Effective Runtime Resource Management Using Linux Control
Groups with the BarbequeRTRM Framework

PATRICK BELLASI, GIUSEPPE MASSARI, and WILLIAM FORNACIARI,

Dipartimento di Elettronica Informazione e Bioingegneria (DEIB), Politecnico di Milano

The extremely high technology process reached by silicon manufacturing (smaller than 32nm) has led to
production of computational platforms and SoC, featuring a considerable amount of resources. Whereas from
one side such multi- and many-core platforms show growing performance capabilities, from the other side
they are more and more affected by power, thermal, and reliability issues. Moreover, the increased compu-
tational capabilities allows congested usage scenarios with workloads subject to mixed and time-varying
requirements. Effective usage of the resources should take into account both the application requirements
and resources availability, with an arbiter, namely a resource manager in charge to solve the resource
contention among demanding applications.

Current operating systems (OS) have only a limited knowledge about application-specific behaviors and
their time-varying requirements. Dedicated system interfaces to collect such inputs and forward them to
the OS (e.g., its scheduler) are thus an interesting research area that aims at integrating the OS with an
ad hoc resource manager. Such a component can exploit efficient low-level OS interfaces and mechanisms to
extend its capabilities of controlling tasks and system resources. Because of the specific tasks and timings of
a resource manager, this component can be easily and effectively developed as a user-space extension lying
in between the OS and the controlled application.

This article, which focuses on multicore Linux systems, shows a portable solution to enforce runtime
resource management decisions based on the standard control groups framework. A burst and a mixed
workload analysis, performed on a multicore-based NUMA platform, have reported some promising results
both in terms of performance and power saving.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management
General Terms: Algorithm, Design, Performance, Management

Additional Key Words and Phrases: Runtime resource manager, Linux, control groups, performance counters,
scheduling, multicore, many core, parallel applications, power, reconfigurability

ACM Reference Format:

Patrick Bellasi, Giuseppe Massari, and William Fornaciari. 2015. Effective runtime resource management
using Linux control groups with the BarbequeRTRM framework. ACM Trans. Embedd. Comput. Syst. 14, 2,
Article 39 (March 2015), 17 pages.

DOI: http://dx.doi.org/10.1145/2658990

1. INTRODUCTION

Progress in the silicon technology process has enabled the design and the manufacture
of computing platforms, featuring levels of parallelism ranging from a few to hundreds

This work has been partially supported by the EU-funded projects HARPA FP7-ICT-2013-10-612069 and
CONTREX FP7-ICT-2013-10- 611146.

Authors’ addresses: P. Bellasi, G. Massari, and W. Fornaciari, Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico di Milano, 20132 Milano, Italy; emails: {patrick.bellasi, guiseppe.massari,
william.fornaciari}@polimi.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org

© 2015 ACM 1539-9087/2015/03 ART39 $15.00

DOLI: http://dx.doi.org/10.1145/2658990

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

http://dx.doi.org/10.1145/2658990
http://dx.doi.org/10.1145/2658990

39:2 P. Bellasi et al.

of processing elements. Parallel architectures have found market not only in the scope
of high-performance computing (HPC) but also among high-end embedded and mobile
systems. Nonfunctional constraints, such as area, power, and thermal management,
had always been typical design issues of such systems, but today’s embedded systems
are losing this sort of exclusiveness. Now more than ever, energy efficiency and thermal
management, system reliability, and fault-tolerance capabilities are requirements of
distributed computing systems (i.e., server farms). Disregarding these requirements
would trivially lead to a dramatic increase in maintenance costs, frequency of failures,
and loss of performance. As a consequence, it is mandatory to implement effective
multiobjective resource management policies to properly exploit modern computing
platforms, taking into account the preceding constraints.

General-purpose operating systems (OS) usually aim at keeping the kernel space as
efficient as possible, pushing the implementation of complex frameworks toward user
space. Therefore, it is reasonable to think about integrating the OS with a resource
management framework running as a daemon process. However, this framework re-
quires the control of system resources, which can be achieved only by suitable interfaces
and mechanisms provided by the OS itself.

This article focuses on mechanisms supporting runtime resource management on
multicore Linux systems. To assess the effectiveness of the proposed solution, experi-
ments have been done targeting a multicore NUMA platform made of four quad-core
processor nodes. Two analyses have been carried out, based on two benchmark parallel
applications, featuring very different implementation patterns.

The rest of the article is structured as follows. Section 2 briefly outlines related
works, and Section 3 provides a short background on control groups, along with the
motivations for choosing it. Section 4 summarizes the basics of the proposed runtime
management framework, with a detailed description about how control groups have
been exploited. Section 5 reports the results of the experiments carried out through
two different types of analysis. Finally, conclusions are drawn in Section 6.

2. RELATED WORKS

A class of resource management solutions focuses mainly on the problem of task
scheduling, with the goal to optimize the performance/power trade-off.Several pro-
posals, targeting Linux systems, aim at extending the task scheduler of the OS by
adding new scheduling classes, such as in Domjan and Gross [2001], Bini et al. [2011],
Fu and Wang [2011], and Li et al. [2007]. These proposals focus on specific application
domains and are tied to the adoption of customized OS kernels. Conversely, one of
the main target requirements focused in this wolrk is the portability of the resource
management proposal.

In this regard, a more portable class of solutions includes all of those based on a user-
space implementation. In most of them, the resource management actions are limited
to the assignment of the set of CPU cores on which each active task is allowed to run,
as in Hoffmann et al. [2010], Hofmeyr et al. [2010], Blagodurov and Fedorova [2011],
Louvel et al. [2011], and Sondag and Rajan [2011]. Most of these solutions leverage the
sched_setaffinity syscall to set the CPU affinity mask.

Another class is that of resource managers based on the concept of virtualization,
namely the idea of hosting multiple virtual execution environments on the same phys-
ical device/machine.This implies the partitioning of the system resources among the
virtual environments and the implementation of a hypervisor acting as a global system
manager. This is the case of Head et al. [2010], Keller and Lutfiyya [2010], and Ranadive
et al. [2011]. Actually, the virtualization is already adopted by both open source and
commercial solutions, such as OpenVZ [2010], Linux Vserver [2010], Linux Containers
[2010], and Monta Vista [2010]. In particular, some of them are built on top of Linux

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:3

Table I. Control Groups Subsystems

Subsystem Description

blkio Input/output access to/from block devices
cpu Control on CPU usage assigned by the scheduler
cpuacct Report on CPU usage

cpuset CPUs and memory nodes assigned
devices Access control to devices

freezer Suspend/resume tasks

memory Limits on usage of memory

net_cls Tagging of network packets for traffic control
net_prio Priority of network traffic per network interface
ns Namespace isolation

Control Groups [2006] to setup the execution environment. However, in all of these
solutions, resource partitioning is “statically” defined ahead of system deployment.

As a novel contribution, a more dynamic exploitation of control groups is proposed
for Linux-based multicore systems, which is used as an interface to build a user-space
portable and modular runtime resource manager (RTRM).

3. LINUX CONTROL GROUPS

The control groups framework [Linux Control Groups 2006] has been part of the Linux
kernel since version 2.6.24. It offers the possibility to group tasks and bind each group
to a subset of system resources such as CPUs, memory quota, and I/O bandwidth. In
general, a group of tasks can be configured to use a specific set of resources either in a
shared or exclusive way. The former option allows overlapping among resource subsets,
whereas the latter can be used to configure a set of isolated execution environments,
which can be conveniently used to setup a lightweight virtualization solution. Resource
partitioning criteria can be either task- or user based. In the second case, for example, a
system administration can establish the amount of resources to reserve to the tasks of
a user according to its profile. This feature has made control groups mainly attractive
in the context of multiuser remote servers and distributed systems.

This article introduces a different use of the framework, going beyond the common
view of an administration tool. The following are some of the key aspects that led us to
choose this framework as a mechanism to enforce resource management decisions:

—User-space interface to control the system resources. This is a strong point in terms
of portability and invasiveness of the resource management solutions, as no kernel
side modifications are required.

—High modularity, thanks to a collection of subsystems also known as controllers,
leveraging specific OS managers. This aspect allows optional focus on the control of
only a subset of resources classes. Table I lists the currently available subsystems
with the resource control capabilities on tasks of control groups.

—Wide set of control parameters added by subsystems. This makes control groups the
most complete interface toward the system resources, which gives great potential to
a runtime resource management framework.

—Gaining more and more attention. The number of subsystems included is growing,
and consequently the capabilities to control tasks execution and resource assignment.

To better understand how the framework has been exploited, a brief description of
the proposed solution to runtime resource management is presented in the following
section.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:4 P. Bellasi et al.

4. RUNTIME RESOURCE MANAGEMENT

The proposed solution has been implemented and made available in the BarbequeOpen
Source Project (BOSP).! The project includes the RTRM—that is, BarbequeRTRM
[Bellasi et al. 2012]—along with a set of benchmarks, sample applications, and libraries.

The rest of this section provides an overview of the framework. As stated previously,
its modularity and portability aims at allowing BarbequeRTRM to support different
hardware platforms. In the following sections, only the case of Linux-based multicore
systems is targeted. Furthermore, for the sake of completeness, the concept of runtime
reconfigurable application is introduced by explaining how it has been characterized
and implemented in the proposed solution.

4.1. Overview

The basic notion of the framework is that an effective use of system resources starts
from the capability of applications to adapt their execution to the amount and status of
the assigned resources. Therefore, the framework provides support for implementing
applications that are runtime reconfigurable. To accomplish this, the applications
must (1) integrate the execution model defined by the library (RTLib) provided with
the the framework and (2) define a finite set of possible runtime configurations.
Regarding runtime configurations, two different levels of reconfiguration and
corresponding configuration information have been identified. The first level identifies
the application working modes (AWMs), which define the resource requirements for
the achievement of a certain QoS level. The second level is represented by the set of
operating points (OPs). A single OP is characterized by a set of application-specific
parameters affecting either the quality of the computation or the application perfor-
mance, but characterized by values ranging only in the boundaries defined by the
current set of assigned resources (AWMs).The set of application configurations is
defined via a design-time profiling that is supported by design space exploration (DSE)
tools. The effectiveness of these techniques has been already proved by prior works
(e.g., Yang and Catthoor [2003], Ykman-Couvreur et al. [2005], and Mariani et al.
2010]) that show how DSE is helpful in supporting runtime resource management.
Modern SoC multicore platforms are based on a hierarchical organization of homo-
geneous computational resources. Accordingly, the proposed resource manager handles
the concept of cluster to reference a group of processing elements, usually sharing a local
cache memory, also referenced with the term node in the domain of NUMA machines.
Given this scenario, the objective of a resource allocation policy is to identify a
suitable partitioning of the available resources among the demanding applications,
considering (1) the requirements of each application, (2) the status of the hardware re-
sources, and (3) the set of system-wide optimization goals. This is pursued by selecting
the “best” AWM for each active application and mapping it on a cluster of resources ac-
cording to the optimization goals. The application is notified at runtime about its AWM,
and hence the corresponding assigned amount of resources, so that, for example, it can
tune accordingly its parallelism level. Optionally, the application can exploit an API
provided by the RTLib to configure an application-specific RTRM by simply defining a
set of goals that would lift the programmer from the burden of selecting an OP. Further
details about this point will not be provided, as it is outside the scope of the article.

4.2. Resource Allocation Policy

This subsection introduces a resource allocation policy implemented in the framework.
Being an NP-hard problem, a resource allocation heuristic has been designed and

IFor more information: http:/bosp.dei.polimi.it.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:5

implemented. This heuristic is structured in two main steps: ordering and selection.
The ordering step includes the evaluation of each pair < W;,C; > for each active
application. The evaluation is performed by a multiobjective function, which carries
out an index value. This output represents the profit related to the choice of mapping
an AWM in a given cluster. Please note that from now on the expression evaluation
metrics is used in place of profit. The evaluation metrics are then exploited to build a
descendant ordered list of the whole set of pairs (from each application).

The selection step iterates on the ordered list, picking the pair < W;, C} > on top, and
assigning it to the application to which it belongs. This builds a triplet < A;, W;, C;, >,
meaning that the application A; has been scheduled and will use resources, from cluster
Cp, required to run in working mode W;. As the selection proceeds, the pairs includ-
ing an AWM belonging to an already scheduled application are skipped. The selection
ends when all active applications have obtained a cluster-mapped AWM or the avail-
ability of resources cannot satisfy the mapping of any AWM. In the case of different
priority levels among the active applications, the steps just described are repeated
for each set of applications having the same priority. The need to perform a multi-
objective optimization has been already explained in Section 1. Considering the pair
(x,y) :==< W;, C} > as input, the function comes as a linear combination of contribu-
tions, each of which focuses on a specific objective:

f=aV(x,y) +bR(x,y) +cL(x,y) +dF(x, y).

In turn, each contribution is a function returning a goal-specific index value. The
closer the value is to 1, the closer the pair (x, y) is to the optimal choice for that specific
goal. The following four contributions have been taken into account:

—Working mode value (V): This is a static value (properly normalized) used to express
a correlation between the AWM and performance, QoS, or user quality-of-experience
(QoE) level that can be reached with the amount of requested resources. In other
terms, it is a way to specify how much choosing the AWM is good from the user
perspective. The mapping choice y does not affect it, as the contribution completely
disregards the overheads and costs to enable the corresponding schedule. Moreover,
it does not consider other application or resource states.

—Reconfiguration and migration overheads (R): Reconfiguring an application involves
some costs, such as those related to deploying new binary objects. Migrating an ap-
plication from one cluster to another is expected to have even bigger costs due to
the need to migrate local data as well. Such costs should be considered and must
contribute to penalize the selection of a pair (x,y) that implies migration and/or
reconfiguration (index closer to 0) over other pairs (x, ¥) according to which no mi-
gration/reconfiguration would be required (index closer to 1).

—Load balancing (L): Accessing congested resources should incur higher penalties
than accessing relatively free ones. Indeed, for example, it is well known that for
some classes or resources, a usage level of around 70% to 80% is the start of system
saturation and corresponding decrease in performance. The goal of this contribution
is thus to penalize (x, y) pairs that would increase the current contention level. As a
consequence, AWMs requiring less resources and the choice of mapping an AWM on
poorly used clusters usually determine higher index values.

—Fairness (F): The goal of a fair scheduler is to partition available resources in a
fair way among all demanding applications. Applications are the “customers” of
the scheduler in charge to better serve them by giving each application the same
“opportunities.” This is especially true if, for example, multiple instances of the same
application are considered; thus, each instance will have the same priority and the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:6 P. Bellasi et al.

CORE CORE CORE CORE

CORE || CORE || CORE || CORE CORE CORE CORE CORE

1
. :
! 1
- 1
A |
3 1

1
1
core || core || core || cORE 1| core || core || core || core |
1

1
- :
- 1

1
| :

]
I 1

e e

-
-

MANAGED DEVICE

Fig. 1. Example of platform partition. A quad-core HosTt node and a ManaceD Devicke featuring three quad-
core nodes.

same set of AWMSs. Therefore, the contribution will return a value closer to 1 if the
given pair (x, y) does not exceed a fair resource usage threshold.

As can be seen from the general expression, for each contribution function it is
possible to specify a weight. As a result, the function can be tuned depending on the
aimed behavior.

4.3. Enforcing Resource Management

The portability and modularity of the resource manager allows the support of several
types of hardware platforms by implementing a specific Platform Proxy. This module is
in charge of managing the communication with the platform and performs the required
actions to actuate the decisions of the resource allocation policy.

On Linux multicore systems, the Platform Proxy module relies on the exploitation of
the control groups framework. This allows the setting of constraints on the number of
cores each task is assigned, the CPU time, and the quota of maximum memory usage.To
enforce constraints on these classes of resource, three control group subsystems are
needed: cpuset, cpu, and memory.?

In general, control groups can affect the execution of all tasks running on a system,
whereas the proposed resource manager targets only reconfigurable applications. This
introduces the need for two separate execution. The Host domain defines resources
free to be used by unmanaged tasks, and the MaNaGED DEviCE domain defines a set of
resources being reserved only for runtime managed applications. These domains are
configured by the resource manager according a “platform description” provided via a
simple text file. For example, a NUMA machine, featuring multiple multi-ore nodes,
can be configured using a single node as Host and the remaining nodes as MANAGED
DEevice (Figure 1).

A second level of resource partitioning can be defined by the platform description.
This level can be used to track the physical layout of the managed device to consider
aspects of data locality in the resource allocation. Considering the example of a NUMA
machine, it is possible to specify for node included in the managed device, the set
of CPU cores, the maximum CPU quota reserved on each core, and a corresponding
memory node ID, as well as a reserved memory quota.

When started, BarbequeRTRM mounts and configures a cgroup file system accord-
ing to the platform description using the user-space interface provided by the control

2Please note that the CPU bandwidth controller is available only since version 3.2 of the Linux kernel.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:7

groups framework, which is based on a virtual file system. Information contained in
the platform description file is parsed to build the initial cgroup hierarchy. This oper-
ation transposes the hierarchical description of the platform into the cgroup virtual
file system by creating directories and subdirectories accordingly. Once done, the hi-
erarchy will contain a couple of directories (i.e., host and mdev) plus the set of mdev’s
subdirectories, starting with node*, at one per node/cluster. Each directory will contain
all attribute files defined by the cgroup subsystems.

Once the initial hierarchy is ready, BarbequeRTRM migrates all tasks currently
running on the system into the host partition. As a result, the resources defined by
the managed device partition are free. From this point on, these resources can be
allocated to demanding applications only by the resource manager, which has exclusive
control over them. Therefore, whenever a reconfigurable application is launched, a
new subdirectory is created and inserted into the cgroup hierarchy. The name of the
subdirectory references the application through a merge of the process ID number
(PID) and a short form of the application name. The cgroup attributes are then filled
with the information related to the assigned resources according to the decisions of the
resource allocation policy.

As a result, the information filling the cgroup hierarchy will drive the actions taken
by the Linux scheduler and the memory manager, constraining the tasks specified
(runtime reconfigurable applications) to use only the set of the resources assigned by
the BarbequeRTRM framework.

5. EXPERIMENTAL RESULTS

An experimental evaluation of the proposed framework has been done to assess its
capability to efficiently manage resources considering different workload congestion
levels and workload mixes.

A first set of experiments evaluates the impact of using control groups to optimize the
execution of an increasing workload, which is based on multiple instances of a bench-
mark application. A second set of experiments evaluates our framework behaviors on
managing mixed workload scenarios, which are based on different combinations of two
benchmark applications, running on the same NUMA machine.

5.1. Experimental Setup

The experiments have been done using two applications from the PARSEC v2.1 bench-
mark suite [Bienia et al. 2008]. These two applications have been selected because they
exhibit two different and complementary parallelization models.

The first one, Bodytrack, is a good example of data parallelism where the input
dataset is decomposed and processed in parallel by a configurable number of threads.
The second benchmark, Ferret, is instead an example of task parallelism where the
input stream is processed by a four-stage pipeline, with each stage exploiting data
parallelism as well.

These applications have been modified to integrate them with the BarbequeRTRM
framework. The integration effort has been mainly devoted to making these appli-
cations runtime tunable by allowing change to the number of threads used for data
processing while the application is running. Although such an effort could be avoided
if applications are designed and developed to be runtime tunable, the additional code
required to integrate an application with the framework is limited to a few code lines.
Both the framework and the modified application used for these tests are freely avail-
able online.?

3Starting from the project Web site: http://bosp.dei.polimi.it.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:8 P. Bellasi et al.

Machine (81B6ME)

| NUMANode P#0 (81B6MB) |

Socket P#Q
| L3 (6144KB) l
| L2 (312KB) | | L2 (312KB) | | L2 (312KB) | | L2 (312KB) [
I L1 (G4KE} I | L1 (G4KE} | I L1 (G4KE} | | L1 (G4KE} [
Core P#0 Core P#1 Core P#2 Core P#3
| PU P#0 | | PU P#4 | | FU P#8 | | PU P#12 |

Fig. 2. The memory hierarchy of the target machine used for experiments.

Table II. Target Platforms Ppartitioning among HOST
and MANAGED DEVICE

AMD-NUMA Machine
CPUs IDs Memory Nodes
HOST partition 0,4,8,12 0
MDEYV partition (1-3,5-7,9-11,13-15 1-3

Table Ill. Resource Clusterization for the MANAGED DEVICE

AMD-NUMA Machine
CPUIDs Time Quota Memory Nodes Memory (MB)

NODE1 1,59,13 100 3 6,000
NODE2 2,6,10,14 100 2 6,000
NODE3 3,7,11,15 100 1 6,000

Regarding the hardware platforms, experiments have been carried out using a four-
node NUMA machine, with each node (Figure 2) consisting of a quad-core AMD Opteron
processor 8378, running up to 2.80GHz, for a total count of 16 processing units (PUs).
The available PUs have been organized into a host partition, used to run the framework
and all other generic system services and applications, and a managed device partition,
which defines instead the set of resources used to run applications managed by our
framework. The partitioning defined for the two target platforms is reported in Table II,
whereas in Table III the clusterization of the managed device into three nodes is
specified. It is worth noticing that the managed device has been clustered by matching
the memory hierarchy, a solution that addresses an improved exploitation of caches.

As a final remark,all experiments have been conducted by using the Linux CPUFreq
framework, specifically its on-demand policy, to select the best CPU frequency based on
runtime effective workload. Moreover, in experiments not using the proposed frame-
work, the standard Linux CFS scheduler was completely free to allocate applications
and their threads using all 12 PUs available in the 3 CPUs of the managed device.

5.2. Workload Burst Analysis

The burst analysis (BA) targets the evaluation of the framework benefits in terms of
time and energy required to complete a batch workload. The scalability of these benefits
is also investigated by considering an increasing number of concurrently running ap-
plications and their parallelization level. To this purpose, the Bodytrack workload has
been selected because it exhibits a quasilinear scalability with the number of threads,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:9

Table IV. Performance Metrics Collected during Tests

Goal Description

CTIME Time [s]: Workload completion time [s]

POWER Power [W]: System power consumption [W]

TASK-CLOCK Ticks: Task clock ticks

CTX Context switches: Total number of context switches

MIG Migrations: Total number of CPU migrations

PF Page faults: Total number of page faults

CYCLES Cyecles: Total number of CPU cycles

FES Front-end stalls: Total number of front-end stalled cycles
FEI Front-end idles: Total number of front-end idle cycles
BES Back-end stalls: Total number of back-end stalled cycles
BEI Back-end idles: Total number of back-end idle cycles

INS Instructions: Total number of executed instructions

SCPI SPC: Effective stalled cycles per instruction

B Branches: Total number of branches

B-RATE Branches rate: Effective rate of branch instructions
B-MISS Branch miss: Total number of missed branches
B-MISS-RATE ~ Branch miss quota: Effective percentage of missed branches
GHZ GHz: Effective processor speed

CPU-USED CPUs utilized: CPU utilization

1PC IPC: Effective instructions per cycle

thus allowing a better evaluation of parallelization-level impact with respect to the
amount of assigned PUs.

A test configuration is defined by the number of concurrently running instances of
Bodytrack and their maximum parallelization level. For each configuration, the original
unmodified version of the benchmark has been compared to the one integrated with
the proposed framework. The original version is executed with the specified number of
threads and freely scheduled by the Linux kernel on the CPUs of the managed device
partition. To the contrary, the runtime managed version is capable of running with
the same maximum number of threads or with a reduced number, depending on the
amount of resources (i.e., CPU time) assigned by the BarbequeRTRM framework, and
it is scheduled by the Linux kernel only on the subset of CPUs assigned within the
managed device partition.

The standard Linux perf framework and a user-space tool have been used to collect,
for each test configuration, a rich set of performance counters ranging from architec-
tural metrics to OS events. A detailed list of all considered metrics is represented in
Table IV; all metrics but the IPC should be considered of class “the lower the better”—
that is, a lower value corresponds to a better behavior. The number of instructions
per cycle (IPC) is the only exception; indeed, a higher instruction execution rate corre-
sponds to a better exploitation of the computational resources of the CPUs. Moreover,
the average power consumption during the execution of a configuration test has been
collected via the IPMI interface available on the test machine. It is worth noticing that
the collected values correspond to the overall system consumption in Watts.*

A detailed report on all collected metrics is reported in Tables V and VI for two
representative scenarios. Table V refers to applications configured to run with only
one thread, whereas Table VI reports results for applications running with eight
threads. Metrics related to the original unmodified application are reported under
the U columns, whereas the M columns are for BarbequeRTRM managed applications.
For each metric, based on 30 repetitions of the experiment, the mean and 95% and 99%

4This comprises not only CPUs but also (and mainly) disks and cooling fan usage.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:10 P. Bellasi et al.

Table V. Performance Metrics (1 Instance, 1 Thread)

Mean 95% CI 99% CI

Metric 18] M U M U M

ipc 1.080 1.235 0.000 0.002 0.000 0.003
bei 53.942 45.386 0.031 0.070 0.041 0.092
ins [G] 126.869 27.450 0.039 0.023 0.052 0.030
ctime 50.883 9.881 0.028 0.005 0.037 0.007
power 287.233 286.533 0.457 0.636 0.602 0.837
ghz 2.292 2.217 0.001 0.002 0.001 0.003
b-miss [M] 168.028 26.191 2.026 0.148 2.666 0.195
b-rate 250.667 309.050 0.209 0460 0.275 0.605
ctx [K] 6.468 2.897 0.007 0.004 0.009 0.005
mig 15.433 92.233 3.055 1.123 4.021 1.478
fei 1.405 1.546 0.026 0.017 0.034 0.022
task-clock [K] 51.226 10.030 0.029 0.004 0.038 0.006
cpu-used 1.007 1.015 0.000 0.000 0.000 0.000
b [G] 12.841 3.100 0.007 0.004 0.010 0.006
pf K] 30.708 52.186 0.006 0.001 0.008 0.001
fes [G] 1.650 0.344 0.030 0.004 0.040 0.005
scpi 0.500 0.370 0.000 0.000 0.000 0.000
bes [G] 63.324 10.091 0.044 0.009 0.059 0.012
cycles [G] 117.392 22.234 0.054 0.020 0.071 0.026
b-miss-rate 1.309 0.845 0.016 0.005 0.021 0.006

Table VI. Performance Metrics (12 Instances, 8 Threads)

Mean 95% CI 99% CI

Metric 18] M U M U M

ipc 1.070 1.325 0.000 0.002 0.000 0.002
bei 54.341 39.930 0.010 0.022 0.013 0.029
ins [P] 1.524 0.225 0.000 0.000 0.000 0.000
ctime 49.828 7.767 0.026 0.060 0.035 0.080
power 392.000 363.767 0.000 0.801 0.000 1.055
ghz 2.393 2.380 0.000 0.001 0.000 0.001
b-miss [G] 1.920 0.174 0.004 0.001 0.005 0.001
b-rate 259.622 381.845 0.059 0.382 0.078 0.503
ctx [K] 469.009 277.739 0.366 0.522 0.482 0.687
mig [K] 30.818 0.412 0.293 0.015 0.386 0.019
fei 1.412 1.545 0.010 0.005 0.013 0.006
task-clock [K] 594.929 71.434 0.103 0.039 0.136 0.051
cpu-used 11.940 9.202 0.005 0.072 0.007 0.095
b [G] 154.457 27.277 0.024 0.033 0.031 0.043
pf [K] 363.717 621.619 0.024 0.052 0.032 0.069
fes [G] 20.099 2.629 0.142 0.007 0.187 0.010
scpi 0.510 0.300 0.000 0.000 0.000 0.000
bes [G] 773.565 67.898 0.160 0.061 0.210 0.080
cycles [P] 1.424 0.170 0.000 0.000 0.000 0.000
b-miss-rate 1.243 0.637 0.003 0.003 0.004 0.003

confidence intervals are reported, the last of which clearly state the significance of the
computed mean values.

For better readability, Figure 3 reports a graphical comparison between the original
version (unmanaged) and the one integrated with the framework (BBQ managed) in
the two representative scenarios and the most interesting metrics.

The first column represents the time required to complete the workload for the given
number of concurrently started instances of Bodytrack. In the case of only one thread,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:11

Workload completion time [s] thal number gf CPU migrgtions

2500

60

20001

15001

mig

10001

500

E Unmanaged
BBQ Managed

—
3 6 9 12 1 3 6 9
Number of Bodytrack concurrent instances (1 thread) Number of Bodytrack concurrent instances (1 thread)

(a) (b)

EE Unmanaged
[BBQ Managed
-

12

1

100000 Total number of context switches System power consumption [W]

80000

60000

ctx

40000

20000

HEl Unmanaged
[BBQ Managed
—

12

H Unmanaged |
[0 BBQ Managed
—

3 6 9 1 3 6 9 12
Number of Bodytrack concurrent instances (1 thread) Number of Bodytrack concurrent instances (1 thread)

(c) (d)

1

Fig. 3. Workload burst performance scalability using an increasing number of single-threaded instances
of Bodytrack. (a) Completion time. (b) Effective processor speed. (¢c) Context switches. (d) System power
consumption.

the unmanaged version is five times slower than the integrated one. This is explained
by looking (refer to Table V) at the number of executed instructions (ins) (i.e., 126 - 10°
vs, 27-107), missed branches (i.e., 168-10° vs. 26-10°), and context switches (i.e., 6103
vs. 3-10%). These results reflect inefficient code execution, probably due to an inefficient
exploitation of the memory resource, as confirmed by the increased average number
of stalls on both the front- and back-end stages of the pipeline. The BarbequeRTRM
managed applications get an amount of resources assigned, as well as a subset of the
available processors where their threads can be scheduled for execution. This results
in a more efficient code execution, which is also certified by the improved IPC index
(i.e., 1.235 instead of only 1.080) of the original unmanaged application.

As expected, in the scenarios with just 1 thread, the completion time is not changing
with the increasing number of concurrent instances.The experiment considers up to
12 concurrent instances that can be independently scheduled on the 12 CPUs of the
managed device. However, increasing the number of instances, it has been noticed, as
expected, that an increased number of migrations and context switches for the unman-
aged application occur. This is due to the higher contention among all applications,
which results in an increased Linux scheduler activity. The same effects are mitigated
in the case of the BarbequeRTRM managed application, as the proposed framework
reduces the degrees of freedom of the Linux scheduler by assigning, via control groups,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:12 P. Bellasi et al.

Workload completion time [s] Total number of CPU migrations

35000

30000
40f

25000

20000

mig

15000

10000f

10
50001

Unmanaged ||
BQ Managed

3 6 12
Number of Bodytrack concurrent instances (8 threads)

HEl Unmanaged
[BBQ Managed
-
3 9 12
Number of Bodytrack concurrent instances (8 threads)

(a) (b)

1 1

Total number of context switches System power consumption [W]

500000

400000
3000001
%
©

2000001

1000001

Unmanaged
BBQ Managed

HEEE Unmanaged |
[BBQ Managed
-

3 6 9 12
Number of Bodytrack concurrent instances (8 threads)

1 1

3 6 9 12
Number of Bodytrack concurrent instances (8 threads)

(c) (d)

Fig. 4. Workload burst performances scalability using an increasing number of Bodytrack with eight-thread
parallelization level. (a) Completion time. (b) Effective processor speed. (¢) Context switches. (d) System
power consumption.

specific resources (i.e., CPUs) to each application. The benefits of this constraining of
the scheduler are even more evident in scenarios with 9 and 12 concurrent instances.
Indeed, in these cases, due to the high number of instances, the fair resources alloca-
tion policy provided with the framework assigns a single CPU to each instance, thus
drastically reducing the number of migrations. A higher efficiency in code execution
reduces system power consumption, which improves by 0.2% and up to 8.6%, ranging
from 1 to 12 instances.

Similar results can be found in the second row of Figure 4, where scenarios with
eight threads per instance are reported. In these scenarios, the workload mix produces
high system congestion. The Linux CFS scheduler does its best to bewith all threads
of the concurrently running applications. However, this policy has a significant impact
on the number of migrations and context switches, with a corresponding degrada-
tion of all other architectural metrics, as reported in Table VI. To the contrary, the goal
of the BarbequeRTRM framework is either to grant a reasonable minimum amount of
resources to an application or to postpone its execution. In scenarios with high conges-
tion, the net effect is a partial serialization of demanding applications. As the figure
shows, this results in a smaller completion time and a higher power efficiency, which
always improves between 7% and 11%. It is worth noticing that the combined effect
on reduced workload completion time and better power efficiency has an even more

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:13

Table VII. Performance Speedups by Scenario

Scenario ctime [%A] power [%A] energy [%A]
1 Thread, 1 Instance 80 0.2 16
1 Thread, 12 Instances 84 7.8 655
8 Threads, 1 Instance 35 9.7 339
8 Thread, 12 Instances 84 7.2 604

Metrics speedups for Bodytrack (1 instance, 1 thread) Metrics speedups for Bodytrack (1 instance, 8 threads)

15

15
1.0p 1.0
S ost 2 sl
° S
9] j}
: IR [I
a
s omnlll_ - a0l 0 1
g I ¢ g |
© ©
E E
2 -05 S -05
-1.0 -1.0
S s s v 8 € 5 2 § ¥ 5 5 2 & § 3§ & 3§ Sy s v 4 ® 5 F 3 ¥ 55 2 5 § 8 & 3
&8 S E s § 2858 E g 85358 ¢ & s S E 820838 E g 83 s ¢
S8 3 5 8 M [583452 3 [
2 M 4 2 % 8
o] £ o © £
& & - a
Performance metrics Performance metrics
15 Metrics speedups for Bodytrack (12 instances, 1 thread) 15 Metrics speedups for Bodytrack (12 instances, 8 threads)
1.0p q 1.0 q
o
S ost S 0.5f
o S
] @
9] o
> o0l [| 0
@
o 0.0f a8 - T 0o 8 e
N g N
© T
£ £
2 -05 < S -0s5 <
-1.01 1 —1.0r
IS e s s T 8 8 5 X 3 % 5 5 2 & § 3§ & g Sy s v 4 @ 5 F 3 ¥ 5 5 9 5 § 3 & 3
¢ i lesteyg Egdegse srEesp ety AR
8832 ;%: 3 e 88153 g s
2 M 8 2 % 2
°© g £ o g 3
2 3
Performance metrics Performance metrics

Fig. 5. Benefits and loss on the considered performance metric. Positive bars mean speedup, whereas
negative ones mean degradation of the runtime managed Bodytrack compared to the original unmanaged
version.

interesting effect on the overall energy consumption, which improves up to six times
in more congested scenarios, as reported in Table VII.

An overall graphical representation of the speedups for each considered metric is
reported in Figure 5 for the four scenarios of the previous table. In this figure, a positive
bar corresponds to an improvement, whereas a negative bar represent a deficiency of
the integrated application with respect to the original one. These graphs indicate that
the BBQ managed version of the application performs much better in all congestion
levels corresponding to the different scenarios.

Among the negative metrics, the number of migrations (mig) can be noticed; how-
ever, it is worth noticing that this degradation is only a measure for lower-congestion
scenarios (i.e., first two graphs), where the number of migrations, even being different,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:14 P. Bellasi et al.

Table VIII. Workload Mix Scenarios and Runtime Configurations

Threads Count Workload Mix
Workload |AWMO AWM1 AWM2 AWM3 |L1 M1 H1l H2
Bodytrack 2 2 3 5 2 3 6 4
Ferret 1 1 3 4 2 3 4 6
CPU quota 50 100 200 400

is a relatively small number and with the same order of magnitude in both cases (refer
to Table V). Instead, when the congestion level increases (i.e., the last two graphs), the
difference in number of migrations, operated by the Linux CFS scheduler on the orig-
inal unmanaged version, increases by up to two orders of magnitude difference with
respect to the runtime managed version. At higher levels of congestion, the benefits
of the constrained resources assignment operated by the BarbequeRTRM framework
is better appreciated.The page faults (pf) metric is also always degraded for the inte-
grated version, as well as the branch rate (b-rate). This is due to the way the original
application has been integrated with the BarbequeRTRM framework. Indeed, the body
of the main processing loop has been moved into a call-back method provided by the
runtime management library. This code reorganization inhibits some compiler opti-
mization, namely loop unrolling could not be applied, which is the main reason for
those degradations. A different integration is possible by moving a loop portion within
the required call-back method; however, this has been left for future investigations.

All other metrics benefit from integration with the BarbequeRTRM framework. It is
worth noticing an overall better exploitation of the computational resources thanks to
the resources assignment operated by the BarbequeRTRM framework. The effective
CPU utilization (cpu-used) is always improved thanks to a significant reduction of
front-end and back-end stalls (fes and bes), which corresponds to a reduction in the
number of stalled cycles per executed instruction (scpi). These last three architectural
metrics indicate that the instruction stream is well optimized, and such results have
been achieved by offsetting compile-time optimization discussed so far with a better
assignment of resources at runtime.

5.3. Mixed-Workload Analysis

These experiments focus on mixed workloads, where different applications run con-
currently, and targets an evaluation of the the BarbequeRTRM framework benefits
generalization to different classes of applications.

Different runtime scenarios have been considered, each one defined by a mix of
Bodytrack and Ferret workloads, which are concurrently in execution and configured
according to data reported in Table VIII. Each workload has been configured with
four AWMs that correspond to a different amount of threads and quota of CPU time.
The matching between the optimal number of threads given a certain time quota
has been identified at design time by exploiting a DSE tool to analyze all possible
configurations. Thus, for example, the best completion time for a single instance of
Bodytrack (respectively Ferret) running alone on four PUs (i.e., 400% CPU quota) has
been identified, which corresponds to a five-thread parallelization level (respectively
four threads for Ferret).

The workload mix configurations are defined in terms of Bodytrack and Ferret
instances, specifically the four different scenarios reported in Table VIII have been
considered. These scenarios have been identified such that all applications, when man-
aged by the BarbequeRTRM framework, cannot be scheduled in the maximum work-
ing mode. For example, even in the lightest scenario L1, to run all applications with
maximum resources, a total of 16 PUs would be necessary (400% CPU quota by 2 + 2
instances), whereas only 12 PUs are available in the managed device (refer to Table II).

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:15

Table IX. Performance Speedups by Scenario

Scenario Workload Mix ctime [%A] power [%A] energy [%A]
L1 2 Bodytrack, 2 Ferret 21.7 15.6 34.0
M1 3 Bodytrack, 3 Ferret 25.3 7.4 30.9
H1 6 Bodytrack, 4 Ferret 22.5 6.7 27.7
H2 4 Bodytrack, 6 Ferret 26.0 -0.3 25.8

Thus, when the scenario is run using the BarbequeRTRM framework, because of the
fairness optimization metrics (cfr. Section 4), the workloads will be co-scheduled just
on AWM2, where a total of 8 PUs are required and a whole CPU is not used, thus
reducing power consumption.

The same set of metrics used for the burst analysis have been collected during the
execution of these scenarios. Each scenario has been executed multiple times to build
statistics on its completion time and power consumption. The performances of the
original applications and those integrated with our framework have been compared.
In the first case, the Linux scheduler only has been in charge to allocate CPU time and
threads on the 12 PUs of the managed device, whereas in the second case, the number
of threads, the PUs to be used, and the allowed CPU quota have been defined by the
BarbequeRTRM framework.

The results of this analysis are summarized in Table IX, where a constant improve-
ment on the completion time,which is never lower than 20%, can be noticed. The
resources allocation proposed by the framework corresponds not only to better perfor-
mances but also to reduced power consumptions. This results in an overall improved
energy efficiency, which is never lower then 25%, given the considered scenarios.

6. CONCLUSIONS

This work introduces a new user-space solution for runtime resource management
that extends the advanced and efficient resources control capability offered by modern
Linux kernels with suitable resources partitioning policies. In this article, we focused on
evaluating the effectiveness to exploit the control group Linux framework to mandatory
assignment of a set of computational resources to concurrently running applications.

Experiments have been based on workloads from the PARSEC v2.1 benchmark suite,
which has been made runtime tunable and integrated with our framework. Initial
results show the effectiveness of the proposed solution considering a wide range of
performance metrics. The proposed solution provides an up to 80% improvement in
execution time and six times the energy efficiency for the considered workload in many
and different system congestion scenarios.

A further analysis, which considered mixed workloads of two applications from the
same benchmark suite, shows the extension of benefits produced by our solution to
the management of different classes of applications. These benefits target not only
performances, which are boosted by 20% at least, but also energy efficiency, which is
improved at least by 25% in the evaluated scenarios.

Overall, this work fosters a more runtime-aggressive exploitation of Linux control
groups not only as a container framework to grant isolated execution contexts but
also to improve application performances and system-wide energy consumption. Fu-
ture works target the integration of other representative workloads, the evaluation of
different target architectures, and the assessment of the proposed solution on more
industrial usage scenarios.

REFERENCES

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th International

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

39:16 P. Bellasi et al.

Conference on Parallel Architectures and Compilation Techniques (PACT08). ACM, New York, NY,
72-81. DOI:http://dx.doi.org/10.1145/1454115.1454128

Enrico Bini, Giorgio Buttazzo, Johan Eker, Stefan Schorr, Raphael Guerra, Gerhard Fohler, Karl-Erik Arzen,
Vanessa Romero, and Claudio Scordino. 2011. Resource management on multicore systems: The AC-
TORS approach. IEEE Micro 31, 3, 72-81.

Sergey Blagodurov and Alexandra Fedorova. 2011. User-level scheduling on NUMA multicore systems under
Linux. Retrieved December 18, 2014, from http://kernel.org/doc/ols/2011/0ls2011-clavis.pdf.

Hans Domjan and Thomas R. Gross. 2001. Managing resource reservations and admission control
for adaptive applications. In Proceedings of the International Conference on Parallel Processing.
499-506.

Xing Fu and Xiaorui Wang. 2011. Utilization-controlled task consolidation for power optimization in
multi-core real-time systems. In Proceedings of the IEEE 17th International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), Vol. 1. 73—82. DOI : http://dx.doi.org/
10.1109/RTCSA.2011.65

Michael R. Head, Andrzej Kochut, Charles Schulz, and Hidayatullah Shaikh. 2010. Virtual hyper-
visor: Enabling fair and economical resource partitioning in cloud environments. In Proceed-
ings of the IEEE Network Operations and Management Symposium (NOMS). 104-111. DOI:http:/
dx.doi.org/10.1109/NOMS.2010.5488444

Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant Agarwal. 2010. SEEC:
A Framework for Self-Aware Computing. Technical Report MIT-CSAIL-TR-2011-046. Massachusetts
Institute of Technology, Cambridge, MA.

Steven Hofmeyr, Costin Iancu, and Filip Blagojevi¢. 2010. Load balancing on speed. In Proceed-
ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
147-158.

Gaston Keller and Hanan Lutfiyya. 2010. Replication and migration as resource management mechanisms
for virtualized environments. In Proceedings of the 6th International Conference on Autonomic and
Autonomous Systems (ICAS). 137-143. DOI : http://dx.doi.org/10.1109/ICAS.2010.27

Tong Li, Dan Baumberger, David A. Koufaty, and Scott Hahn. 2007. Efficient operating system scheduling
for performance-asymmetric multi-core architectures. In Proceedings of the ACM/IEEE Conference on
Supercomputing. Article No. 53.

Linux Containers. 2010. Linux Containers Home Page. Retrieved December 18, 2014, from http:/lxc.
sourceforge.net.

Linux VServer. 2010. Linux-VServer Home Page. Retrieved December 18, 2014, from http:/linux-vserver.org/
Welcome_to_Linux-VServer.org.

M. Louvel, J. Tous, J.-P. Babau, and A. Plantec. 2011. Ensuring QoS of multimedia applications
in heterogeneous home networks: The CPU use case. In Proceedings of the 9th International
Conference on Embedded and Ubiquitous Computing (EUC). 19-26. DOI:http:/dx.doi.org/10.1109/
EUC.2011.34

Giovanni Mariani, Prabhat Avasare, Geert Vanmeerbeeck, Cliaiztal Ykman-Couvreur, Gianluca
Palermo, Cristina Silvano, and Vittorio Zaccaria. 2010. An industrial design space explo-
ration framework for supporting run-time resource management on multi-core systems. In Pro-
ceedings of the Design, Automation, and Test in Europe Conference and Exhibition (DATE).
196-201.

Paul Menage. 2006. CGroups. Retrieved December 18, 2014, from http://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt.

MontaVista. 2010. Beyond Virtualization: The MontaVista Approach to Multi-Core SoC and Resource Al-
location and Control. Retrieved December 18, 2014, http:/mvista.com/download/Whitepaper-Beyond-
Virtualization.pdf.

OpenVZ. 2010. OpenVZ Home Page. Retrieved December 18, 2014, from http://wiki.openvz.org/Main_Page.

Patrick Bellasi, Giuseppe Massari, and Williams Fornaciari. 2012. A RTRM proposal for multi/many-core
platforms and reconfigurable applications. In Proceedings of the 7th International Workshop on Recon-
fisurable Communication-Centric Systems-on-Chip (ReCoSoC). 1-8.

Adit Ranadive, Ada Gavrilovska, and Karsten Schwan. 2011. ResourceExchange: Latency-aware schedul-
ing in virtualized environments with high performance fabrics. In Proceedings of the IEEE In-
ternational Conference on Cluster Computing (CLUSTER). 45-53. DOI:http:/dx.doi.org/10.1109/
CLUSTER.2011.14

Tyler Sondag and Hridesh Rajan. 2011. Phase-based tuning for better utilization of performance-asymmetric
multicore processors. In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 11-20.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

http://dx.doi.org/10.1145/1454115.1454128
http://kernel.org/doc/ols/2011/ols2011-clavis.pdf.
http://dx.doi.org/10.1109/RTCSA.2011.65
http://dx.doi.org/10.1109/RTCSA.2011.65
http://dx.doi.org/10.1109/NOMS.2010.5488444
http://dx.doi.org/10.1109/NOMS.2010.5488444
http://dx.doi.org/10.1109/ICAS.2010.27
http://lxc.sourceforge.net
http://lxc.sourceforge.net
http://linux-vserver.org/WelcometoLinux-VServer.org.
http://linux-vserver.org/WelcometoLinux-VServer.org.
http://dx.doi.org/10.1109/EUC.2011.34
http://dx.doi.org/10.1109/EUC.2011.34
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
http://mvista.com/download/Whitepaper-Beyond-Virtualization.pdf.
http://mvista.com/download/Whitepaper-Beyond-Virtualization.pdf.
http://wiki.openvz.org/Main_Page
http://dx.doi.org/10.1109/CLUSTER.2011.14
http://dx.doi.org/10.1109/CLUSTER.2011.14

Effective RTRM Using Linux CGroups with the BarbequeRTRM Framework 39:17

Peng Yang and Francky Catthoor. 2003. Pareto-optimization-based run-time task scheduling for embed-
ded systems. In Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/
Software Codesign and System Synthesis(CODES+ISSS). ACM, New York, NY, 120-125. DOI:http://
dx.doi.org/10.1145/944645.944680

Chantal Ykman-Couvreur, Erik Brockmeyer, Vincent Nollet, Theodore Marescaux, Francky Catthoor,
and Henk Corporaal. 2005. Design-time application exploration for MP-SoC customized run-time
management. In Proceedings of the International Symposium on System-on-Chip. 66—69. DOI:http:/
dx.doi.org/10.1109/ISS0OC.2005.1595646

Received June 2013; revised May 2014; accepted July 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 39, Publication date: March 2015.

http://dx.doi.org/10.1145/944645.944680
http://dx.doi.org/10.1145/944645.944680
http://dx.doi.org/10.1109/ISSOC.2005.1595646
http://dx.doi.org/10.1109/ISSOC.2005.1595646

