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Abstract—Linear Temporal Logic (LTL) has been used in
computer science for decades to formally specify programs,
systems, desired properties, and relevant behaviors. This paper
presents a novel, efficient technique for verifying LTL specifica-
tions in a fully automated way. Our technique belongs to the
category of Bounded Satisfiability Checking approaches, where
LTL formulae are encoded as formulae of another decidable logic
that can be solved through modern satisfiability solvers. The
target logic in our approach is Bit-Vector Logic. We present our
novel encoding, show its correctness, and experimentally compare
it against existing encodings implemented in well-known formal
verification tools.

I. INTRODUCTION

Linear Temporal Logic (LTL) has been used in computer
science for decades [[1]. Its applications include the specification
and verification of (possibly safety-critical) programs and
systems [2], test case generation [3]], run-time verification [4],
planning [S[], and controller synthesis [6]]. In addition, LTL —or
its expressively equivalent variants— can be used as underlying
formalism to capture the semantics of semi-formal notations
like UML to perform formal verification on them, as we showed
in [[7].

However, for an LTL-based approach to be effective in
practice, there must be techniques and tools that allow users
to check big LTL specifications in a short amount of time.
In this paper we focus on the problem of performing formal
verification on systems described through a set of LTL formulae.
These LTL descriptions could be the outcome of systematic
requirements elicitation or formal specification, but they could
also be the output of tools producing LTL formalizations from
more informal languages such as UML. In fact, one of the
driving factors that led us to pursue the work presented in
this paper was the necessity of formally verifying larger UML
models than those that can be managed by the tool introduced
in [7].

Formal verification of LTL specifications can be carried out
through tools capable of determining the satisfiability of sets
of LTL formulae. Various techniques have been developed
in the past, based for example on automata construction [§].
In this work we pursue an approach based on the notion of
Bounded Satisfiability Checking [9], a variant of Bounded
Model Checking [10] that focuses on the satisfiability of
temporal logic formulae. In Bounded Satisfiability Checking
approaches, LTL formulae are suitably translated into formulae
of another decidable logic, such as Propositional Logic, which
precisely capture ultimately periodic models of the original
formulae of length up to a bound k; produced formulae are

then fed to a solver for the target logic (e.g., a SAT solver) for
verification.

The first question tackled by this paper is thus: how can we
analyze bigger models? We studied a way to allow a Bounded
Satisfiability Checker to work on both more complex formulae
and larger bounds k. The proposed solution eschews the usual
Propositional Logic as target logic, and encodes LTL formulae
into formulae of Bit-Vector Logic, which can be efficiently
analyzed by modern Satisfiability Modulo Theories (SMT)
solvers such as the well-known Z3 [11]. We implemented the
encoding in a plugin, called bvzot, of our Zot tool [12]. Even
if the initial results were very encouraging, with respect to both
improvements on previous versions of Zot and our goal of being
able to analyze larger UML models, we wanted to move a step
further and try to generalize them. Our second research question
was then: how can we compare these results against the state
of the art in the field and understand how good in general
they are? This is why we started using NuSMV [13]], which
is one of the reference tools for Bounded Model Checking
techniques. The paper thus presents the promising results we
obtained by comparing the performance of NuSMV and bvzot
on several case studies with different characteristics: two of
them are well-known benchmarks, while a third one comes
from one of our UML specifications, since we also wanted to
relate these results to our original problem.

To summarize, the contributions of this paper are twofold.
First, we introduce a novel translation of LTL formulae into
formulae of Bit-Vector Logic. Second, we provide a systematic
comparison of our verification tool with the reference tools in
the field, which shows that bvzot compares favorably to them.

The rest of this paper is organized as follows. Section
provides a brief introduction to LTL, and presents the classic
Propositional Logic-based encoding of LTL formulae, which is
then used to demonstrate the correctness of our own encoding.
Section [[T] summarizes the key elements of Bit-Vector Logic
and proposes the encoding we devised; in addition, it studies
the correctness and complexity of our encoding. Section
presents the toolset we used for evaluation, the experiments
we carried out, and the results we obtained. Section E surveys
related approaches, and Section [VI| concludes the paper.

II. BACKGROUND

A. Linear Temporal Logic

LTL [[1] is a widely-used specification logic. In this paper,
we focus on the version with both future and past temporal
operators. In fact, although past operators do not increase



the expressiveness of the logic, they are advantageous for
compositional reasoning [14]]. In addition, LTL with past
operators is exponentially more succinct than its future-only
counterpart [|15].

An LTL formula is defined over a set of atomic propositions
AP. The syntax of LTL is defined by the following grammar:

pu=p|¢|oANG| XD [ Y[ Ug | $S¢

where p € AP, X and U are the “next” and “until” future
operators, whereas Y (“yesterday”) and S (“’since”) are their
past counterparts.

The semantics of LTL is given in terms of infinite sequences
of sets of atomic propositions, or words. A word 7 : N — 247
assigns, to every instant of the temporal domain N, the (possibly
empty) set of atomic propositions that hold in that instant.
We can think of a word as an infinite sequence of states
T = 8¢S182 ..., where each state is labeled with the atomic
propositions that hold in it. We say that a word satisfies formula
¢ at instant i, written 7,7 = ¢, if ¢ holds when evaluated
starting from instant ¢ of 7. The following is the usual formal
semantics of the satisfiability relation for LTL:

miEDp < pemn(i) forpe AP

mi =g & miEP

7T7i}:(]51/\¢2 = W,i):qbl and 7,1 |= ¢

1 = Xo & mitlEe

mil= Yo & i>0andmi—1E¢

miE¢1Ups & Jj>istmjEdr
andVnst.i<n<j:mnkEd¢

i $1S¢2 & F<istmjlE g

and Vn st. j<n<i:m,nlE ¢

We say that a word 7 satisfies LTL formula ¢ when it holds
in the first instant of the temporal domain, i.e., when 7,0 = ¢.
In this case we will sometimes write 7 = ¢. A word 7 that
satisfies ¢ is a model for ¢.

Starting from the basic connectives and operators, it is
customary to introduce the other traditional Boolean con-
nectives (V, =, ...), and temporal operators as abbrevi-
ations. In particular the “eventually in the future” (F),
“globally in the future” (G) and “release” (R) operators
(and their past counterparts “eventually in the past” P,
“historically” H and “trigger” T) are defined as follows:

Fo =TU¢ Po = TS¢
Gp  =-F-¢ Hp = —P-o
$1Rp2 = (=01 U—¢p2) 1 Toy = —(—p1S—¢p2)

B. Bounded Satisfiability Checking

The principle that underlies both Bounded Model Checking
(BMC) and Bounded Satisfiability Checking (BSC) techniques
is, given formalizations of the system .S and of the property
¢ that should hold for the system, to look for an infinite,
ultimately periodic execution m = $gs1 - . . $;—1(81S141 - - - Sk)*“
of S that violates ¢, where k is a parameter. If a counterexample
witnessing the violation of the property exists, then the property

does not hold for S. If no counterexample of length up to &
is found, then the property holds for S provided that k is “big
enough”.

Both techniques can be used to check whether an LTL
formula ¢ is satisfiable or not. At the core of both BMC
and BSC is the idea of translating an LTL formula ¢ into
a formula of Propositional Logic that represents ultimately
periodic models of ¢. Then, its verification is performed by
feeding the translated formula to a solver.

In the following we briefly describe the classic technique for
encoding LTL formulae into Propositional Logic introduced
in [16], which is at the core of BSC. To this end, one only
needs to represent states sg...S;...Sg, and then the fact that
the state after sg, say sg41, is in fact s; again. Hence, the
bounded encoding captures finite sequences of states of the
form asfs, where o = s9s1...8-1, B = Si4+1... Sk, and
§ = 8] = Sk+1-

The encoding is defined as Boolean constraints over so-
called formula variables |[]|;. These are Boolean variables
which are used to represent the value of all subformulae of
the LTL formula to be checked for satisfiability in instants
0,1,...k + 1. More precisely, given an LTL formula ¢ and
a bound k, the encoding introduces, for each subformula v
of ¢, k + 2 formula variables |[¢/]|o, |[¢]]1,- - - |[%]|k+1 Which
capture whether 1 is true or not at the various instants in
[0,k +1].

In addition, the encoding introduces k + 1 loop selector
variables ly, 11, . ..,li, which are fresh Boolean variables such
that [; is true iff the loop starts at position ! (hence, if [; is true,
then s; = sx41); at most one of Iy, l1, ..., [; can be true. Other
Boolean variables are introduced for convenience: the k + 1
variables InLoop;, with 0 < ¢ < k, are such that InLoop;
is true iff position ¢ is in the loop (i.e., [ < i < k). Finally,
variable LoopEzists is true iff the desired loop exists.

In the rest of this section we present the constraints that are
imposed on the Boolean variables introduced above to capture
the semantics of LTL formulae. The following table defines a
set of constraints called |LoopConstraints|y:

Base —lop A =InLoopg

1<i<k| (I = si—1 =sk) A (InLoop; < InLoop;_1 V ;)

A (InLoop;—1 = —l;) A (LoopEwists < InLoopy)

They essentially define the semantics of Booolean variables
{li}iepo,k)» {InLoop;}icior) and LoopExists (e.g., the exis-
tence of at most one loop). In addition, as mentioned in [16],
they impose that the same atomic propositions that hold in state
sy also hold in state s;—1, which has been shown to improve
the efficiency of the model search.

The following table shows |LastStateConstraints|y.

Base —LoopExzists = —|[d]|k+1

i = (|[¢llk+1 < 1[¢]l:)

They define that the subformulae of ¢ that hold in s are
the same as those that hold in state s;. This effectively defines
that after state sj, the bounded trace loops back to state s;.

1<i<k



The subsequent constraints define the semantics of the propo-
sitional connectives and of the temporal operators. The next
table introduces the set of constraints | PropConstraints|y,
which capture the semantics of propositional connectives;

¢ 0<i<k+1

P lplls & p € m(i)

-p [[=p]l: & p & m(3)
Y1 At | |[1 A2l & [[Y]ls A l[2]li
Y1 Vba | [[1 Vel & [[Ya]li V [[2]ls

For example, | PropConstraints|;, state that the value of
[[p]|; and |[—p]|; capture whether propositional letter p holds at
instant ¢ or not. The definitions of |[¢)1 At)2]| and of |11 V5]
are straightforward. Notice that the Boolean encoding was
defined for LTL formulae in Positive Normal Form (PNF), i.e.,
in which negations can only appear next to atomic propositions.
This can save some formula variables, but the encoding can
be easily generalized to formulae that are not in PNF.

The next tables define the semantics of the temporal
operators, both future (X, U and R) and past ones (Y, S and T).
We call this whole set of constraints |TempConstraints|y.

The semantics of U and R is defined through their standard
fixpoint characterization:

é 0<i<k
Xy [[X]li < [[]li+1
YUz | [[h1Uge]li < |[$2]li V (I[¥a]li A1 Ud2]liv1)
iRy | [[¥1Rep2]ls < [[¥2]li A (I[¥a]li VI [1Rep2]liv1)

The definition of the semantics of U and R is com-
pleted through the introduction of the set of constraints
| Eventualities|y, which are presented in the following table:

Base |¢1Utoe | LoopExists = (|[v1Uwz]lx = ((Fib2))i)
11 Rapo LoopEzists = (|[v1R2]|x < ((G2))k)
$1Utha (Fp2))o = L
P1Rap2 ((Gip2))o & T
1<i<k| 91U | ((Fip2))i & ((Fip2))i—1 V (InLoop; A |[1h2]l:)
Y1Rep2 | ((GY2))i & ((GY2))i—1 A (—InLoop; V |[2]li)

These constraints are used to make sure that, if Uy
holds in s, then ¥y occurs infinitely often, that is, it occurs
somewhere in the loop. Similarly, if 1Ry occurs in sy,
then either 12 holds throughout the loop, or at some point
of the loop vy holds. ({F12)); and ((Gi)s)); are auxiliary
variables required for capturing these constraints. ((Fq));
holds if position ¢ belongs to the loop and 5 holds in at least
one position between [ and i. Accordingly, ((F1)2)); means
that 12 holds somewhere in the loop. Therefore, constraint
LoopExists = (|[1Uts]|r = ((Fa))r) does not allow
11 Uths to hold at k, if 5 does not occur infinitely often.
Similarly, ((G2))), holds iff 12 holds everywhere in the loop.
Then, constraint LoopExists = (|[Y1Ris]lr < ((G2))k)
forces |[1)1 Reba]|k to hold if 5 holds from position [ on.

The next table defines the semantics of the past operators
Y, S and T, which is symmetrical to their future counterparts.

¢ 0<i<k+1

Y Y]l & [[W]li-1

Z Zy]li < |[#]li—1
Y1852 | [Y1Sva]ls < [[Walli V (1]l A l[b1S¢2]]i-1)
Y1Tepe | |1 Tepels < [[W2]l A (1]l V (1 Tep2]li—1)

It also defines operator Z, which is necessary for formulae
in PNF, which is simply a variant of Y such that Zi) holds
in 0 no matter 1. Since the temporal domain is mono-infinite
(i.e., it is infinite only towards the future), there is no need to
impose eventuality constraints over past operators. However,
we must define the value of past operators in the origin 0. This
is done through the constraints of the following table.

1) Base
Y —IY o
AL IZ¢]lo
Y1892 | [[¥1S¢2]lo & [[¥2]lo
Y172 | [[1T2]lo < [[2]lo

Finally, given an LTL formula ¢, its Boolean encoding
¢p is given by the conjunction of the constraints in
sets | LoopConstraints|y, | LastStateConstrants|y,
|PropConstraints|y, |TempConstraints|y, and
| Eventualities|,, plus the statement that ¢ holds in
the origin, i.e. |[¢]]o-

III. BIT-VECTOR-BASED ENCODING
A. Bit-Vector Logic

This section briefly presents the operations on bit-vectors
that are defined in Bit-Vector Logic and that we use in our
encoding.

A bit-vector is an array whose elements are bits (Booleans).
In Bit-vector Logic, the size of a bit-vector (number of bits) is
finite, and can be any nonzero number in N. For the bit-vector
& with size n, we use the notation ?[n], or simply % when
the size is not important or can be inferred from the context.
?EL] stands for the t” bit in the bit-vector %,

?{Z]_H is

Furthermore,

where bits are indexed from right to left. Accordingly,
the leftmost and most significant bit, and ?{2]] is the rightmost
and least significant bit. For constants we use the notation

%[n], which is the two’s complement representation of integer
. — .
c over n bits, for example, —2[4] is 1110.

Bit-Vector Logic offers a wide range of operators. The
two core operators are Concatenation and Extraction. Con-
catenation: ?[n ?[m] is a bit-vector ?[ner]’ such
that 710 = 10 and G lm+n—1 — =1 For example,
111 :: 0 = 1110. Extraction: TV is a bit-vector % [;_; ;1)
where 70 = lil and 21— = %], which can be defined
through concatenation as % = 21—, =" For example,
11001%%) = 100.



Arithmetic operators addition (+) and subtraction (—) throw
away the final carry bit and the resulting bit-vector has the same
size as the operands. Unsigned shift to the right/left (>/<)
throws away he rightmost/leftmost bit and inserts zero from the
left/right. For example, > 1100 = 0110 and < 1100 = 1000.

We also use bitwise operators like negation (!), conjunction
(&), disjunction (|), and reduction and (ll). The reduction and
operator is defined as |} ?[n] = &;1:—01 ?m] (i.e., it is the “and”
of all the bits in ). The size of the resulting bit-vector is
one. The bit corresponds to the minimum value in $Z; in other
words, it is equal to one if all the bits of the bit-vector T are
one, zero otherwise.

Bit-vectors (or parts thereof) can be compared using the
usual relational operators =, <, and formulae of Bit-Vector
Logic can be built using the usual Boolean connectives —, A.

B. Encoding

Similarly to the classic Boolean encoding of Section |[I-B]
our encoding uses a bit-vector of size k + 2 to represent the
truth values of each subformula of ¢ from 0 to £+ 1. However,
we only introduce as many bit-vectors as the number of atomic
propositions in the formula, and describe the values of the non-
atomic subformulae as transformations on the former vectors.
More precisely, for each p € AP, we ‘introduce a bit-vector,
P ky2 (., of size k+2), such that ﬂjj Lo With i € 0, k41],
captures the value of proposition p at instant . Recall that
<§[O] is the right-most (least significant) bit in <ﬁ and ?[kﬂ]
is the left-most (most significant) one.

In addition, we introduce a bit-vector, loopy 9], that contains
(encoded in binary) the position of the loop in interval [0, k+ 1]
(i.e., the position of the first state s in asfs).

For the sake of uniformity in using Bit-Vector Logic
operators to capture the semantics of LTL formulae, we encode
L (false) as 0 4] (i-e., a sequence of zeros) and T (true) as
—1{p42) (i-€., a sequence of ones), so the size of all bit-vectors
used in the encoding is k + 2.

To introduce the bit-vector-based encoding of LTL formulae,
it is useful to first define some auxiliary operators on bit-vectors
that will be exploited in the following. These operators are
defined below.

Definition
Rev & ::fiol li]

TUnY | TI(F & Rev(Rev(T|¥) + Rev))

Operator

Rev T reverses the order of the bits in bit-vector ‘.
?Um? produces a bit-vector, say ?, such that, if one takes
x and y to represent the values of some formulae x,y in
[0,k + 1], then %z corresponds to the value of zUy when one
considers only finite models (i.e., there is no loop, hence the
subscript nl). Later in this section we give an example of
computation of ?Um?.

In the bit-vector-based encoding of LTL, the bit-vector
capturing the value of a formula ¢ in [0,k + 1] is obtained
by recursively performing operations on the bit-vectors corre-

sponding to the subformulae of ¢. The operations performed
depend on the structure of ¢.

The next table shows the case in which the main connective
in ¢ is a Boolean one.

¢ bit-vector encoding
i 1y
Y1 A2 D&
Y1V P2 <1Z1|<E2

For example, if ¢ is of the form —1), then its corresponding
bit-vector is obtained by applying bit-wise negation to the
bit-vector, 1), corresponding to subformula . Similarly for
the other cases.

The next table shows the transformations in the case of both
future (X, U) and past (Y, S) temporal operators.

0] bit-vector encoding

X4 DU+ L Gl
1 Utha lenl(($1Un1$2)[” H <13[2“)])
Yo <%
St | P2 | (D1 & N(P1[P2) + D)

We illustrate the cases for the past operators first, which are
a bit simpler, and then we focus on the future ones.

Yesterday. Given the semantics of formula Y, where Y
holds at ¢ iff ) holds at ¢ — 1, the bit-vector for Y is the
one for 1), but shifted “to the left” (from ¢ — 1 to 4, recall that
position 0 in bit-vectors is the rightmost one). Note that, by
definition of shifting to the left, the rightmost bit of < 9 is
0, which is consistent with the semantics of Y in the origin.

Table [I| shows an example of calculation of the bit-vector
for 1S9, given bit-vectors 101 and ¥ 5.

TABLE I
AN EXAMPLE OF CALCULATION OF BIT-VECTOR FOR S.
bitvector |11 109876543210
U1 110111100101
P 0 00001001010
?ﬂ% 1 10111101111
bor | (U242 1 11000111001
bos hoy 000111000110
bos boo&®1 |0 00111000100
1S bos|d, |0 00111001110

Since. First of all, recall that, informally, ;S holds at
1 iff either )5 holds at ¢, or ¢); holds at 4,7 — 1,... until an
instant ¢/ < 4 in which 15 holds (1 can hold in ¢’ or not). Said
in another way, if 1o holds in 7/, then 1)1 St)5 holds there, and
in all instants ¢’ + 1,4’ 42, ... in which ¢ holds consecutively.
We use addition to capture this mechanism through which the
truth of S “carries” to the left from when 15 holds, as long as



1)1 holds. Consider term (Eﬂzg) + <’ZZ2; whenever z; is 1,
this generates a carry (since both bits are 1), which propagates
as long as 1/) 1 is 1, as between bits 1-2 and 6-8 in Table
[l The net effect is that in the sum the bits from i’ until 4
stops holding are set to 0, and the others are set to 1 (we do
not delve into the details of some special cases, which are
covered by the correctness proof of Section [[II-C)). Starting
from this basis, the rest of the operations are necessary to
set to 1 exactly all the bits in which S h(o_lds <Lnotice <_that, in
this case, ¥1S19 holds not only where (¢ 1|1 2) + ¥ is O,
but also at position 3, where 12 holds). More precisely, the
result of (¢ 1] 2) + ¥ is bit-wise complemented to bring
the Os to 1s; it is then filtered against 1 with a bitwise “and”
to eliminate t ose caseg_ln which the result of the sum is 0
because both 1/} 1 and w 5 are 0 and there is no carry from
i—1 (Lz/)l Sty does not hold there); finally, the bit-wise “or”
with 1o sets to 1 all those positions in which )2 holds, since
101512 holds there.

We now illustrate the encoding of the future operators X, U.

Next. The encoding of formula X1 is essentially dual to that
of Y1, i.e., a bit-wise shift to the right of bit-vector 1. In fact,
X1 holds at ¢ iff 1) holds at ¢ + 1. However, a true right-shift
would always introduce a 0 at position k + 1, which would be
incorrect. In fact, recall that, in bounded encodings such as
the classic one presented in Section [[[-B} we need the state to
repeat at positions k 4 1 and [, with the latter corresponding
to the position of the first s in asBs, which in the bit-vector
encoding is represented by the value of bit-vector [oop. Hence,
the value of Xt at positions &£+ 1 and [ must be the same (this
is also true for Y, but it is achieved in a different way than
for X1, as it will be explained later). Note that the value of
X1p at position [ is the same as @ at position [ 4 1, hence, the
bit-vector corresponding to X1 is obtained by concatenating
W U1 with qp 1]

Until. The bit-vector corresponding to 1)1 U is computed
by exploiting the operator U, introduced above. In fact, the
operations performed by U, are the same as those for the
computation of 1S9, but carried out left to- r1ght 1nstead
of right-to-left. To achieve this, bit-vectors x | Y and %y Yy are
reversed through Rev before being added together, and the
result is also reversed.

As mentioned above, the operations performed by operator
Uy are the same as those for the encoding of 1S5, but
carried out in the reverse direction. Hence, they produce, from
bit-vectors & and ?, a bit-vector that corresponds to the truth
of zUy evaluated over finite models, whereby Uy holds at
position k+1 iff y holds at k4 1. However, when finite traces of
the form a.sBs are used to represent ultimately periodic models,
one must take into account that, in the encoding, 1)1 Uy, can
hold in k+ 1 (i.e., state s) also if )1 holds there, and )5 holds
somewhere in 3 (with 11 holding in the prefix of 5 until then).
Since the states in positions k41 and [ are the same (they are
both s), this is the same as saying that, in position I, ¥ Ut
holds in the finite model, that is, the [-th bit of ¥ Uy 99
is 1. If, conversely, the [-th bit of 11Uy ¥ 5 is O, then there

is no point in 5 in which v holds, with 1; holding until
then, so 11U, does not hold in state s (at position [ or at
position k£ 4+ 1). Finally, to correctly compute the bit-vector
corresponding to v, Uy, we compute 11Uy 9 o, take its [-th
b1t to determme whether 1)1 U, holds in s, then use bit-vector
(1/} 11U 2)“ k % 45 the second argument of Uy,; in fact,
as mentioned above by definition the value of x Um? at a
position k + 1 is 1 iff Sy F+1 =1,

Whereas the functions computing bit-vectors for future
operators X, U by construction impose that the value of the
subformula in positions [ and k + 1 is the same, the same does
not happen for the functions that compute the bit-vectors for
past operators Y, S. These so-called “last state constraints” (see
also Section @]) are easily included in the encodmg by adding,
for each formula Y1), the constraint (< z/J) M= (< 1/1) [e+1])
and similarly, mutatis mutandis, for each formula 1 St)s. The
“last state constraints” must be added for all subformulae,
including propositional letters, so for each p € AP we also
include the constraint ?[l] = <ﬁ[k+1]. Notice that it is not
necessary to include the “last state constraints” for each
subformula of the form —), 11 A 12 and 1)1 V 19, as they are
automatically guaranteed recursively. We indicate this set of
constraints as |BV LastStateConstraints|y.

Finally, the so-called “loop constraints” (see Section
are easily imposed by adding, for each p € AP, the
constraint ?“*11 = ?M. We name this set of constraints
| BV LoopConstraints|y.

Then, given an LTL formula ¢, the complete bit-vector-based
encoding, called ¢y, is given by:

o the set |BV LastStateConstraints|,, which includes
constraints for each p € AP, and for each past formula
Y and 11 S¢)a;

o the set |BV LoopConstraints|y, which includes a con-
straint for each p € AP

o constraint ¢ %) =1, where ¢ is the bit-vector obtained
through the transformations above.

For example, consider formula =Xp V (¢UYp). Its complete
encoding is given by the following formula:

?[l] — %[’C"rll A ?[l] — ?UH'U A (& <ﬁ)[l] = (< %)Vﬁ'l]/\
=1 5T A -1 — {7l
(G ety | (0]
< S (T 1 (0] > =1
qUn((7Un(< ) = (<))

ey
As remarked in Section it is customary to define the
other temperal operators from the basic ones as abbreviations.
In some cases we can use the abbreviation to further simplify
the encoding of these operators by exploiting the properties of
bit-vector operations. First of all, we can introduce operators
?Rnl(ﬂ and Fnﬁﬂ, shown below, whose definitions corre-
spond, respectively, to the simplified versions of —|(—|<§Un1—|<§)
and TUHI?.



Operator Definition
TRmY | Y & (% | Rev(Rev(!Z | 1) + Rev 1Y)

% | 'Rev(Reviy — 1)

Fnl?

Using these operators, we can in turn simplify the encoding
of derived temporal operators R and F as shown below.
Similarly for the encoding of operators T and P.

¢ bit-vector encoding

ViRY2 | D1Rm((P1RuP2) = BT
Fi Fo((F m?)”l % %WO])

T | D2 & (1] (D1 192) +192)
Py Y@ -1

W k2 g

Finally, the encoding of “always " (written W), which is
defined as Wi = Gep A Hep can be simplified as shown above
by considering that its value is 1 throughout [0, k + 1] if 1/1 has
value 1 everywhere, otherwise its value is O at every position.

We conclude this section by remarking that if one wants
to consider formulae in PNF (see Section , which entails
that operator Z be introduced, the <s_emamtlcs of 72 is simply
captured by the transformation < 1) | T

C. Correctness of the encoding

In this section we show that the new, bit-vector-based
bounded encoding of LTL formulae is equivalent to the classic
Boolean one introduced in Section

To show the equivalence, it is natural to consider a bit-vector

3 [n] Of size n, whose bits are ol ..,Y&T”, as a set of
n Boolean variables |[z]o,. .., |[z ﬁ\n_l. An operation on bit-

vectors (e.g., <) returns a bit-vector, which corresponds to
its own set of Boolean propositions; hence, for example, bit-
vector < 7, obtained by shifting T to the left, comprises n
bits, (< )9, ..., (<« 7)1, which in turn correspond to
Boolean Variables |[<< x)|oy-- -, |[<< Z]|n-1-

Recall that, given an LTL formula ¢, we indicate by ¢p the
set of formulae that correspond to the Boolean encoding of
¢, and by ¢y, the ones of the bit-vector-based encoding of ¢
(see Sections [[I-B] and [[II-B] for the definitions of ¢p and ¢r,).
We have the following result.

Theorem 1: Given an LTL formula ¢, the encoding ¢p is
equivalent to the encoding ¢y,,.

Proof: We prove the equivalence by showing that every
constraint in ¢p corresponds to a constraint in ¢y, and vice-
versa. First of all, we remark that the bit-vector encoding
assumes the existence of a loop starting at position [, so
we focus on this case for the proof. This is without loss of
generality, as it is always possible to extend an aperiodic trace
with a “dummy” loop at the end, in which nothing happens.
Notice also that, since [ is the position of the first s in asfs,
we have that 0 <[ < k + 1.

Let us first consider the |LoopConstraints|y. It is easy to
see that they directly correspond to |BV LoopConstraints|y,

which in fact impose that, for each p € AP, in the corre-
sponding bit-vector ‘p it holds that p =1 = ‘[, Given the
correspondence between bits of bit-vectors and propositional
letters introduced in the Boolean encoding, this is the same as
saying, for each p € AP, that |[p]|;—1 < |[p]|&-

We will tackle |LastStateConstraints|;, at the end of
the proof. We now focus on the encoding of propositional
connectives, i.e. |PropC’onsﬂain£9\k. The bit-vector of for-
mula 1 A 19 is simply 1& 1o, that is, for each bit
i € [0,k] (we will deal with the k: + 1-th bit 1n the
|Las<t;9tateC0nstraznts\k) it is (1/11&1&2)[4 = 1iff 1/1[
1A 1/1[21] = 1, which corresponds to Boolean constraints
[W1 A dbeli & ([l A l[Y2]]s, de.,
for the A connective. Similarly for the V connective. As far
as the — connective is concerned, recall that the Boolean
encoding assumes formulae in Positive Normal Form (PNF), an
optimization for saving intermediate Boolean variables which
we do not pursue in the bit-vector-based encoding. Even in the
Boolean encoding, the optimization could be eliminated without
impacting on the correctness of the encoding, by introducing a
Boolean variable |[—¢)]| for each formula of the form —), with
the constraint that |[—]|; < —|[¢]|;. Then, it is obvious that
such a constralnt corresponds to the semantics of the bit-wise
negation: ('1/1)[4 =1 iff 1/)

Let us now focus on \TempConstmints| k» starting from
those regarding past operators Y and S. The semantics of Y1)
is captured by the transformation < v, which by definition
means that, for all i € [1,k -+ 1], it holds that (< )l =
1 =11, This corresponds to the constraint that, for 1 < i <
k +<l, I[Y%]|: < |[¢]]|i—1. In addition, by definition of <,
(< )0 = 0, which corresponds to the constraint —|[Y4]|o
that appears in the Boolean encoding. The encoding of 11 St)2
is trickier. In the Boolean encoding, we have that, for i €
(1 k+1], [[Y1See]li < [[v2]l: V (I[¥1]]i Al[1Se2]|i—1), with
the additional constraint that |[1)1S3]|o < |[¢2]]o- To show
how this is equivalent to the bit- vecto(r_ encodmg, in Wthh the
bit-vector representing 1)1 Svs is 1 o] (1) 1&!(( 1/) | w 2)+ w 2)),
we need to show that for i e [Lk+1],if UJ[Q] = 0 and
tb[f] = 1dhen '((¢1|1/)2) + <1Z2)’ is 1 iff 1S9 holds in

— 1 GF Y5 =1, ie., |[tho]; is true, or zf] =0, ie., [[{1]]:
is false, the Boolean and bit-vector encodings clearlLyleld the
same result). Then, we need to determlne When (1 \w 2) +
P )[’] =0, prov1ded 1/) = 0 and 1/) = 1 Notice that,
£ 50 Z 0 and 9 = 1, then (91| 9a) + $o)i = 0 iff
there is a carry from ¢ — 1. This occurs, recursively, iff either
(_[21_ =, w[l '~ 1 and there is a carry from i— 2 or

[Z ' = 1. By inductive reasoning, for ((z/J |¢2) + 1/12)[1]
to be 0, there must be i < iin Wthh 1/) 2 =1, and for all
i<’ <iditis 1/)2 = 0 and wl = 1. In other words,
101519 holds in ¢ — 1. If, on the other hand, 1S9 holds in 1,
there must be i’ < i where wz =1and forall i <’ < it
is 1/) i ) — 1. In this case in ¢ ((¢ 1|<7z2) + zg)[i/} generates
a carry, which propagates to the left, until in ¢ it produces
a 0. Notice that, since in position O there can be no carry,




(Dol (01&N(F11T2) + T2 = 1 iff D = 1, which
corresponds to the Boolean encoding of 1St in 0.

Let us now focus on the future operators X and U. Since
the bit-vector for X1 is 1/} [t+1] z[;“““ U, for i € [0,k
(we will deal with the case i = k + 1 when focus-
1ng on |LastStateConstmmts|k) we have that (y[+1
w[k“ e = w [i+1] " which corresponds to the Boolean
encoding of Xw, ie., |[X¢¥]l; & |[¢]]i+1. The encoding of
U relies on operator Uy, whose definition coincides with that
of S, except that the arguments are reversed before applying
the sum, and reversed again after having applied it. As a
consequence, the properties of Uy are the same as those of
the encoding of S, except that the bit vectors are considered
in reverse order. Then, we can conclude that, for ¢ € [0, k],
(T Uw )l = 1 iff there is ¢ < i’ < k+1 such that 5 F1 =1
and, for all i < ¢ < ¢, ¥l"] = 1 holds. In addition,
(ZULY)FH = 1 iff S5+ = 1. The Boolean encoding
of U differs from that of S because, unlike the latter, where
the value of 1S9 in 0 depends exclusively on the value of
1o there, in the former the value in k£ depends on whether
there is a position in the loop (i.e., in the part s of the trace)
where 1 holds, as defined by constraints | Eventualities|y.
Given the propertles of operator Unl, and in particular the

fact that QU pliag =, 1 iff G = 1, the Jvalue of

(w#Unl((wlUnl 1&(_2) Uz Wy ) s 1 either P =
or v f] =1land (¢ Uy ¢ 2)[” = 1. In both cases, there must
be a position in the loop in which 5 holds; the first is evident
(that position is k); the second derives from the fact that by the
properties of Uy, ¥ 1Up g is 1in [ iff there is [ <4’ < k
in which vy holt(li (notlce that as it will be shown below, it is
guaranteed that 1/) 5 1/1 2

Finally, we need to show that the | LastStateConstraints|y
are also captured by the bit-vector-based encoding. To this
end, recall that for propositional letters and past opera-
tors Y and S the following constraints are explicitly in-
troduced: H ?[’”1] (< Z) l] = (<< %)[k“ and
gm (o8 (Fa12) + D)) = (ol (9112 ) +

[k+1] These are trivially equivalent to Boolean con-

Stramts Pl < Apllksrs (YYo= [[YO]lrsr and
[[Y1Swe]li < |[¥1SY2]|k+1. In the case of X and U oper-
ators the constraint is enforced in the constructlolbof the
correspondmg b1t vector. More precisely, we have (1) 1
¢[k+1 1 ¢[l+1] _ (Z[H—l] N z[kﬂ 1yh+1] (recall that
0<1< k + 1& As far as the U operator is concerned,
il W .. SO0\ [E+1] _ 1 :
(D1 U (% 1Un 92)0 SRUES +<_1 = 1iff the k + 1-th
b1t of the second argurnent is 1, ie., (ﬁ] 1Un((9 1Unl 0 2) [0
PRI — (01U o) 1t ()Unw2)" = 1, then
there is | < @’ <k+lsuchthat wQ =1 and wl =1
foralll < z < z Ifz S k+11tlseasytosee
th_at (1/11I<J_nl((1/)<1_Un11/)2) 1/) 0 )) (¢1Unl¢2)[l] =
(v 1U<n_((w1£nl 1 9) l]<_ [k 0])) kj_l] If, 1nstead z<_— kE+1,
then (Y1 Um o)l = [zkﬂ}, ((}AlUnl/l/)Q) 1/) . 0]) =

Vs, and, sgain (%Unl(wlUmwa) Fleolyn
o) g

T

- —

(¢1 n1¢2) (¢1Un1((¢1Un1¢2) ?

wl nlwg) = 0 then there is no | < ¢’ < k + 1 such that
¢2 <_1 and 1/) " for all [ <" < 4. Then, a fortiori
also (1 Un(0:: s [k:0] N =0, so agaln we have the equality
of the [-th and £+ 1-th bits in lenl((w 1Un ¢ 2)“ : Z{; O]).
Finally, the fact that | LastStateConstraints|;, hold also for
formulae of the form —, ¥; A 19 and ;1 V 1)2 can be easily
shown by induction, where the base cases are those already
tackled above.

To conclude the proof, we remark that the classic Boolean
encoding natively defines the semantics of operators R and T.
In our bit-vector-based encoding, instead, the encoding of these
operators exploits their definition as abbreviations for formulae
involving U and S; hence, the correctness of the encoding in
this case derives directly from that of the encoding of formulae

=, 11Uty and 1 Shs. ]

D. Complexity

As remarked in Section [III-B} in the bit-vector-based encod-
ing of an LTL formula ¢ we introduce a number of bit-vectors
of length k + 2 that is equal to the number of propositional
letters appearing in ¢. In the Boolean encoding, instead, k + 2
propositional letters are introduced for each subformula of
¢, hence the bit-vector encoding is more compact from this
point of view. The size of the constraint ¢ ©) = 1, which
relies on the transformations captured in Section to build
the expression of ¢, is linear in the size of the formula if
we introduce one bit-vector for each subformula. In fact, in
this case if n is the number of subformulae of ¢, for each
subformula we build a transformation of bit-vectors, according
to the tables of Section [III-B| whose size is constant, hence the
total size of constraint ¢ [°! = 1 is O(n). Since the number
of propositional letters appearing in ¢ is bounded by the size
of the latter, and since the size of the loop constraints (of the
form ?Uﬂ] = <_["“]) is constant with respect to n, the size of
| BV LoopConstraints|y, is also O(n).

Finally, one element of |BV LastStateConstraints|y is
introduced for each subformula whose principal operator is
a past one. For example, if subformula YYp appears in ¢,
constraints (< P! = (<« P)F and (< PV =
(<< )1 both belong to |BV LastStateConstraints|y.
If m < n is the number of past operators appearing in ¢,
the size of |BV LastStateConstraints|, is O(mn), hence
it is quadratic in the worst case. Regarding the size of
| BV LastStateConstraints|, however, we remark that it
can be easily made O(n) as in the Boolean encoding by
introducing, for each subformula of ¢ (or at least for each
past subformula of ¢) a fresh bit-vector; in this case, for
example, the | BV LastStateConstraints|y, for f<'()_rmu1a YYp
would be, after havmg defined bv; =<K ? and vy =< buq,
g[l] = ?)_[kﬂ] and bv[l] = ?f”“”. However, if the number
of past subformulae is small with respect to n, then it might
be more efficient to avoid introducing additional, intermediate
bit-vectors, and exploit the effective simplification algorithms
implemented in solvers of Bit-Vector Logic to handle the
constraints effectively.



IV. IMPLEMENTATION AND EVALUATION

The bit-vector-based encoding has been implemented as a
plugin in the Zot [12] tool, called bvzot.

Zot is an extensible Bounded Model/Satisfiability Checker
written in Common Lisp. More precisely, Zot is capable of
performing bounded satisfiability checking of formulae written
both in LTL (with past operators) and in the propositional,
discrete-time fragment of the metric temporal logic TRIO [17],
which is equivalent to LTL, but more concise. In fact, TRIO
formulae can straightforwardly be translated into LTL formulae,
so we use the two temporal logics interchangeably.

The verification process in Zot goes through the following
steps: (i) the user writes the specification to be checked as
a set of temporal logic formulae (these formulae could also
be produced automatically as in [[7]]), and selects the plugin
and the time bound (i.e., the value of bound k) to be used to
perform the verification; (ii) depending on the input temporal
logic (TRIO or LTL) and the selected plugin, Zot encodes the
received specification in a target logic (e.g., Propositional Logic,
or Bit-Vector Logic); (iii) Zot feeds the encoded specification
to a solver that is capable of handling the target logic; (iv) the
result obtained by the solver is parsed back and presented to
the user in a textual representation.

Zot supports both SAT solvers (e.g., MiniSat [18]) for
Propositional Logic, and SMT solvers (e.g., Z3 [11]]) for Bit-
Vector Logic and decidable fragments of first-order logic.

To evaluate the bit-vector-based encoding we compared it
against three other encodings available in the literature: the
classic bounded encoding presented in [16]; the optimized
encoding presented in [[19], which has been further improved
in [20] and made incremental in [21]]; and the encoding
optimized for metric temporal logic presented in [9]. The first
two encodings are implemented in the well-known NuSMV
model checker [13]] (in fact, NuSMV implements an optimized,
incremental version of the classic encoding of [16]), whereas
the third is implemented in the meezot plugin of the Zot tool.

In the rest of this section we will label the experiments
carried out with the classic encoding implemented in NuSMV
as bmc, those performed with the optimized encoding of [20]
as smbc, those with the incremental version of sbmc presented
in [21] as sbmc_inc{ﬂ and those performed with the metric
encoding implemented in Zot as meezot (all these labels come
from the commands used in NuSMV and Zot to select the
encodings). Note that both NuSMV and Zot support other
encodings for LTL/TRIO; we have chosen those mentioned
above because further experiments, not reported here, have
shown them to be, on average, the most efficient ones for the
two tools.

To test the relative efficiency of the four encodings, we
applied them to the verification of three case studies, two from
the literature and one from previous work of ours. The case
studies were chosen mostly for their complexity to highlight the

'While conductiong the sbmc_inc experiments we did not activate the
completeness checking option since it often slows the verification down, as
shown in [21].

relative strengths and weaknesses of each tool. These three case
studies employ a BSC approach, that is, they use temporal logic
to describe both the system under verification and the properties
to be checked. In all three cases we performed two kinds of
checks. First, we took the temporal logic formula ¢g describing
the system, and we simply checked for its satisfiability. This
allowed us to determine whether the specification is realizable
or not. As a second type of check, we also provided a logic
formula ¢p capturing the property that the system should have
satisfied, and we fed the BSC algorithm with formula ¢ A—¢p
to determine whether the property holds for the system or not.
We also experimented with different bounds & to analyze how
the tools behave when k is increased.

We now briefly introduce the three case studies; interested
readers can refer to the cited literature for their details.

Kernel Railway Crossing (KRC). The KRC problem
is frequently used for comparing real-time notations and
tools [22]. A railway crossing system prevents crossing of the
railway by vehicles during passage of a train, by controlling
a gate. A temporal logic-based version of the KRC was
developed in [9] for benchmarking purposes. It describes
one track and one direction of movement of the trains, and
it considers an interlocking system. We experimented with
two sets of time constants that allow different degrees of
nondeterminism, hereafter denoted as krcl and krc2. The
level of nondeterminism is increased by using bigger time
constants, e.g., the time for a train to go through the railway
crossing, which increase the number of possible combinations
of events in the system. We also carried out formal verification
with two properties of interest: a safety property that says that
as long as a train is in the critical region the gate is closed (P1);
and a utility property that states that the gate must be open
when it is safe to do so (i.e., the gate should not be closed
when unnecessary), where the notion of “safe” is captured
through suitable time constants (P2).

Fischer’s Protocol. This is a classic algorithm for granting
exclusive access to a resource that is shared among many
processes. Fischer’s protocol is a typical benchmark for
verification tools capable of dealing with real-time constraints.
The version we used for our tests, where the specification of the
system is described through temporal logic formulae, is taken
from [9]]; it includes 4 processes, and the delay that a process
waits after sending a request, which is the key parameter in
Fischer’s protocol, is 5 time instants. We performed formal
verification of a safety property that states that it is never the
case that two processes are simultaneously in their critical
sections (P1).

Verification of UML Diagrams. Correttd]is the toolset we
developed to perform formal verification of UML models [/7].
Corretto takes as input a set of UML diagrams and produces
their formal representation through formulae of temporal logic.
In our tests we used the example diagrams introduced in [7]],
which describe the behavior of an application that pings two
servers, and then sends queries to the server that responds

Zhttps://github.com/deib-polimi/Corretto


https://github.com/deib-polimi/Corretto

first. The model comprises a loop, and we performed tests
on two versions of the system, called sdserverl2, and
sdserverl3, where the number of iterations in the loops is
2 and 3, respectively. We also performed formal verification
on the example system using property P1 defined in [[7], to
which we refer the reader for further details on this case study.

To compare the performances of the bmc, sbmc, sbmc_inc,
meezot and bvzot encodings, we built a simple translation tool
that converts specifications written in the Zot input language
such as those used in [9] and [7]] into the input language of
NuSMV.
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Figures show the time (in seconds) and memory (in
MBs) consumed in each of the experiments we performed.
Note that if no bar is visible, and no error tag is reported, this
means that the number is very smallE]

For example, Figure [T] shows the time/memory consumption
for each encoding (bmc, sbmc, sbmc_inc, meezot, and bvzot)
for the various checks on example krc1: simple satisfiability
checking with maximum bound k& = 30 (sar_30) and verifica-
tion of property P1 with maximum bound k£ = 30 (PI1_30),
k =60 (P1_60) and k = 90 (P1_90), respectively. The role of

3Interested readers can refer to http://home.deib.polimi.it/pourhashem
kallehbasti/icse-2015.php, for the complete and detailed data about the
experiments.
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the “maximum bound” is the following: for a given maximum
bound k, the tools iteratively (possibly incrementally) try to
find an ultimately periodic model a3 where the length of a3
is 1,2,..., k. As soon as a model is found, the search stops,
and the model is output; if no model is found for any bound
up to k, the search stops at k and the formula is declared
unsatisfiable.

All the runs reported in Figures had a time limit of
1 hour and a memory limit of 4GB RAM; that is, if the
verification took longer than 1 hour or occupied more than
4GB of RAM, it was stopped. Hence, the possible outcomes of
a run are satisfiable, unsatisfiable, out of time (TO), and out
of memory (MO). In addition, in some cases the tool stopped
with a segmentation fault (SF) error, and in others with
heap exhausted (HE) while pre-processing the specification
to produce the encoding.

All the experiments were carried out on a Linux desktop
machine with a 3.4 GHz Intel® Core™ i7-4770 CPU and 8
GB RAM| The NuSMV version was 2.5.4. The SAT and SMT
solvers used with Zot were, respectively, MiniSat version 2.2
and Z3 version 4.3.2.

As the figures show, among the algorithms implemented
in NuSMV, sbmc_inc is the most memory efficient, while

4byzot, along with the code for all the experiments, is available on the
Zot repository [12]
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sbmc is the fastest. There are six models that sbmc_inc can
afford to verify, while sbmc fails. However, for the models
both encodings can afford, sbmc is faster than sbmc_inc.

When performing checks that require small bounds, such
as the satisfiability checks, bvzot is only occasionally more
efficient than the other tools. However, as the models and
bound{] grow in size, bvzot demonstrates its strengths. For
example, when proving properties for the KRC version with
the highest level of nondeterminism, i.e., krc2, bvzot is the
only tool able to explore all the bounds up to 90, and it is
faster than the others when the time bound is kept smaller (30
or 60). Similar results hold for the verification of properties
on the UML diagrams, whose formalization in temporal logic
is in fact the biggest specification that we have tested due to
the necessity of capturing all the possible sequences of events
in the Sequence Diagram.

However, we must highlight that in the case of Fischer’s pro-
tocol, sbmc is the most efficient encoding time-wise, whereas
bvzot is often the one with the least memory consumption.

All in all, we can conclude that the experimental results
show a promising ability by bvzot to scale up as the size of
the specification and of the time bound increase. Further gains

SFor each satisfiability experiment, the length of the smallest model found
was the same for each tool: 1 for the krc examples (the execution in which
nothing happens, that is, no train enters the crossing, is admissible), 29 for
Fischer’s protocol, 10 for sdserverl2, and 13 for sdserverl3.
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could also be obtained by adapting some of the optimizations
presented in [20] in bvzot.

V. RELATED WORK

There are essentially two approaches to the problem of
satisfiability checking of LTL formulae: bounded and automata-
based ones. This paper pursues a bounded approach, and
Section [IV| compares it against similar ones, and in particular
those presented in [16], [19], [20], [21]] and [9].

Rozier and Vardi [23]] carried out a comparison of satisfia-
bility checkers for LTL formulae based on the translation of
LTL formulae into Biichi automata. Rozier and Vardi [24] also
propose a novel translation of LTL formulae into Transition-
based Generalized Biichi Automata, inspired by the translation
presented in [25[]. Such automata are used by SPOT [26],
which is claimed to be the best explicit LTL-to-Biichi automata
translator for satisfiability checking purposes based on the
experiments carried out in [23]]. Li et al. [27] present a novel
on-the-fly construction of Biichi automata from LTL formulae
that is particularly well suited for finding models of LTL
formulae when they exist. Given the different nature of our
approach with respect to automata-based ones, however, we
did not compare our approach against them, and focused on
similar, BSC-based approaches instead.

Finally, an exhaustive evaluation of several techniques and
tools (including some that are not based on translation to Biichi
automata or on bounded approaches) can be found in [28]].

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel, efficient technique for verifying
LTL specifications implemented in the prototype tool bvzot.
Obtained results show the ability of this solution to scale
up and be usable for analyzing complex LTL specifications
efficiently. In classic Boolean encodings, all the constraints are
fed to the solver at bit-level, which makes the solver blind to
their relations at any higher level. Our encoding introduces the
constraints at word-level and exploits the ability of modern
solvers to work on word-level simplifications.

As for future work, we plan to keep refining the encoding
and identify further challenging case studies and competitors.
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