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1 Introduction

Electro-elastic (EA) media are physical systems that are sensitive to the action of mechan-
ical forces and electric fields. When immersed in electric fields, EA systems deform spon-
taneously, and, when deformed by mechanical forces, they cause a change in the original
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configuration of electrostatic or electrodynamic fields. The variation of the assigned con-
figuration of the electric field lines triggered by the electromechanical coupling is called
mechanic-electric feedback (MEF). Typically, in EA systems deformations may induce a
change of the eventual initial isotropy of a body.

Historically, the most well known example of electro-elastic systems has been the
piezoelectric crystal. In linearized kinematics, it can be proved that an isotropic dielectric
immersed in an electric field develops polarization charges, inducing internal stresses
proportional to the square of the electric field [37]. A similar dynamics characterizes
piezoelectrics. The origin of the electromechanical coupling in piezoelectric materials
stems from a phase transition that breaks the symmetry, and that leads also to a sponta-
neous polarization. By this spontaneous polarization there is a linear coupling between
deformation and electric field [36, 44], so that MEF effects are enhanced. Piezoelectrics
manifest also the reverse feedback: imposed deformations induce an internal electric
field proportional to the magnitude of the deformations. A second important class of
materials where MEF is of relevance are electro-active polymers (EAP), that typically ex-
hibit changes in size or in shape when stimulated by an electric field [53]. Among the
recent literature addressing this class of materials, it is worth to mention contributions
concerning electro-visco elastic polymers [4, 5, 74], and proposing thermodynamic for-
mulations for electro-active synthetic materials [46].

The MEF effect is observed also in materials that are in focus in the present study, i.e.,
biological media with contractile properties, such as the heart, the intestines, and several
types of muscles. It is evident that biological systems undergo rather large deformations,
therefore the underlying biophysical dynamics cannot be described accurately by means
of the infinitesimal theory of elasticity. In particular, according to single cell and tissue
specimen measurements, during a normal heart beat myocytes change their length up
to 20% [50], i.e., in the typical range of finite deformations. According to the literature,
the mechanical properties of muscles have been mainly investigated at the macroscopic
scale via force-velocity relationships, following Hill’s model [30]. The complexity of the
electric fields and of the mechanics of the heart, however, requires to adopt a multiscale
perspective, since the cardiac contraction connects the global mechanical properties ob-
served at the organ scale [78] to the underlying subcellular dynamics [32].

The cardiac beating is the result of the propagation of electrical waves generated by
the sequential excitation of neighboring cells, located along specialized conductive struc-
tures that provide the spreading of the electric signal into the whole heart [35, 49, 57, 66].
In turn, the excitation of a cardiac cell is induced by the variation of the electric poten-
tial across the cell membrane. Changes in the electric potential are related in a nonlinear
manner to the transmembrane fluxes of various charged ions.

The basic features of the mechanical response of biological active tissues can be suffi-
ciently well described by hyperelastic models, disregarding in first approximation more
complicated effects related to viscosity, growth and remodeling. Since the ’80s, several
mathematical models of passive muscle and myocardium elasticity have been proposed,
including isotropic, transversely isotropic and, more recently, orthotropic models [31,39].



The interest towards the modeling of the active behavior of deformable biological tis-
sues has been growing progressively in the last decade. As one of the first contributions
in this field, the response of muscle fibers to the activation-contraction coupling pro-
cess has been studied in [59]. From the continuum mechanics point of view, the internal
actin-myosin binding can be considered as a micro-structural alteration of the internal
kinematic state of the muscle fiber, which leads to changes in the macroscopic behavior.
Since the sliding of the myosin filaments occurs clearly in the direction of the fiber axis,
the binding between actin and myosin filaments has been associated in general only to
the change in the longitudinal size of the fiber, assuming that no variations take place
in the cross-section of the fiber. The introduction of the active stress component in the
formulation encompasses the key aspects related to the description of the subcellular
electrophysiological dynamics of the tissue. In particular, the autoregulation of calcium
inward and outward fluxes within a myocyte, accurately described in [15], can be related
to activation and de-activation processes of actin and myosin proteins [29], and, by the
way of extension, to the macroscopic tissue deformation.

As already mentioned, in order to account for the strong contraction induced by
the electromechanical coupling, the behavior of active bio-materials must be described
in terms of finite deformations, following the lines of relevant recent works, see, e.g.,
[25, 52, 62, 70, 71, 75, 76]. The standard approach for modeling bio-active tissues is based
on a passive response expressed in terms of hyperelastic weakly compressible or incom-
pressible materials, combined to an active response (or active stress) formulated in an
independent way, in several cases as a phenomenological description of some inelastic
action. As opposed to the concept of active stress, alternative approaches rely on the
concept of active strain. An alternative formulation based on the multiplicative decom-
position of the deformation gradient into active part and passive part have appeared re-
cently in the cardiac literature [9, 10]. The formulation was based on several simplifying
assumptions, which have been partially removed by other authors [3].

Apparently, the active stress and active strain approaches are in contrast, but since
they aim at describing a unique phenomenon, they must be linked. A few examples in
the literature have tried to establish a connection between the two approaches [25,65]. In-
terestingly, by relying on a consistent thermodynamic framework, it is possible to prove
that the two approaches are fully compatible and they can be seen as two different as-
pects of the same theory. In particular, here we propose a class of constitutive models for
electro-active materials based on: (i) the multiplicative decomposition of the deforma-
tion gradient in passive and active parts; (ii) an additive decomposition of the underlying
Helmholtz free energy density; (iii) the separation of the arguments between the different
terms of the strain energy density. Our formulation adopts a fully thermodynamic ap-
proach, and is able to conciliate the contrasting concepts of active stress and active strain.
In addition, in the present paper we describe a simplified class of anisotropic electrome-
chanical active material models, in view of future numerical simulations of the behavior
of muscles and heart.

The organization of the paper is as follows. In Section 2 we provide the general frame-



work of the coupled thermo-electromechanical problem, including time-dependent be-
haviors. In Section 3 we restrict our scope to isothermal electromechanical active media
and derive general constitutive relationships by assuming a decoupled expression of the
Helmholtz free energy density. In Section 4 we specialize the free energy density to a par-
ticular anisotropic model and analyze the constitutive behavior of the model in uniaxial
and biaxial loading. Then we use the approach to solve via finite elements a uniaxial
electromechanical problem dynamically activated by an electrophysiological stimulus.
Conclusions and future perspectives are reported in Section 5.

2 Formulation of the problem

We recall the field equations that will be of relevance in the subsequent derivations. It
is worth to mention that, unlike piezoelectrics, biological tissues behave as nonlinear
electrical conductors, although mechanically they can be considered as deformable di-
electrics. For this reason, electrodynamics can be characterized by the electric reaction-
diffusion equation. Extensive discussions on electromechanics of continua can be found
in the literature [13, 16, 43, 47, 58, 70].

Linear and angular momentum balance

We refer to a body of mass density per unit volume ρ0 undergoing a motion x(X ,t),
where X are the coordinates in the material configuration, x are the coordinates in the
spatial configuration, F =∇X x is the deformation gradient, belonging to the Lie group
of invertible and orientation-preserving linear transformations in R

3, and C= F
T

F is the
Cauchy-Green deformation tensor. The volume and the boundary with outward normal
N in the material configuration are denoted by B0 and ∂B0 respectively. Correspondingly,
the volume and the boundary with outward normal n in the spatial configuration are
denoted by B and ∂B respectively.

The volume change is measured by

detF= J=
ρ0

ρ
, (2.1)

where ρ is the mass density per unit deformed volume. Relation (2.1) states the local form
of the mass balance.

The local form of the linear momentum is:

ρ0
dV

dt
=∇X ·P+ρ0B, (2.2)

where B are the body forces per unit of mass, V is the material velocity, and P is the first
Piola-Kirchhoff stress tensor. The angular momentum balance is satisfied through the
symmetry of the product:

PF
T =FP

T,



and the boundary condition with the tractions T is expressed through the Cauchy’s rela-
tion:

T =PN.

In practical applications, it is preferable to use the weak form of the linear momentum
balance, which in the material configuration becomes [45, 60]

∫

B0

ρ0
dV

dt
·η̃dV+

∫

B0

P :∇X η̃dV=
∫

∂B0

T ·η̃dS+
∫

B0

ρ0B·η̃dV,

where η̃ denotes a vector test function.

Electrostatics

We introduce the spatial electric field e as the spatial gradient of the electric potential
ϕ, i.e., e =−∇x ϕ. In the vacuum the electric induction (or electric displacement) d is
proportional to the electric field e0 through the vacuum permittivity ǫ0. Commonly, in
the matter the electric induction d is expressed as the sum

d=ǫ0e+π, (2.3)

where π is the density of the permanent and induced electric dipole moments in the
material or polarization density. The polarization density π depends on the material and
it must be provided through a constitutive relation. Although the form (2.3) is not the
most general relationship, it will be used in the following to clarify the definition of the
stresses. In the absence of electric free charges in the volume, in B the electric field e and
the electric induction d must satisfy the equations of electrostatics

∇x×e=0, ∇x ·d=0, (2.4)

where ∇x× denotes the spatial curl operator and ∇x· the spatial divergence operator.
Let E, D, and Π denote the material electric field, the material electric induction, and the
material polarization density, respectively. Assuming that the material electric field is the
material gradient of the electric potential, i.e., E=−∇X ϕ, from the invariance of a scalar
field we obtain

E=−
∂ϕ

∂X
=−

∂ϕ

∂x

∂x

∂X
=F

T
e,

while the electric induction and the polarization density transform as D = JF
−1

d and
Π = JF

−1
π. Such relations can be proved by a double application of the divergence

theorem and accounting for the Nanson’s relation, i.e., nds = JF
−T

NdS [13]. It follows
that the material form of the equations of electrostatics (2.4), holding in B0, are

∇X×E=0, ∇X ·D=0,

where ∇X× denotes the material curl operator and ∇X · the material divergence operator.
Finally, the material electric induction is expressed as:

D= Jǫ0C
−1

E+Π, (2.5)



where the first term accounts for the distortion of the electric field due to material defor-
mation. Clearly, also the material polarization density needs to be described through a
constitutive relationship.

Note that the equations of mechanics are decoupled from the equations of electro-
statics. Coupling arises from the constitutive equations, that will be derived later from
thermodynamical considerations.

Electric diffusion

In spatial description the electric diffusion equation (known as cable equation) is

CE
∂ϕ

∂t
=−∇x ·hE+ IE, (2.6)

where CE =CE(C) is the electric capacitance; hE is the flux of electric charges, and IE =
IE(ϕ,C) is the total ionic transmembrane current. The symbol ∂/∂t denotes the time
derivative in the spatial configuration. Eq. (2.6) holds in B, with Neumann boundary
conditions

−JhEK·n=ω,

where ω is the charge density on the boundary in the spatial configuration and JhEK
denotes the jump of hE across the boundary. Incidentally, the basic electrophysiological
processes of the cardiac tissue can be modeled through a reaction-diffusion equation of
type (2.6) [1, 64].

The material form of (2.6), holding in B0, is

CE
dϕ

dt
=−

1

J
∇X ·HE+ IE, (2.7)

where the material electric flux derives as HE =−JF
−1

hE and d/dt denotes the material
time derivative. The corresponding boundary conditions are

−JHEK·N =Ω,

where Ω denotes the surface charge density in the material configuration.

The weak form of (2.6) is given by

∫

B
CE

∂ϕ

∂t
ηdv+

∫

B
hE ·∇x ηdv=

∫

∂B
ωηds+

∫

B
IE ηdv, (2.8)

where η is a scalar test function. The weak form of (2.7) is obtained from Eq. (2.8) by
using the Nanson’s relation, i.e.,

∫

B0

JCE
∂ϕ

∂t
ηdV+

∫

B0

HE ·∇X ηdV=
∫

∂B0

ΩηdS+
∫

B0

J IE ηdV.



A commonly used expression for the electric flux hE assumes a linear dependence on
the gradient of the electric potential, through a spatial second-order tensor of electric
conductivities kE, as

hE =−kE∇x ϕ.

The corresponding material form expression for the electric flux HE through a material
second-order contravariant tensor of electric conductivities KE =F

−1
kEF

−T is

HE=−JKE∇X ϕ.

A more general definition of the electric flux can be derived from constitutive assump-
tions, following the path drawn in the next section.

Energy balance and dissipation inequality

Within an extended thermo-electromechanical framework, the specific internal energy
U of the system is contributed also by the electric energy, given by the electric field E

times the material electric induction D [70]. Accounting for the mass (2.1) and the linear
momentum (2.2) balance, the local form of the rate energy balance becomes

U̇=P : Ḟ+E·Ḋ+ρ0Q−∇X ·HT, (2.9)

where U̇ is the specific rate of the internal energy, Q the heat supply per unit mass,
and HT the material energy flux vector, consisting of heat flux and non-thermal energy
flux. The second law of thermodynamics states the non negativeness of the total entropy
production Γ̇, in local form:

TΓ̇=TṄ−ρ0Q+T∇X ·H N ≥0, (2.10)

where T > 0 is the local absolute temperature, Ṅ the entropy rate per unit reference
volume, and HN =HT/T denotes the entropy flux [33]. Thus, the ratio Q/T defines the
entropy supply. Relation (2.10) allows for the description of dissipative phenomena, such
as heat flow and the development of irreversible deformations. Using (2.9), Eq. (2.10) can
also be written as

TΓ̇=TṄ−U̇+P : Ḟ+E·Ḋ−
1

T
HT ·∇X T≥0. (2.11)

Following [37], in the successive derivations we use a more convenient form of the equa-
tion of state that accounts explicitly for the electric field E, and introduce a modified
internal energy Ũ as

Ũ=U−D·E, (2.12)

that can be interpreted as an electric Gibbs free energy density in the material description.
Using Ũ, the local energy balance (2.9) becomes

˙̃U=P : Ḟ−D ·Ė+ρ0Q−∇X ·HT,



and (2.11) becomes

TΓ̇=TṄ− ˙̃U+P : Ḟ−D ·Ė−
1

T
HT ·∇X T≥0. (2.13)

With a harmless abuse of notation, in the following we will use the symbol U instead of
Ũ to denote the alternative expression of the internal energy.

3 Constitutive relations

Thermodynamically consistent constitutive equations are derived from thermodynamic
potentials. According to [11] we assume that the local thermodynamic state of an in-
finitesimal neighborhood of the body B0 is completely defined by the variables of state
deformation gradient F, entropy density N, electric field E, and by a set of internal vari-
ables Z. Internal variables must be included to consider the presence of dissipative phe-
nomena, such as plasticity or damage, that might in turn lead to local increase of the
temperature and to the activation of heat diffusion inside the body. Note that the nature
of Z — scalar, vector, or tensor — must be specified according to the material model and
the kind of dissipation to be described [41,45]. It is also assumed that the caloric equation
of state and the temperature equation, relating to the variables of state the internal energy
U and the temperature T, respectively, are functions of the local state only, i.e.,

U=U(F,N,E,Z), T=T(F,N,E,Z), (3.1)

see also recent extensions [47, 70]. Finally, the stress P is the sum of two terms, i.e., the
equilibrium stress P

E, depending on the variables of state only, and the viscous stress P
V ,

depending on the state variables and on the rate of deformation Ḟ:

P≡P
E(F,N,E,X)+P

V(F,N,E,X ; Ḟ). (3.2)

Taking the differential of (3.1)1 we obtain

U̇=
∂U

∂F
: Ḟ+

∂U

∂N
Ṅ+

∂U

∂E
·Ė−X : Ż, (3.3)

where we introduce the thermodynamic forces conjugated to Z:

X ≡−
∂U(F,N,E,Z)

∂Z
.

Introducing (3.2-3.3) in (2.13) we obtain

TΓ̇=

(

P
E−

∂U

∂F

)

: Ḟ+P
V : Ḟ+

(

T−
∂U

∂N

)

Ṅ−

(

D+
∂U

∂E

)

·Ė−
1

T
HT ·GradT+X ·Ż

≥0. (3.4)



Recalling the proof in [11], since inequality (3.4) must hold for any admissible process it
follows that

P
E=

∂U(F,N,E,Z)

∂F
, T=

∂U(F,N,E,Z)

∂N
, D=−

∂U(F,N,E,Z)

∂E
,

leading to

TΓ̇=P
V : Ḟ−

1

T
HT ·GradT+X ·Ż≥0.

An alternative thermodynamic potential especially advantageous in constitutive theories
is the material Helmholtz free energy density A, obtained through a Legendre transform
as

A(F,T,E,Z)= inf
N

{

U(F,N,E,Z)−TN
}

. (3.5)

The constitutive equations derived from (3.5) become:

P
E =

∂A(F,T,E,Z)

∂F
, N=

∂A(F,T,E,Z)

∂T
, D=−

∂A(F,T,E,Z)

∂E
,

and the thermodynamic forces are defined as:

X ≡−
∂A(F,T,E,Z)

∂Z
.

The framework is completed with the definition of the kinetic relations that enable the
determination of P

V , Ż and HT. An accurate discussion on this topic can be found in
[33, 77] where, in view of providing a variational characterization of the rate constitutive
equations, the concept of a general dissipation potential is introduced.

In the following we are interested in isothermal processes, therefore we simplify the
expression of the Helmholtz free energy by dropping the explicit dependence on the in-
ternal variables and on the temperature. The resulting energy corresponds to the “elec-
trical Gibbs free energy” illustrated in [70]. The relevant equations of state will reduce
to:

P=P
E =

∂A(F,E)

∂F
, D=−

∂A(F,E)

∂E
. (3.6)

If the Helmholtz energy takes a complicated functional form, the equations of state will
be in general nonlinear. In practical applications it will be necessary to linearize the equa-
tions of state in the neighborhood of a particular state characterized by F,E. Linearization
implies the definition of the hessian of the free energy, that will include the fourth order
material elasticity tensor D:

D=
∂2 A(F,E)

∂F∂F
, (3.7)

the third order electromechanical coupling tensor S :

S=−
∂2 A(F,E)

∂F∂E
, (3.8)



and the second order electric tensor K:

K=−
∂2 A(F,E)

∂E∂E
. (3.9)

A general Helmholtz potential for active electro-mechanics

In the description of the kinematics of an isothermal active electromechanical process we
assume the multiplicative decomposition of the deformation gradient into elastic F

e and
inelastic F

i parts as

F=F
e
F

i, F
e =FF

i−1
. (3.10)

The elastic part of the deformation gradient is related to the passive response of the ma-
terial, while the inelastic part is introduced to describe the geometrical changes of the
initial configuration induced by phenomena other than elasticity. In the present discus-
sion, the inelastic deformation F

i must provide the active effects of the electric field on
unconstrained portions of the material, therefore in general it will be a function of E, or
on the electric potential ϕ. Assumption (3.10) introduces an ideal intermediate non com-
patible configuration where all the inelastic phenomena take place without inducing a
stress state in the continuum. The compatibility requirement will relax the body from the
intermediate configuration to the final deformed configuration, where equilibrium and
compatibility conditions are fully satisfied.

The multiplicative decomposition of the deformation gradient is a convenient math-
ematical representation of the change of configuration of a system undergoing multi-
physics processes in large deformations [14]. The formal introduction in nonlinear con-
tinuum mechanics of the multiplicative decomposition can be attributed to [69] in the
case of thermoelasticity, and to [38] in the case of phenomenological elastoplasticity.
More recently, the approach has seen successful applications in biomechanics to model
growth [63] and electromechanical interactions [3, 9, 48].

Within the model of the multiplicative decomposition, the Helmholtz free energy can
be split conveniently into two — or more — parts, and one part only can be considered
as a function of the elastic strain by assuming a separation of the arguments of the sin-
gle parts. The additive split of the free energy is appealing because the function can
be chosen among the well-known strain energy functions for finite-strain elasticity. In
the present case, the main motivation for adopting the free energy splitting and the ar-
gument separation is the need to achieve the physical distinction between passive and
active behaviors of the material.

We are seeking a particular form of the material Helmholtz free energy able to provide
the constitutive relations for active electromechanical problems. To this aim, we assume
an additive decomposition of the free energy density in two distinct contributions as

A(F,Fe,E)=Ae(F
e)+Ai(F,E), (3.11)

where we state explicitly the dependence on F
e of the free energy density. The term Ae

in (3.11) represents the classical strain energy density of hyperelastic materials and is



assumed to be dependent only on the elastic part of the deformation gradient F
e. Any

choice of hyperelastic strain energy functions is acceptable, according to the passive be-
havior of the material observed in experiments. The term Ai in (3.11) is an inelastic free
energy density that accounts for the electric field and for all its effects, including inelastic
deformations. We observe that the definition (3.11) does not reduce the electromechani-
cal coupling to a purely geometrical effect, as it would happen if Ai were assumed to be
a function of the sole electric field E, i.e., when it represents the electric energy density of
the system. The full material coupling is implied by the inelastic free energy, dependent
on both F and E.

Note that the additive decomposition of the Helmholtz free energy into elastic and
inelastic parts accompanied by the multiplicative decomposition of the deformation gra-
dient is typical of many constitutive theories in finite kinematics, see, e.g., [40,54–56], and
it has been proved to be particularly efficient in numerical applications.

From assumptions (3.10)-(3.11), it follows that the equilibrium stress P decomposes
into the sum of two terms

P=
∂Ae(F

e)

∂F
+

∂Ai(F,E)

∂F
=P

p+P
a. (3.12)

We call the two terms passive stress P
p and active stress P

a respectively. The passive
stress is defined as:

P
p=

∂Ae(F
e)

∂F
e

∂F
e

∂F
=P

e
F

i−T
.

The stress P
p derives from the strain energy density Ae, which in the intermediate con-

figuration defines the equilibrium stress P
e, work-conjugate to F

e. The elastic stress P
e

is pulled-back to the reference configuration through the inverse inelastic deformation

gradient F
i−1

.
The active stress P

a is originated by the inelastic part Ai of the free energy and, as it
will shown later, it is strictly related to the Maxwell stress associated to the presence of
an electric field, cf. [70] for the case of dielectric elastomers.

The features of the model can be highlighted by stating explicitly the dependence of
the inelastic free energy on the inelastic deformations induced by the electric field F

i(E)
as

A(F,Fe,E)=Ae(F
e)+Ai(F,F i(E),E). (3.13)

This allows to write the electric induction (3.6) as

D=−
∂Ai(F,F i(E),E)

∂E
−

∂Ai(F,F i(E),E)

∂F
i

∂F
i(E)

∂E
. (3.14)

The first term in (3.14) accounts for the electric induction in the absence of electric dis-
tortions carried by the material, i.e., the one observed in the vacuum. The second term
accounts for the effects due to the presence of the material through the electric distortions
F

i, therefore it must be related to the material polarization Π. In particular, if we account



for the common definition of the electric induction (2.5), it follows from (3.14) that the
inelastic part of the free energy density must be of the form

Ai(F,F i(E),E)=AE(F,E)+AΠ(F,F i(E)), (3.15)

where

AE(F,E)=−
1

2
ǫ0 J EF

−1 ·F−T
E=−

1

2
ǫ0 Je·e (3.16)

would represent the electric energy density in absence of matter, i.e., when the electric
field E is assumed to be the electric field in vacuum E0. If the matter is present, this term
must account also for the deformation of the medium and therefore cannot represent the
vacuum electric energy anymore, despite the presence of ǫ0. The term AΠ(F,F i(E)) in
(3.15) accounts for the material interaction of the electric field with the dielectric and will
be made explicit upon the definition of F

i.

The material active stress P
a defined in (3.12) takes the form

P
a =

∂AE(F,E)

∂F
+

∂AΠ(F,F i(E))

∂F
,

where

P
M
0 ≡

∂AE(F,E)

∂F
=ǫ0 J

[

EF
−1⊗F

−T
E−

1

2

(

EF
−1 ·F−T

E

)

I

]

F
−T

is the material counterpart of the Maxwell stress in the vacuum. In fact, using the Piola
relation between the Cauchy stress and the first Piola-Kirchhoff stress, we obtain:

σ
M
0 = J−1

P
M
0 F

T =ǫ0

[

e⊗e−
1

2
(e·e) I

]

,

which is the contribution for the vacuum derived by Maxwell [37]. Note that several def-
inition of the Maxwell stress are possible and used in the literature [44,70]. Additionally,
the material polarization density Π in (2.5) derives as

Π=−
∂AΠ(F,F i(E))

∂F
i

∂F
i(E)

∂E
.

Note that the additive form of the free energy will transfer also to the Hessian (3.7-3.9) as

D=F
i−1 ∂2 Ae(F

e)

∂F
e∂F

e F
i−T

+
∂2 AE(F,E)

∂F∂F
+

∂2 AΠ(F,F i(E))

∂F∂F
,

K=ǫ0 JC
−1−

∂F
i(E)

∂E

∂2 AΠ(F,F i(E))

∂F
i∂F

i

∂F
i(E)

∂E
,

S=−
∂2 AE(F,E)

∂F∂E
−

∂2 AΠ(F,F i(E))

∂F∂F
i

∂F
i(E)

∂E
.



Under particular conditions, the energy AΠ can be taken dependent on the inelastic de-
formations F

i(E) only, i.e., AΠ=AΠ(F
i(E)). In this case, the stress and the energy Hessian

reduce to

P=
∂Ae(F

e)

∂F
e F

i−T
+P

M
0 ,

D=F
i−1 ∂2 Ae(F

e)

∂F
e∂F

e F
i−T

+
∂2 AE(F,E)

∂F∂F
,

S=−
∂2 AE(F,E)

∂F∂E
.

The latter assumption leads to constitutive models similar to the ones discussed in [70]
for ideal dielectric elastomers, except for the presence of the inelastic deformation F

i.
In these models, the deformation gradient and the electric field contribute to the free
energy in independent ways and the electromechanical coupling is reduced to a purely
geometric effect. As matter of fact, in ideal non-active dielectric elastomers (for which
F

i = I), characterized by isotropy, the effect of the electric field can be described by a
single material constant which is the permittivity ǫ of the material, which must replace
ǫ0 in (3.16). Evidently, the use of such models is restricted to isotropic materials.

Additionally, if the inelastic free energy density Ai is chosen to be null, the active
electromechanical model reduces to a purely elastic model with kinematic constraints,
introduced through the decomposition (3.10). The dependence on the electric field is en-
forced through F

i(E), but the coupling between electricity and mechanics is obtained in a
phenomenological way [3, 9, 10, 48]. The thermodynamical aspects of the electromechan-
ical coupling are not considered. This choice can be convenient when experimental data
are not sufficient to calibrate sophisticated material modes, or when it can be interesting
to deal with a material able to develop inelastic deformations with no increase of internal
energy.

The definition of the passive behavior through the strain energy density is not the
main goal of this study. Accurate models for the description of the behavior of biological
tissues are available in the literature, e.g., [9, 24, 27, 31, 34] and they can be applied to the
present framework according to the application at the hand. Here we focus on the form
of Ai, which must be able to describe the experimentally observed coupling between
electricity and mechanics. A suitable choice of Ai must be associated to the expression
of F

i. As long as the inelastic deformation gradient is able to describe the coupling, the
expression of Ai can be chosen as simple as possible.

In choosing the particular expression of F
i it is important to consider the character-

istics of the material, including the underlying microstructure. For isotropic materials,
a simple way to model the inelastic deformations consists in introducing a volumetric
deformation and an enhanced stretch in the direction of the electric field, or

F
i =(1+γvol) I+γdevE⊗E,

where γvol is a dimensionless parameter and γdev is a parameter with the dimensions of
|E|−2, possibly dependent on the electric field intensity |E|. In simple cases, γvol and γdev



can be assumed to be constant. Obviously, the expression of F
i in the case of anisotropic

materials would be more general. For example, we can adopt

F
i =F

i(|E|,γ(k),E⊗E),

where (k) spans over the principal directions of anisotropy. When referred to the princi-
pal anisotropy directions a(k), F

i can be described as:

F
i(|E|,γ(k),a(k))= I+F(|E|,γ(k))E⊗E,

where, for example, we can set:

F(|E|,γ(k))=∑
(k)

[

γ
(k)
vol I+γ

(k)
devN

(k)
]

, N
(k)=a

(k)⊗a
(k)⊗a

(k)⊗a
(k), (3.17)

with (I)I JKL = δIKδJL being the unit fourth order tensor. For transversally isotropic mate-
rials with the unique preferential direction a, expression (3.17) reduces to

F(|E|,γ)=γvolI+γdevN. (3.18)

In particular, according to (3.18), F
i becomes

F
i=

(

1+γvol|E|
2
)

I+γdev(E·a)
2
a⊗a.

4 Numerical applications

The described framework is here applied to biological active tissues. In our numerical
calculations we specialize the free energy density expression as described in the following
section.

Electromechanics

We start by introducing a few simplifying assumptions. We restrict our attention to
isothermal processes and assume Ae to be dependent only on the elastic deformation
gradient F

e. Additionally, we introduce the exact decomposition of F
e in volumetric and

isochoric parts [67] as

F
e= Je1/3

F
e
,

where we denote Je =detF
e. Material frame indifference requires the dependence on F

e

through the modified Cauchy-Green deformation tensor C
e
= F

eT
F

e
. For the description

of the isotropic behavior, Ae is considered a function of the invariants I
e
1 and I

e
2

I
e
1=C

e
: I, I

e
2=

1

2

[

(

trC
e
)2

−tr
(

C
e2
)

]

.



We include anisotropy through a unique structure tensor G, which, in the case of a prefer-
ential direction n provided by the mean local orientation of a set of fibers, i.e., G=n⊗n. In
general, anisotropy will characterize both the elastic and inelastic parts of the free energy
density:

A(C,E,G)=Ae(Ce,G)+Ai(C,E,G).

The expressions of the elastic Helmholtz free energy density is written by considering an
isotropic matrix obeying to a Mooney-Rivlin like material with embedded fibers along a
preferential orientation. The elastic part is taken of the form:

Ae(Ce,G)=Wvol(Je)+Wiso(I
e
1, I

e
2)+Wfiber(C

e
,G),

where

Wvol(Je)=
1

4
K
(

Je2−1−2log Je
)

; (4.1)

Wiso(I
e
1, I

e
2)=

1

2

[

µ1

(

I
e
1−3

)

+µ2

(

I
e
2−3

)]

, (4.2)

Wfiber(C
e
,G)=

1

2

Kg

k

[

expk
(

I
e
4−1

)2
−1

]

. (4.3)

In the previous relations, K is a stiffness parameter related to the bulk modulus, µ=µ1+µ2

is a stiffness parameter related to the shear modulus, Kg is the stiffness of the fibers and

k a dimensionless parameter that affects the fiber rigidity. The pseudo-invariant I
e
4 is

defined as [68]
I

e
4=C

e
: G.

The use of the multiplicative decomposition of the deformation gradient into volumetric
and isochoric parts, accompanied by the split of the strain energy density in volumet-
ric and isochoric parts, has received recently some criticism [28]. In fact, a volumetric
energy function of the sole volumetric deformation leads to a spherical stress, rather un-
realistic in an anisotropic material. In [28] it has been suggested to adopt a volumetric
strain energy density dependent also on the anisotropic pseudo invariants. In the present
work, though, we decide to use the standard volumetric-isochoric decomposition used
for isotropic materials for two reasons: (i) the model has been developed for nearly in-
compressible materials, and the volumetric strain energy is included to penalize the vol-
umetric changes; (ii) the model not necessarily applies to anisotropic materials but also
to isotropic materials.

Accounting for (3.15-3.16), the inelastic part of the Helmholtz free energy is taken of
the form

Ai(C(E),E,G)=−
1

2
ǫ0 J EF

−1 ·[I+χ(C(E),G)]F−T
E,

where the susceptibility tensor χ is taken to be linear in C(E):

χ(C(E),G)=χ0(G)+H(G) : (C(E)− I). (4.4)



We recall that, in virtue of (3.10), the Green-Cauchy tensor C(E) is given by

C(E)=F
i(E)

T
C

e
F

i(E).

Let us assume a particular form of (4.4), where we describe the rank-two tensor χ0 and
the rank-four tensor H in terms of four constants χiso, χfiber, χC

iso and χC

fiber:

χ0(G)=χiso I+χfiberG, H(G)=χC

iso I⊗ I+χC

fiberG⊗G.

This allows to write (4.4) as

χ(C,G)=
[

χiso+χC
iso(I1(E)−3)

]

I+
[

χfiber+χC

fiber(I4(E)−1)
]

G. (4.5)

The deformability is accounted for through the two invariants I1, I4 of the total right
Cauchy-Green deformation tensor C(E):

I1(E)=C(E) : I, I4(E)=C(E) : G.

In the proposed model, we introduce nine material constants: K, µ1, µ2, Kg, k, χiso, χfiber,
χC

iso, and χC

fiber. The expression of the active and passive stresses is reported in the Ap-
pendix A.

4.1 Numerical examples

We test the response of the proposed material model under standard uniaxial, biaxial and
shear loadings, reproducing the conditions of standard mechanical tests for biological
tissues. The material constants adopted in the numerical examples have been selected in
order to cover the range of stresses and deformations documented in the literature [2,26],
and are collected in Table 1. The numerical tests are performed considering four different
orientations of the fibers with respect to the direction of loading, i.e., 00, 300, 600 and 900.
We report the results in terms of elastic Cauchy stress and Hencky strain.

Table 1: Anisotropic electro-mechanical parameters used in the examples of applications of the active elec-
tromechanical material model here described.

K µ µ1 Kg k χiso χfiber χC
iso χC

fiber γvol γdev

[kPa] [kPa] [kPa] [kPa] - - - - - - -

100 6 1 10 20 1 5 3 12 -0.0001 -0.0002

Passive response

We begin by evaluating the passive response for uniaxial, biaxial and shear response,
keeping the direction 1 stress free. In the uniaxial tests we apply the stretch λ3 and set the
stress free in the direction 2, see Fig. 1(a). In the shear tests we apply a shear deformation
γ32, see Fig. 1(b). In the biaxial tests we apply λ2/λ3=0.75, see Fig. 1(c).



(a) Uniaxial (b) Shear (c) Biaxial

Figure 1: Schematic of the passive loading conditions for uniaxial, shear and biaxial tests. Direction 1, normal
to the plane of the figure, is always stress free. For uniaxial and biaxial loading, the imposed stretch is in
direction 3. Direction 2 is blocked for the shear case and stretched for the biaxial case with λ2/λ3=0.75. The
fiber inclination varies between 0◦ and 90◦.
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(d) Biaxial Transversal

Figure 2: Passive response of the model under uniaxial, shear and biaxial loading, for different inclinations of
the fibers with respect to the loading direction. Stresses in kPa.

The passive responses are shown in Fig. 2. In the uniaxial case, the stress decreases
with the increase of the fiber inclination, and the contribution of the fiber to the stress
drops to zero for fibers inclined more than 60◦, see Fig. 2(a).

For the shear loading, the cases where the fibers are parallel and orthogonal to the
loading are characterized by a relatively small stress, clearly due to the isotropic part of



(a) Sensitivity on Kg (b) Sensitivity on k

Figure 3: Passive response of the model under uniaxial loading for different values of the fiber stiffness param-
eters. (a) Sensitivity on Kg in the range 0.1-100 kPa for k=20. (b) Sensitivity on k, in the range 0.2-200, for
Kg = 10 kPa. Stresses in kPa.

the strain energy, since both configurations are not prone to activate the fiber reinforce-
ment. Because of the particular shear deformation applied, the case with fibers inclined
30◦ produces a response stiffer than the case with fibers inclined 60◦, see Fig. 2(b). These
results are in close agreement with data reported by Dokos et al. [12].

In the biaxial configuration, the response in the direction of the applied stretch shows
a small difference with respect to the uniaxial case, except for the fibers inclined 30◦ or
60◦, where the constraint in the direction 2 increases the stiffness of the response, see
Fig. 2(c). The transversal stress for the biaxial case is about 10 times softer than the one
in direction of the stretch, see Fig. 2(d). The stress is almost zero when fibers are aligned
in the transversal direction. For fibers inclined 30◦, the stress is characterized by initial
stiffening and final reduction of the stiffness, while the behavior for 60◦ is characterized
by a monotonous stiffening. The case of fibers aligned in the direction of the stretch
provides an intermediate stress.

The sensitivity analysis of the material model to the fiber material parameters are
shown in Fig. 3 for uniaxial loading. The model is characterized by a marked sensitivity
to the fiber stiffness Kg and to the fiber rigidity k.

Active-passive response

We consider a tissue undergoing uniaxial and biaxial stretching in the presence of a con-
stant electric field acting in the direction 3, leading to a tetanized-like material, and apply
a stretch in the direction 3 (see Fig. 4). The passive response under a constant active action
is visualized in Fig. 5 for the cases E = 10 V/m (a,c,e) and 20 V/m (b,d,f) and for different
inclination of the fibers. The figures for the uniaxial case compare with the purely passive
case in Fig. 2(a). The presence of an electric field induces a contraction of the material,
testified by the presence of a tensile stress at zero elastic strain. The effect is small for
E=10 V/m, but it is quite relevant for E = 20 V/m. For the biaxial case, a non zero stress
at zero elastic strain is observed also in direction 2.



(a) Uniaxial (b) Biaxial

Figure 4: Schematic of the passive loading conditions for uniaxial and biaxial tests under a constant electric
field E oriented in the direction 3 and imposed stretch in the direction 3. Direction 1, normal to the plane of
the figure, is stress free. In uniaxial conditions, direction 2 is stress free. In biaxial conditions, the stretch ratio
is λ2/λ3=0.75. The fiber inclination varies between 0◦ and 90◦.

Next, we evaluate the effect of a growing electric field E acting in the direction 3,
for a material confined in uniaxial and biaxial configuration, see Fig. 6. The response
of the material is shown in Fig. 7 for an electric field intensity in the range E =10-20
V/m. The electric field induces a stress in absence of strain. Qualitatively, in uniaxial
confinement, the effect of E is equivalent to the application of a uniaxial strain. In biaxial
confinement, the stress induced by a growing electric field in the two directions 3 and
2 is very different, due to the assumed dependence on the electric field direction of the
inelastic strain energy density, see (4.5).

One-dimensional electromechanical problem

We conclude the set of introductory examples with the analysis of an one-dimensional
problem that includes a simple phenomenological model of cardiac electrophysiology.
Following [9,10], we assume that the variation in the electric potential ϕ –and therefore in
E– is induced by the variation of ionic concentration. In particular, we refer to a simplified
dimensionless three-variable (u, v, w) model of cardiac action potential generation and
propagation, in the form described by [19]. The electrophysiological model introduces
a normalized membrane potential u, and two transmembrane gates, a fast one, v, and a
slow one, w. The dimensionless membrane potential 0≤u≤1 is defined as

u=
ϕ−Vo

Vfi−Vo
,

where ϕ is the electric transmembrane potential, Vo is the resting membrane potential
and Vfi the Nernst potential of the fast inward current.

The material electric diffusion equation (2.7) in normalized form becomes

∂u

∂t
=

1

J

∂

∂XJ

(

−JKI J
∂u

∂XI

)

+Iion. (4.6)

The total transmembrane density current Iion is the sum of: (i) a slow time-independent
outward current, Iso; (ii) a fast inward inactivation current depending on the gate v, Ifi;
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(b) Uniaxial, E = 20 V/m

(c) Biaxial, E = 10 V/m
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(d) Biaxial, E = 20 V/m
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(e) Biaxial transversal, E=10 V/m
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(f) Biaxial transversal, E=20 V/m

Figure 5: Uniaxial and biaxial response of the model under constant electric fields in direction 3, for different
inclinations of the fibers with respect to the loading direction. Stresses in kPa.

(iii) and a slow inward inactivation current depending on the gate w, Isi, defined as

Iso=
u

τ0
H(uc−u)+

1

τr
H(u−uc),

Ifi=−
v

τd
H(u−uc)(1−u)(u−uc),

Isi=−
w

2τsi

(

1+tanh
[

ksi

(

u−usi
c

)])

,



(a) Uniaxial (b) Biaxial

Figure 6: Schematic of the constraint for uniaxial and biaxial tests under growing electric field. Direction 1,
normal to the plane of the figure, is always stress free. Direction 3 is blocked for both cases, while direction 2
is blocked for the biaxial case. The fiber inclination varies between 0◦ and 90◦.
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(c) Biaxial Transversal

Figure 7: Mechanical response of the model constrained in uniaxial and biaxial configuration to a growing
electric field in the direction 3, for different inclinations of the fibers with respect to the direction 3. Stresses in
kPa, electric field in V/m.

where uc, ksi, usi
c , τd, τ0, τsi are parameters of the model and H(x) is the standard Heavy-

side step function, defined as H(x)= 0 for x≤ 0 and H(x)= 1 for x> 0. The variables v
and w obey the equations

dv

dt
=H(uc−u)

(1−v)

τ−
v (u)

−H(u−uc)
v

τ+
v

, (4.7)
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(b) Model dynamics

Figure 8: (a) Restitution curve built upon the 3-variable phenomenological model of cardiac action potential
generation and propagation [19] according to the parametric setup fitted to a modified version of the Beeler-
Reuter model [6]. The red dashed line describes the referential slope 1 of the map and the point at which the
restitution curves becomes steeper than 1. (b) Zero-dimensional time course of the three model variables for
two consecutive stimulations.

dw

dt
=H(uc−u)

(1−w)

τ−
w

−H(u−uc)
w

τ+
w

, (4.8)

where τ+
v , τ−

w , τ+
w are three time constants. The time constant τ−

v (u) that governs the
reactivation of the fast inward current must be defined in a different way for the two
voltage ranges u<uv and uv<u<uc as

τ−
v (u)=H(u−uv)τ

−
v1+H(uv−u)τ−

v2 ,

according to the parametric setup fitted to a modified version of the Beeler-Reuter model
[6], reproducing several features of the cardiac action potential [17], i.e., the conduction
velocity of the transmembrane voltage, the shape and duration of the action potential
signal and the restitution curves build upon constant pacing. According to the theory of
one-dimensional maps, the model is able to predict the onset of arrhythmic states for fast
stimulation frequencies. This states can be detected by a slope of the restitution curves
greater than one [51]. To demonstrate this, in Fig. 8(a) we show the action potential dura-
tion (APD) versus the diastolic interval (DI) restitution curve obtained from the cardiac
model, under constant stimulation with increasing frequency or decreasing pacing cycle
length (CL). The resulting one-dimensional map reads:

CL=APD+DI. (4.9)

We complete the illustration of the model by showing the time evolution of the three
non-dimensional variables for two consecutive stimulations, Fig. 8(b). Noticeably, the
described dynamics mimic the actual physiological transmembrane voltage (u) and the
ion Na, K currents (v, w).



In the one dimensional problem, the significant direction is taken to be 3, and we ex-
clude volumetric behaviors (e.g., γvol=0) that cannot be considered in a uniaxial setting.

The non-zero vector and tensor components are:

E3=E, a3=1, F33=λ, Ḟ33= λ̇, λi=1+γdev(E)E2.

The kinematic variables and invariants reduce to

λe =λλi−1
, Je =λe, I1=λ2+2, I4=λ2, I

e
4=λe 4

3 ,

I
e
1=λe 4

3 +2λe− 2
3 =λe− 2

3

(

λe2+2
)

, I
e
2=2λe 2

3 +λe− 4
3 =λe− 4

3

(

2λe2+1
)

.

The Helmholtz free energy density can be rendered explicitly as

A(λ,λe,E)=
1

4
K
(

λe2−1−2logλe
)

+µ1

(

1

2
λe 4

3 +λe− 2
3

)

+µ2

(

λe 2
3 +

1

2
λe− 4

3

)

+
1

2

Kg

k

[

expk
(

λe 4
3 −1

)2
−1

]

−
1

2
ǫ0

E2

λ

[

1+χ+χC(λ2−1)
]

,

where we write χ=χiso+χfiber and χC =χC
iso+χC

fiber. The passive stress becomes

P
p
33=

{

1

2
K
(

λe2−1
)

+
2

3
µ1λe− 2

3

(

λe2−1
)

+
2

3
µ2λe− 4

3

(

λe2−1
)

+
4

3
λe 4

3

(

λe 4
3 −1

)

Kgexpk
(

λe 4
3 −1

)2
}

1

λ
,

and the active stress is

Pa
33=

1

2
ǫ0

[

1+χ−χC
(

1+λ2
)

] E2

λ2
.

Note that the term

ǫr(λ)=1+χ−χC
(

1+λ2
)

defines the relative dielectric permittivity ǫr(λ) of the materials a function of the stretch.
The passive tangent stiffness is

C
p
3333=

{

1

2
K
(

λe2+1
)

+
2

9
µ1λe− 2

3

(

λe2+5
)

−
2

9
µ2λe− 4

3

(

λe2−7
)

+
4

9
λe 4

3

[

8k
(

λe2−λe 2
3

)2
+5λe 4

3 −1

]

Kgexpk
(

λe 4
3 −1

)2
}

1

λ2
,

and the active tangent stiffness is

Ca
3333=−ǫ0

(

1+χ−χC
) E2

λ3
.



Table 2: Parameters of the electrophysiological model used in the uniaxial example of application [19]. The
diffusion tensor KI J in (4.6) equals k0 in the fiber direction and 0.2k0 in the two directions orthogonal to the
fibers.

Vfi V0 uc uv usi
v ksi k0 τd

[mV] [mV] - - - - [cm2/ms] [µ F/cm2]

85 15 0.13 0.055 0.85 8 10−3 0.25

τr τsi τ0 τ+
v τ−

v1 τ−
v2 τ+

w τ−
w

[ms] [ms] [ms] [ms] [ms] [ms] [ms] [ms]

50 45 8.3 3.33 1000 19.6 6.67 11

The electric diffusion equation becomes

CE(λ)
∂ϕ

∂t
=

∂

∂X

(

1

λ
kE

∂ϕ

∂X

)

+ IE(λ).

We integrated the material constants reported in Table 1 with the electrophysiological
parameters taken from [19], see Table 2.

We consider a one-dimensional system 100 mm in length. The domain is discretized
in 240 finite elements of uniform size, adopting a different order for the mechanical and
the electrophysiology problem, for a total of 2404 degrees of freedom. The scalar displace-
ment field is discretized by means of fourth order polynomial elements (961 displacement
degrees of freedom). The three scalar fields u, v, and w governing the electrophysiolog-
ical problem, see Eqs. (4.6)-(4.8), are discretized by means of second order polynomial
elements (481 degrees of freedom for each variable), leading to a linear electric field in
each element. The extracellular medium has been treated as vacuum, with no additional
electric field. For the electrophysiological problem we impose homogeneous Neumann
boundary conditions, while, in order to recover the 20% physiological deformation of the
tissue, Robin spring-like mechanical boundaries are adopted.

We solve the fully coupled electromechanical problem with a monolithic approach,
adopting a direct time-dependent numerical scheme based on backward differential for-
mulae, with relative tolerance ǫtol = 10−5 and absolute tolerance ǫ = 10−6 on the whole
problem.

At mid-point of the one-dimensional domain we apply a square wave stimulation
current, with decreasing pacing intervals, i.e., 150, 125, 100, 90, 80, 70, 60, 50 ms, in line
with standard restitution protocols used in cardiac dynamics [18, 21]. The stimulus gen-
erates two symmetric action potential waves propagating in opposite direction towards
the boundaries. An observation point is located at 5 mm from the left boundary.

Fig. 9(a) shows the time history of the action potential at the observation point. The
action potential varies within the physiological range [-80, 20] mV. Fig. 9(b) shows the
shape of the electric field generated by the membrane voltage, with intensity in the range
[-20, 60] V/m. The inelastic strain signal produced by the electromechanical coupling is
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Figure 9: Numerical point signals diagrams characterizing the one-dimensional fully coupled electromechanical
problem. The observation point is located 5 mm far from the left boundary. (a) Voltage membrane, (b) electric
field, (c) inelastic stretch λa, (d) total Cauchy stress.

visualized in Fig. 9(c). The maximum active contraction reaches roughly the 40% of the
original length. The total stress signal is reported in Fig. 9(d), and is characterized by
a 100 kPa tensile peak. Note that the tensile stress peak covers a narrow region of the
domain, whereas the stress field is very limited everywhere else. The four diagrams are
in phase, as expected in a purely elastic material with no viscosity and no dissipation.

Fig. 10 shows the space-time diagrams of the membrane voltage, electric field inten-
sity, inelastic strain and total Cauchy stress for the one-dimensional simulation. Clearly
the model is able to reproduce a stress signal consistent with the voltage signal. Addi-
tionally, we observe that the four signals propagate at an average speed of 0.4 m/s. Small
deviations from the average velocity, testified by the non straight path of the spatiotem-
poral plots, are due to the electromechanical feedback of the model.

The effects of elasticity on the electric field are demonstrated through Figs. 11 and 12,
where we compare the numerical results of a rigid and of a deformable material. We con-
sider a signal applied to the left boundary of the one dimensional domain, and refer to
five observation points located at 1, 2, 3, 4 and 5 cm, respectively, from the signal source.
The nonlinear coupling between electricity and elasticity is responsible of the differences
between the two analyses. In particular, we highlight: (i) the differences in the repolar-



(a) Voltage membrane (b) Electric field

(c) Inelastic stretch (d) Cauchy stress

Figure 10: Space-time diagrams obtained from numerical simulations of the fully coupled electromechanical
problem. The pacing signal is originated at the center of the domain. Space domain (0-100 mm) in the
horizontal axis. Time (0-1000 ms) in the vertical axis. (a) Voltage membrane, (b) electric field, (c) inelastic
stretch λa, (d) total Cauchy stress.

ization times, which lead to different color maps of the electric field, see Figs. 11(b,c);
(ii) the deviation and deceleration of the conduction velocity in the deformable case, de-
nounced by the wider space-time stripes with a reduced average slope. The trend is also
visualized by the five point diagrams in Fig. 12 and is in agreement with previous re-
sults [8]; (iii) the reduction of the electric field intensity in the elastic case with respect
to the rigid one, even for equal amplitudes of the membrane potential, see Fig. 12. The
observed effects are mainly due to the nonlinear feedback that elasticity creates in the
electric problem, due to the presence of the elastic terms in the diffusive contribution
of the voltage propagation equation, see Eqs. (2.6)-(2.7). Such phenomena are typical of
active biological media and characterize the natural disposition of the tissue to generate
refractoriness gradients, which play an important role in the complex dynamics of two-
and three-dimensional models [20].



(a) Rigid voltage membrane (b) Rigid electric field

(c) Deformed voltage membrane (d) Deformed electric field

Figure 11: Numerical space-time diagrams: (a,b) purely electric problem (or rigid case); (c,d) fully coupled
electromechanical problem (or deformed case). The pacing signal is located at the left end of the domain.
Space domain (0-100 mm) in the horizontal axis. Time (0-800 ms) in the vertical axis.

5 Conclusions

We presented a thermodynamically consistent electromechanical approach to the defi-
nition of material models able to describe the behavior of active materials. The main
motivation of our study was an attempt to propose a solution to the dilemma that afflicts
many scientists aiming at modeling the behavior of active tissues, in particular bio-tissues
such as muscles and heart. The most consolidated approaches are based on the concept of
active stress. Although the introduction of the active stress component encompasses the
key aspects related to the description of the subcellular electrophysiological dynamics of
the tissue, it is rather difficult to justify the presence of active stresses from the thermo-
dynamical point of view. On the other side, the decomposition of a generic deformation
into elastic and inelastic part is very familiar to mechanicians, either in terms of addi-
tive decomposition (used mostly in linearized kinematics) or in terms of multiplicative



0 200 400 600 800

-80

-60

-40

-20

0

20
Rigid

Elastic

[mV]

P1

0 200 400 600 800
-20

0

20

40

60

80

Rigid

Elastic

[V/m]

P1

0 200 400 600 800

-80

-60

-40

-20

0

20
Rigid

Elastic

[mV]

P2

0 200 400 600 800
-20

0

20

40

60

80

Rigid

Elastic

[V/m]

P2

0 200 400 600 800

-80

-60

-40

-20

0

20
Rigid

Elastic

[mV]

P3

0 200 400 600 800
-20

0

20

40

60

80

Rigid

Elastic

[V/m]

P3

0 200 400 600 800

-80

-60

-40

-20

0

20
Rigid

Elastic

[mV]

P4

0 200 400 600 800
-20

0

20

40

60

80

Rigid

Elastic

[V/m]

P4

0 200 400 600 800

-80

-60

-40

-20

0

20
Rigid

Elastic

[mV]

t [ms]

P5

0 200 400 600 800
-20

0

20

40

60

80

Rigid

Elastic

[V/m]

t [ms]

P5

Figure 12: Point signals diagrams with voltage membrane (left) and electric field (right). Comparison between
the purely electric case (solid line) and the electromechanical case (dashed line). The five diagrams refer to
the five spatial locations at 1, 2, 3, 4 and 5 cm from the signal source on the left side of the one-dimensional
domain. Times in the horizonal axis are in ms.

decomposition (used in finite kinematics). In dealing with active materials, it is sponta-
neous to think of the existence of an inelastic deformation that may carry the effect of
microstructural changes of the material, or the effect of coupled fields (such as electrical,
chemical, magnetic, and others). Often in the literature such deformations are referred
to as eigendeformations; in the mechanics of active tissues they are called instead active
deformations.

In the present study, we proposed a new point of view that conciliate the concepts
of active stress and active strain through the definition of a suitable expression of the
Helmholtz strain energy density. We propose to combine the multiplicative decomposi-
tion in elastic and inelastic parts of the deformation gradient with the additive decom-
position of the strain energy. The strain energy is conceived as the sum of two terms,



one purely elastic, dependent on the elastic deformation gradient only; and the other
dependent on other non-mechanical fields and on the total deformation gradient. The
expression of the strain energy density can be chosen according to the particular appli-
cations that one has in mind. In the present study, we focus on fiber reinforced tissues,
that describe the typical structure of muscle and heart myocytes. By the way of example,
we played with a simple model that accounts for the presence of a single set of strongly
aligned fibers, and the consequent anisotropy of the material is accounted for by means
of standard structure tensors.

Since we disregarded thermal effects, viscosity and any other source of dissipation,
the simple model adopted here is characterized by a reduced number of material con-
stant: nine, five for the mechanical behavior and four for the electromechanical coupling.
Simple tests showing the pure passive and the combined active/passive response of the
model under uniaxial and biaxial loading proved that the coupling is nicely captured by
the model. In our original plans, we had in mind to develop a model able to include
the electrophysiology of the heart. The one-dimensional example shown here, that in-
cludes a simplified yet realistic model of cardiac electrophysiology (sixteen constants),
demonstrates that the activation through a periodic electric current induces an active
strain wave, and by compatibility, elastic strain and equilibrium stress waves. Upon a
suitable calibration of the material parameters, the mechanical model is able to repro-
duce the experimental evidence of cardiac tissue deformations up to 20%, as it can be
seen in Figs. 9(c) and 10(c), where the inelastic stretch distribution in time and space,
respectively, are reported.

Future extensions of this work include the development of solid models of fiber rein-
forced soft tissues considering fibers recruitment activation [23], and simplified models
of the muscle and of the heart, where we will apply the fully three-dimensional mate-
rial model. We believe that the use of a thermodynamically consistent material model
in biological tissues will provide a valid support to a better understanding of pathologi-
cal conditions and their treatment. For example, in order to treat with optimal efficiency
arrhythmic events in the myocardium, low energy defibrillating procedures are being de-
veloped. Regrettably, most procedures are modeled through purely electric models [42],
although it has been proved that elasticity introduces marked differences in the quantita-
tive response of simplified models [8,61]. Moreover, complex spatio-temporal cardiac ar-
rhythmias could be explored in terms of electromechanics rather than in terms of electric
alternans. In particular, the intra- and extra-cellular calcium dynamics, strongly related
to the excitation-contraction mechanisms, would benefit of a fully coupled approach en-
hancing the role of bi-domain structure and subcellular reactions, in view of a multiscale
theoretical formulation.

Further extensions will account for the treatment of viscous behaviors, similar to
the ones observed in active biological tissues [7]; for a more realistic description of the
anisotropy by considering dispersion of the fiber orientation [72,73]; and for thermal dif-
fusion. It is well known that active electromechanical systems such as heart and intestine
are very sensitive to thermal variations [18,20,22]. The latter extension will allow to eval-



uate quantitatively the effects of thermal cooling and heating, fundamental in analyzing
pathological conditions and the treatment of diseases.
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Appendix A

The following expressions hold for the particular choice of strain energy function, see
Eqs. (4.1)-(4.3).
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