystalline case). Moreover the characterization of the 
five-parameter model of polycrystalline module starting 
from the datasheet values leads to parameters that have no 
physical meaning (case A) or that are far from the expected 
magnitude (case B). Only the parameters calculated with the 
latter approach are used to forecast the power produced.

A sensitivity analysis showed that the calculated param-
eters are strongly affected by the set of data used to cali-
brate the model.

Fig. 7 shows, for comparison purposes, I–V curves for 
the three-, four- and five-parameter models based on exper-
imental data (EXP.) and datasheet (DAT.). It shows that 
the PV cell models and the set of data used for their cali-
bration affect the resulting I–V curve.

In addition, the parameters using the numerical 
approach starting from the experimental measurements



NMAE (%) WMAE (%) NMAE (%) WMAE (%)
DAT. 2.18% 5.39% 1.20% 2.96%
EXP. 0.89% 2.21% 1.93% 4.78%

4P EXP. 1.19% 2.95% 1.15% 2.84%
DAT. A 1.77% 4.37% 1.17% 2.89%
DAT. B 1.32% 3.28% 1.18% 2.93%
EXP. A 1.31% 3.24% 1.06% 2.63%
EXP. B 1.36% 3.36% 1.01% 2.49%
DAT. 1.42% 9.88% 1.29% 8.96%
EXP. 0.83% 5.76% 0.75% 5.23%

4P EXP. 0.53% 3.66% 0.59% 4.09%
DAT. A 1.15% 7.98% 1.03% 7.11%
DAT. B 0.77% 5.32% 0.71% 4.89%
EXP. A 0.52% 3.63% 0.57% 3.95%
EXP. B 0.52% 3.60% 0.57% 3.93%
DAT. 2.64% 6.37% 1.24% 2.99%
EXP. 0.98% 2.37% 1.43% 3.45%

4P EXP. 1.78% 4.28% 0.77% 1.85%
DAT. A 2.23% 5.37% 0.94% 2.27%
DAT. B 1.81% 4.37% 0.77% 1.86%
EXP. A 1.92% 4.62% 0.79% 1.90%
EXP. B 1.98% 4.77% 0.83% 2.01%
DAT. 2.35% 5.86% 1.22% 3.05%
EXP. 0.97% 2.43% 1.59% 3.98%

4P EXP. 1.37% 3.43% 0.76% 1.89%
DAT. A 1.94% 4.85% 1.05% 2.63%
DAT. B 1.51% 3.78% 0.93% 2.32%
EXP. A 1.51% 3.77% 0.70% 1.75%
EXP. B 1.57% 3.91% 0.68% 1.70%
DAT. 2.25% 6.30% 1.95% 5.47%
EXP. 1.83% 5.13% 2.30% 6.44%

4P EXP. 1.43% 4.00% 1.78% 4.99%
DAT. A 1.97% 5.51% 1.89% 5.29%
DAT. B 1.66% 4.65% 1.86% 5.20%
EXP. A 1.53% 4.27% 1.71% 4.79%
EXP. B 1.56% 4.36% 1.67% 4.68%
DAT. 2.12% 5.66% 1.38% 3.68%
EXP. 1.07% 2.85% 1.66% 4.45%

4P EXP. 1.04% 2.79% 0.99% 2.65%
DAT. A 1.72% 4.61% 1.22% 3.27%
DAT. B 1.28% 3.42% 1.08% 2.89%
EXP. A 1.17% 3.13% 0.93% 2.48%
EXP. B 1.22% 3.25% 0.89% 2.37%

09/07/2014 1489.9

3P

5P

11/07/2014 1558.5

3P

5P

30/06/2014 1728.2

3P

5P

03/07/2014 1668.2

3P

5P

19/06/2014 1682.8

3P

5P

26/06/2014 635.8

3P

5P

Day Energy produced 
(Wh) Model Source

Monocrystalline
NOCT SANDIA

Table 7
Calculated NMAE% and WMAE% for different PV models of monocrystalline module. For each day the smallest error (green) and the 
highest error (red) are highlighted.
were also calculated. However, the values were less reliable
(i.e. negative shunt resistance or ideality factor below one),
therefore the calibration of the model starting from exper-
imental data and equation approach will not be discussed
further.

5. Error definition

The aim of this paper is to compare different physical
models in forecasting PV energy production and determine
their accuracy. The comparison is performed using actual
weather information (ambient temperature and solar irra-
diance) measured by the weather station at SolarTech
Lab. This decision was kept to neglect the weather forecast-
ing error, hence comparing only the model accuracy.

In order to correctly define the accuracy of the predic-
tion and the relative error, it is necessary to define the error
definition to be adopted.

There is wide variety of error definitions and it is not
easy to select the correct one. Also among the scientific



DAT. 0.91% 2.33% 1.58% 4.04%
EXP. 1.41% 3.59% 1.35% 3.46%

4P EXP. 1.14% 2.92% 1.05% 2.68%
DAT. B 1.58% 4.03% 2.98% 7.63%
EXP. A 1.19% 3.05% 1.00% 2.56%
EXP. B 1.11% 2.85% 1.07% 2.73%
DAT. 0.81% 5.85% 0.71% 5.14%
EXP. 0.94% 6.81% 0.83% 5.99%

4P EXP. 0.60% 4.32% 0.74% 5.34%
DAT. B 1.24% 8.96% 1.37% 9.95%
EXP. A 0.56% 4.05% 0.70% 5.08%
EXP. B 0.61% 4.44% 0.75% 5.45%
DAT. 1.14% 2.86% 1.39% 3.48%
EXP. 1.67% 4.18% 1.11% 2.76%

4P EXP. 1.67% 4.18% 0.73% 1.82%
DAT. B 1.41% 3.52% 2.93% 7.34%
EXP. A 1.72% 4.31% 0.66% 1.66%
EXP. B 1.65% 4.11% 0.76% 1.89%
DAT. 1.03% 2.65% 1.41% 3.64%
EXP. 1.52% 3.94% 1.14% 2.96%

4P EXP. 1.35% 3.50% 0.82% 2.12%
DAT. B 1.53% 3.96% 2.90% 7.50%
EXP. A 1.41% 3.63% 0.76% 1.96%
EXP. B 1.33% 3.42% 0.85% 2.19%
DAT. 1.63% 4.61% 1.10% 3.11%
EXP. 2.06% 5.82% 1.18% 3.33%

4P EXP. 1.74% 4.91% 1.20% 3.41%
DAT. B 1.62% 4.59% 2.28% 6.45%
EXP. A 1.78% 5.03% 1.18% 3.34%
EXP. B 1.73% 4.88% 1.21% 3.43%
DAT. 1.10% 3.02% 1.51% 4.16%
EXP. 1.50% 4.13% 1.42% 3.89%

4P EXP. 1.07% 2.95% 0.91% 2.50%
DAT. B 1.70% 4.67% 2.77% 7.61%
EXP. A 1.15% 3.15% 0.88% 2.41%
EXP. B 1.04% 2.87% 0.92% 2.53%

09/07/2014 1473.7

3P

5P

11/07/2014 1513.8

3P

5P

30/06/2014 1665.8

3P

5P

03/07/2014 1612.3

3P

5P

19/06/2014 1628.8

3P

5P

26/06/2014 608.2

3P

5P

NMAE (%) WMAE (%) NMAE (%) WMAE (%)
Day Energy produced 

(Wh) Model Source
Polycrystalline

NOCT SANDIA

Table 8
Calculated NMAE% and WMAE% for different PV models and days of polycrystalline module. For each day the smallest error (green) 
and the highest error (red) are highlighted.
community there is no consensus and a lot of these indexes 
are adopted. Here we report some of the most common 
error definitions.

The base of all the definitions is the hourly error eh, 
defined as reported by (Ogliari et al., 2013):

eh ¼ P m;h � P p;h ð29Þ
where Pm,h is the average power produced (measured) in 
the hour and Pp,h is the given prediction provided by the 
forecasting model. Although Pm,h and Pp,h are defined as 
a power, their numerical values also represent the energy, 
expressed in Wh, produced and forecasted in the hour. 
Therefore, the hourly error in (29) can be defined consider-
ing either W or Wh as measurement unit.

Starting from the hourly error, the following definitions 
are available in literature (Monteiro et al., 2013; Ulbricht et 
al., 2013):
� Absolute hourly error eh,abs, which is the absolute value
of the previous definition (eh can give both positive and
negative values):
eh;abs ¼ jehj ð30Þ
� Normalized mean absolute error NMAE%, based on net

capacity of the plant (CN):

NMAE% ¼
1

N

XN

h¼1

jP m;h � P p;hj
CN

� 100 ð31Þ

where CN is the “net capacity of the plant”. N is the number
of daylight hours. During nighttime, the forecast is
meaningless.
� Weighted mean absolute error WMAE%, based on total

energy production:



Table 9
Overall NMAE% and WMAE% for different PV models applied in
different days and PV modules. For each day the smallest error
(green) and the highest error (red) are highlighted.

DAT. 2.15% 6.20% 1.38% 3.97%
EXP. 1.10% 3.15% 1.60% 4.62%

4P EXP. 1.22% 3.50% 1.00% 2.89%
DAT. A 1.79% 5.16% 1.22% 3.50%
DAT. B 1.39% 4.00% 1.08% 3.12%
EXP. A 1.32% 3.80% 0.96% 2.75%
EXP. B 1.36% 3.91% 0.94% 2.70%

DAT. 1.10% 3.26% 1.28% 3.79%
EXP. 1.51% 4.49% 1.17% 3.46%

4P EXP. 1.26% 3.73% 0.91% 2.69%
DAT. B 1.51% 4.48% 2.53% 7.51%
EXP. A 1.30% 3.84% 0.86% 2.56%
EXP. B 1.24% 3.67% 0.92% 2.74%

3P

5P

3P

5P

NMAE
(%)

WMAE
(%)

NMAE
(%)

WMAE
(%)

Model Source
NOCT SANDIA

Monocrystalline

Polycrystalline
WMAE% ¼
PN

h¼1jP m;h � P p;hjPN
h¼1P m;h

� 100 ð32Þ

� Normalized root mean square error nRMSE, based on
the maximum produced power Pm,h:

nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N �
PN

h¼1jP m;h � P p;hj2
q

maxðP m;hÞ
� 100 ð33Þ

In this work, the results of the models will be expressed in 
terms of hourly error, NMAE% and WMAE%.

6. Performance prediction and results comparison

Fig. 8 summarizes the overall methodology adopted for 
the comparison of the different models.

The methodology requires three different types of input:
(i) date and time of the measurements to determine the sun
Fig. 7. Comparison between I–V curves derived from experimental (EXP.) an
mono, right poly) @STC.
position, (ii) the meteorological conditions (ambient tem-
perature, wind speed and solar irradiance) and (iii) the 
characteristics of the PV panel based on either experimen-
tal measurements or datasheets. With these inputs and 
using the equations described in previous sections, the 
power output of PV panels can be forecasted.

As already pointed out, the aim of the work is to com-
pare different forecast models, therefore the calculation is 
performed using actual weather measurements so that 
weather forecast errors can be neglected and errors can be 
appointed only to the adopted approaches. Obviously, the 
resulting NMAE% and WMAE% will be significantly lower 
than other works (Monteiro et al., 2013; Ulbricht et al., 
2013) where the weather forecast were used.

The predicted power produced is then compared with the 
actual power output delivered by the modules, mea-sured 
by the inverters. Therefore, the different accuracy of each 
model can be determined. This procedure is applied for six 
summer days: 19th, 26th and 30th of June, 3rd, 9th and 11th of 
July. Results will be presented in detail for the 26th of June 
(day characterized by low radiation) and 3rd of July (sunny 
day), while for the remaining only NMAE% and WMAE% 
will be reported.

Fig. 9 shows the actual solar irradiance and average 
power produced by the modules for the two considered 
days.

The sunny day have a peak power of 220 W, slightly 
lower for the polycrystalline modules, while in the cloudy 
day the peak power is about half of it. In the sunny day, it 
can be noted a quick drop in the power production at about 
8:30 in the morning. This is because of a shadowing related 
to a tower crane located close to the lab. This is the typical 
case where the forecast based on physical model will fail, 
while it can be forecasted by statis-tical and artificial neural 
network methods after enough training period.

Comparing the solar irradiance and DC power, 
fluctuations in the latter are more frequent than solar 
irradiance just because of different sampling time (one min-
ute for the inverter and ten minutes for the weather station).

Figs. 10–13 show the hourly errors for the investigated 
cases.
d nominal parameters (DAT.) for three- and five-parameter models (left



Fig. 8. Overview of the model comparison methodology adopted in this work.

Fig. 9. Actual solar irradiance and average measured DC power produced on July 3rd (left side) and June 26th (right side).

Fig. 10. Hourly error for monocrystalline module with different PV models, July 3rd. NOCT thermal model (left side) and Sandia (right side).



Fig. 11. Hourly error for monocrystalline module with different PV models, June 26th. NOCT thermal model (left side) and Sandia (right side).

Fig. 12. Hourly error for polycrystalline module with different PV models, July 3rd. NOCT thermal model (left side) and Sandia (right side).

Fig. 13. Hourly error for polycrystalline module with different PV models, June 26th. NOCT thermal model (left side) and Sandia (right side).
In general, all the models provide a reasonable accuracy
in the forecasted power being the error below 15 W at any
conditions.

Results show that there is an influence on the accuracy
of the forecast of the model adopted, the thermal model,
the type of silicon cell and the set of data used for its cali-
bration as follows.

� The three-parameter accuracy for monocrystalline mod-
ule strongly depend on the calibration data. In the sunny
days, the calibration with datasheet leads to an underes-
timation of the power produced, while it is the opposite
with the experimental data. With low irradiance, even
the calibration with experimental data leads to an
underestimation. On the contrary, in the polycrystalline
modules results are slightly affected by the calibration
method.
� The five-parameter approach for monocrystalline mod-

ules is more affected by the thermal model rather than
the calibration approach. Errors among the four cases
presented (5PA-EXP, 5PA-DAT, 5PB-EXP,
5PB-DAT) are very small. In polycrystalline modules,
on the contrary, the calibration with datasheet can lead
to significant errors. 5PA-DAT has the highest error
among all cases particularly with Sandia thermal model.
� The four-parameter model behave like the

five-parameter with the same error trends. The addition
of Rsh to the electric model (i.e. moving from



Fig. 14. Module temperature prediction with NOCT and Sandia model for July 3rd (left side) and June 26th (right side).
four-parameter to five-parameter) has very limited influ-
ence on forecasted power.
� The forecasted power output assuming Sandia thermal

model is higher than the NOCT one, because of the
lower cell temperature forecasted by the former (see
Fig. 14). The influence on the forecasted power output
of the cell temperature can be seen comparing the cen-
tral hours of the two investigated days when the temper-
ature difference by the two models is the largest.
� The three-parameter model calibrated from datasheet

can perform better than five-parameter depending on
the accuracy of the information adopted for the calibra-
tion. The datasheet information could be not enough
accurate to calibrate the five-parameter model (polycrys-
talline case) leading to higher errors.
� Simple models (three-parameter) can be as accurate as

more complex ones (four- or five-parameter).
� In July 3rd, at eight, all the models show a quick error

variation (i.e. reduction) suggesting a power produced
lower than forecasted. This is because of the shadowing
issue mentioned above.

Moving to the overall daily error calculated with NMAE

% and WMAE%, it can be noted that the error is small in 
every case (see Tables 7 and 8). This is because cal-culations 
are performed from actual weather conditions measured at 
the facility, therefore neglecting weather fore-cast errors 
which are usually significant. Typical values of NMAE% and 
WMAE% for accurate forecasting models are 15% and 30% 
respectively (Monteiro et al., 2013; Ulbricht et al., 2013). As 
general considerations, no signif-icant advantages of an 
increasing PV cell model complexity can be outlined and the 
best thermal approach depends on the type of panel as well 
as electrical model considered (see Table 9).

It cannot be drawn a line about the best approach also 
considering that most of the error in the forecast models is 
related to the weather forecast rather than the PV perfor-
mances. Therefore, differences in accuracy among the model 
can disappear when real weather information are taken into 
account.
7. Conclusions

This paper investigated different physical models to
forecast the power produced by monocrystalline and poly-
cristalline PV panels. Three models, based on three, four
and five parameters, were considered together with two dif-
ferent approaches to determine the PV cell temperature.
Models calibration was both performed using available
data from the module datasheet as well as experimental
measurements at the SolarTechLab.

The comparison was performed using actual weather
data measured by a meteorological station in the facility,
therefore the analysis neglected weather forecast errors
and focused only on the accuracy of the electrical models.

Results showed that rather than its complexity, the
accuracy of the model depends on (i) the data used for
its calibration and (ii) the approach adopted for the calcu-
lation of the cell temperature.

In general, the adoption of five-parameter model
requires a detailed set of information for its calibration
which is usually not available in actual datasheets.

Focusing on the normalized mean absolute error and
weighted mean absolute error, they can be even lower than
1% and 2% respectively, which is a good result; neglecting
weather errors, the physical approach proposed in this
work can predict the power produced by PV panels with
high accuracy (<2% of error).

Moreover, this approach does not need any training per-
iod as for artificial neural network based forecast models,
making it suitable for the initial period of a plant. If these
physical models are used to forecast the production for sev-
eral years, recalibration of the parameters every one or two
years should be taken into account to consider the actual
PV performance decay.

Compared to neural based forecast models, this will
never predict power decay as consequence of shadowing,
as at half past eight in SolarTechLab facility, in this case
corrections must be implemented as corrective coefficients
on the resulting power output.

Future works will deal on the comparison of this model
with neural based ones.
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