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Limited impact on decadal-scale climate change
from increased use of natural gas
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The most important energy development of the past decade has been
the wide deployment of hydraulic fracturing technologies that enable
the production of previously uneconomic shale gas resources in North
America1. If these advanced gas production technologies were to be
deployed globally, the energy market could see a large influx of eco-
nomically competitive unconventional gas resources2. The climate
implications of such abundant natural gas have been hotly debated.
Some researchers have observed that abundant natural gas substitu-
ting for coal could reduce carbon dioxide (CO2) emissions3–6. Others
have reported that the non-CO2 greenhouse gas emissions associated
with shale gas production make its lifecycle emissions higher than
those of coal7,8. Assessment of the full impact of abundant gas on
climate change requires an integrated approach to the global energy–
economy–climate systems, but the literature has been limited in either
its geographic scope9,10 or its coverage of greenhouse gases2. Here we
show that market-driven increases in global supplies of unconven-
tional natural gas do not discernibly reduce the trajectory of greenhouse
gas emissions or climate forcing. Our results, based on simulations
from five state-of-the-art integrated assessment models11 of energy–
economy–climate systems independently forced by an abundant gas
scenario, project large additional natural gas consumption of up to
1170 per cent by 2050. The impact on CO2 emissions, however, is
found to be much smaller (from 22 per cent to 111 per cent), and a
majority of the models reported a small increase in climate forcing
(from 20.3 per cent to 17 per cent) associated with the increased use
of abundant gas. Our results show that although market penetration
of globally abundant gas may substantially change the future energy
system, it is not necessarily an effective substitute for climate change
mitigation policy9,10.

Five research teams projected the evolution of the future global energy
system up to 2050 under two alternative assumptions about natural gas
supply: ‘Conventional Gas’ and ‘Abundant Gas’ (Fig. 1 and Methods).
Each natural gas supply curve was constructed based on the synthesis
of natural gas supply and geographic distribution in the Global Energy
Assessment (GEA) report12.

The Conventional Gas scenario assumes the maximum recoverable
resources to be 11,000 exajoules (EJ) in 2010, a total consistent with con-
ventional resources that have extraction costs below $3 per gigajoule
(GJ). (One EJ equals one quintillion (1018) joules and one GJ equals one
billion (109) joules.) This supply curve reflects an estimate of econom-
ically recoverable gas consistent with technology available before the
shale gas revolution.

The Abundant Gas scenario is characterized by both the global abun-
dance of natural gas resources and substantially reduced extraction costs.
This scenario envisions that advanced natural gas extraction technolo-
gies become globally applicable beyond North America, allowing extrac-
tion of previously uneconomic unconventional resources. To represent
this scenario, we assumed that technological change halves the extraction

cost in GEA between 2010 and 2050, allowing more than 30,000 EJ of
cumulative natural gas to be produced at or below $3 per GJ, with addi-
tional resources producible at higher prices. This rate of cost reduction is
on the higher end compared to other studies2,9,10. This scenario is designed
to provide a potential upper bound on global gas supply and should not
be interpreted as the most likely case (see Methods for a broader range
of supply assumptions). Furthermore, this rate of cost reduction is more
aggressive than that of most low-carbon energy sources against which
natural gas is competing (see Extended Data Table 1 for variance across
the models).

For both scenarios, we did not simulate future climate policies beyond
those already in effect. The two scenarios therefore explore the degree
to which market penetration of abundant gas alone can mitigate green-
house gas emissions (see Methods).

Five integrated assessment models (IAMs) are employed in this study:
BAEGEM13, GCAM14, MESSAGE15, REMIND16 and WITCH17. These
IAMs belong to a class of models designed to assess the implications of
changes in the global energy system on climate forcing. They have been
used extensively to project emission scenarios for global and regional
assessments. For example, GCAM and MESSAGE provided two of the
four Representative Concentration Pathways (RCPs) used in the Inter-
governmental Panel on Climate Change’s Fifth Assessment Report18,19.

The models integrate energy, economy, and climate systems to assess
their interaction in a consistent framework. All models feature explicit
representation of energy markets with price-responsive demand and
supply for coal, oil, and gas, as well as for low-carbon energy sources20.
The capability to simulate the effects of price changes on the scale and
the composition of the future energy system is crucial for this study,
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Figure 1 | Global natural gas supply curves in 2050. The current natural gas
supply curves provided by Global Energy Assessment12. Future cost reduction
assumptions are documented in the Methods. These supply costs are not the
actual prices in the market place. The costs do not include taxes or royalties, nor
do they include external environmental or social costs associated with gas
production12. $3 per GJ is equivalent to $3.2 per mmBtu. (One mmBtu is one
million British thermal units.) US dollars at 2007 constant prices.
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because these effects determine the changes in emissions and corre-
sponding changes in climate forcing.

The models are harmonized to share common natural gas supply curve
assumptions, but otherwise differ widely in model architecture, geospa-
tial resolution, socioeconomic assumptions, and technology projections
(see Table 1 and Methods for a detailed description of the model differ-
ences and similarities). To the extent that a similar result is produced by
this diverse set of models, we are more confident that the result is not
simply an idiosyncratic artefact of an individual modelling method, but
rather is reflective of more fundamental forces.

The models independently projected the future energy system for the
two natural gas supply scenarios. All five models reported that the abun-
dant gas supply leads to additional gas consumption, as well as addi-
tional gas-fired electricity consumption, compared to the Conventional
Gas scenario. However, the speed of divergence and the size of the dif-
ference in gas consumption varied across models: from 11% in WITCH
to 170% in REMIND in 2050 (Fig. 2a). The models agreed on the pat-
tern of sector penetration. Power production showed the largest shift
towards gas substituting for all other fuels, most prominently coal. Smaller
shifts occurred in industry and buildings (Fig. 3a). The models also agreed
that natural gas continues to have a minor role only in transportation.

Despite major changes to the global energy system and the substan-
tial increase in natural gas consumption, the models agreed that addi-
tional supply of natural gas in the energy market does not discernibly
reduce fossil fuel CO2 emissions. Future CO2 emissions are similar in
magnitude with and without abundant gas, as the two emission trajec-
tories continue to rise over time at similar rates (Fig. 2b). For GCAM,
MESSAGE, and WITCH, the CO2 emissions for both scenarios were
within 2% of each other in 2050. The BAEGEM (11%) and REMIND
(5%) models showed larger differences, but emissions increased—rather
than decreased—under the Abundant Gas scenario.

The results demonstrate that abundant gas will not necessarily reduce
CO2 emissions. There are two forces at work: substitution and scale effect.
First, additional natural gas consumption largely substitutes for coal, but
not exclusively. All five models found that gas substitutes for all other
primary fuels—such as nuclear and renewables—although coal loses
the largest market share in all models (Fig. 3a). In 2050, abundant gas
on average substitutes for 18% of coal and 17% of low-carbon energy
(10% and 8% respectively for the 2010–2050 cumulative total). Hence,
the effect of natural gas on CO2 emissions is not based on the difference

between the emission factors of gas and of coal, but on the emission
factor of gas relative to that of a broader basket of energy sources. The
natural gas emission factor (56 kg of CO2 per GJ) is about half of the
coal emission factor (96 kg of CO2 per GJ)21. However, it is not substan-
tially lower than the average global CO2 emissions per unit of energy:
68 kg of CO2 per GJ (2050 model average). Consequently, even if natural
gas were to substitute for the entire global energy supply, CO2 emissions
would decline by a maximum of 20%. Considering the model average of
a 36% share for natural gas in the global energy system in 2050, the actual
emission reduction effect would be a fraction of the maximum.

Second, lower natural gas prices accelerate economic activity, reduce
the incentive to invest in energy-saving technologies, and lead to an
aggregate expansion of the total energy system: a scale effect. All models
reported greater total global primary energy consumption (6% on aver-
age) in the Abundant Gas scenario compared with the Conventional
Gas scenario. All else being equal, increased energy use leads to increased
CO2 emissions. All models reported that the combined effect of the two
forces—substitution and scale effect—does not result in a discernible reduc-
tion in emissions and, in some cases, leads to increased CO2 emissions.

The emissions data from the models were processed through a simple
climate model, MAGICC6 (Model for the Assessment of Greenhouse-
Gas Induced Climate Change), to assess the combined effects of all green-
house gases and climate forcing agents (see Methods)22. The results echoed
those that were observed for CO2 emissions: climate forcing and asso-
ciated temperature change are not discernibly reduced under the Abundant
Gas scenario (Fig. 2c, d and Fig. 3b, c). Four models that endogenously
model fugitive methane emissions reported increased climate forcing
with abundant gas. This is largely driven by increased forcing from fugi-
tive methane emissions associated with increases in gas consumption.
The WITCH model, with exogenously specified methane emissions,
reported virtually no change in forcing (20.3%).

Furthermore, four models reported the net change in forcing to be
less than 3%. REMIND reported radiative forcing increase of 7%; more
than half of that increase came from reductions in coal use and asso-
ciated aerosol emissions (reduced cooling). Two other models that also
simulate aerosol emissions endogenously (GCAM and MESSAGE), also
reported a reduced cooling effect from aerosols, but at a smaller scale.

The core finding of this research is that increases in unconventional
gas supply in the energy market could substantially change the global
energy system over the decades ahead without producing commensurate

Table 1 | Overview of the five modelling systems
Model BAEGEM GCAM MESSAGE REMIND WITCH

Full name BAEconomics General
Equilibrium Model

Global Change
Assessment Model

Model for Energy Supply
Systems And their
General Environmental
impact

Regional Model of
Investments and
Development

World Induced Technical
Change Hybrid

Institutional steward BAEconomics Pacific Northwest
National Laboratory
(PNNL)

International Institute
for Applied Systems
Analysis (IIASA)

Potsdam Institute for
Climate Impact
Research (PIK)

Centro Euromediterraneo
sui Cambiamenti Climatici
(CMCC)

Location Kingston, Australia College Park,
Maryland, USA

Laxenburg, Austria Potsdam, Germany Milan, Italy

Brief description BAEGEM is a global
dynamic-recursive,
multi-region, multi-sector,
computable general
equilibrium model; it
includes energy use,
transformation and
technology detail

GCAM is a long-term,
global, dynamic-recursive,
integrated assessment
model of human and
physical Earth systems,
including 14 geopolitical
and 151 land-use
regions; it includes
detailed technological
representations for
energy, land use, and
the economy

MESSAGE is an
integrated assessment
modelling framework,
combining a global
(multi-region, multi-
sector) systems
engineering,
inter-temporal
optimization model,
an aggregated macro-
economic model, and a
simple climate model

REMIND is a multi-
regional, general
equilibrium model of
the global economy,
energy, and climate
systems; it includes
energy supply,
transformation
technologies and
demand details;
intertemporal
optimization methods
solve for the equilibrium

WITCH is a multi-region,
long-term, dynamic
optimization, economy–
energy–climate model,
characterized by
endogenous technological
change and a game
theoretic set-up with
strategic interaction
among regions

Climate model used
for this study

MAGICC 6.0
(natively integrated with
MAGICC 5.3)

MAGICC 6.0
(natively integrated
with MAGICC 5.3)

MAGICC 6.0
(natively integrated
with MAGICC 5.3)

MAGICC 6.0 MAGICC 6.0

Detailed description Ref. 13 Ref. 14 Ref. 15 Ref. 16 Ref. 17
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Figure 2 | Comparison of the
model results 2010-2050. a, Global
natural gas consumption. The
relatively small difference in gas
production in WITCH (11%)
becomes considerably greater in the
second half of the century, beyond
the time scope of this study. b, CO2
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surface temperature change (from
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refs 29 and 30.
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Figure 3 | Global energy
consumption and radiative forcing
in 2050. a, Differences in energy use
by sector and fuel (the Abundant Gas
scenario minus the Conventional
Gas scenario) in 2050. One
avenue for possible change in the
transportation sector is through the
use of gas in transportation fuel
production. The MESSAGE model
reports this effect at a noticeable scale
(10%). b, Year 2010 and year 2050
composition of radiative forcing for
the Conventional Gas scenario for
five models. c, Year 2050 relative
difference in radiative forcing
(the Abundant Gas scenario minus
the Conventional Gas scenario)
for the five models. 1% difference
in forcing for model average is
equivalent to 0.042 W m22.
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changes in emissions or climate forcing. The result stems from three
effects: abundant gas substituting for all energy sources; lower energy
prices increasing the scale of the energy system; and changes in non-
CO2 emissions. This result is potentially sensitive to a range of model
assumptions.

One important assumption is that market forces are allowed to work
themselves out largely unfettered. Our results would be different if pol-
icies that limit natural gas’s ability to substitute for low-carbon energy
were implemented on a global scale. To explore this sensitivity we recal-
culated the emissions assuming that abundant gas substitutes exclusively
for coal. This assumption is analogous to a global clean energy standard
where the capacities of carbon-free energy sources are exogenously
specified. With the exception of BAEGEM, the models reported CO2

emission reductions between 20.1% and 26% (Extended Data Table 2).
BAEGEM’s result of a 7% increase was driven by an overall energy expan-
sion of 11%.

The results are also influenced by assumptions about technological
change in other domains. Although the results reported here assumed
changes to gas supply technology alone, oil production is experiencing
similar technological advances. Extending the analysis to oil as well as
gas production would not be expected to lower future CO2 emissions
or climate forcing because the carbon-to-energy ratio for oil is approxi-
mately 35% higher than that of natural gas.

Fugitive methane emissions associated with natural gas production,
transmission, and distribution is another important factor. On the one
hand, conventional estimates for natural gas methane leakage rates have
been less than 2% of production23,24, and studies have shown that the
leakage rate is not considerably different between conventional and uncon-
ventional sources25,26. On the other hand, other studies have reported
substantially higher leakage rates7,27,28. To test the sensitivity of our results
to these assumptions, we chose the highest value (7.9%; ref. 7) from a
range of methane leakage rates found in the literature. We then recal-
culated climate forcing and found that the effect of abundant gas is to
increase climate forcing by 0.2% to 12% in 2050, which is 0.5% to 5%
higher than in our central scenario (Extended Data Fig. 1). In other words,
the finding that abundant gas does not discernibly reduce climate forcing
is consistently reported over a wide range of fugitive methane rates found
in the literature. Furthermore, under high fugitive emission assumption,
three models reported increased climate forcing of more than 5%.

This analysis focused solely on the potential of abundant gas to affect
greenhouse gas emissions in the absence of greenhouse gas mitigation
policies beyond those already in effect. The interaction between abun-
dant natural gas and greenhouse gas mitigations policies is another issue
in need of further examination9,10. Finally, we note that the global deploy-
ment of improved natural gas extraction technology carries implications
not only for climate change, but also for many other important concerns
including air and water quality, energy security, access to modern energy,
and economic growth1,2,8.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Gas supply curves. Natural gas supply curves are harmonized across all the
models. The Conventional Gas scenario represents an estimate of economically
recoverable gas consistent with technology available before the shale gas revolu-
tion. This natural gas supply curve is constructed based on the synthesis of natural
gas supply and geographic distribution in the GEA report12. GEA’s 2010 natural
gas supply curve is truncated at 11,000 EJ of cumulative global supply to represent
limited conventional gas supply. No future cost reduction from technological change
is assumed. This curve represents a lower bound of global natural gas supply (see
green curve in Extended Data Fig. 2)

The Abundant Gas scenario represents an upper bound of global natural gas supply.
This supply curve is characterized by both the global abundance of the resources
and the substantially lower extraction costs. Global abundance is implemented by
allowing both conventional and unconventional gas in GEA estimates12 to be fully
available for extraction. A cumulative supply of 39,000 EJ is assumed to be available
globally.

Lower extraction cost is implemented by future technological changes reducing
extraction cost over time. The extraction costs of early adopters (USA and Canada)
are assumed to reduce exponentially by 1.7% per year over the course of 2011–2050.
Extraction costs from all other regions are assumed to reduce exponentially by 2.0%
per year over the course of 2016–2050. In all regions, the cost of extraction is reduced
to half by 2050 from the GEA’s 2010 estimate.

This is on the aggressive side of the cost reduction estimates found in the liter-
ature. For instance, the International Energy Agency (IEA)’s ‘Golden Age of Gas’
scenario2 shows a 23% reduction by 2035; Newell and Raimi9 assumes a 45% reduc-
tion by 2040; the EMF 26 model comparison exercise’s ‘High Shale’ scenario10

assumes a 21% reduction by 2035; and finally, the original GEA scenarios12 assumed
a 33% reduction by 2050. Although direct comparison is difficult owing to each sce-
nario’s differences in design, measurement, and time frame, our aggressive assump-
tion is intended to represent a lower bound for future gas production costs.

The cost reduction assumption is also more aggressive than that of relatively
mature low-carbon energy sources such as nuclear power plants, but not neces-
sarily more aggressive compared to that of immature technologies such as solar
photovoltaics (see Extended Data Table 1 for cost reduction comparison with other
energy sources).

When the abundance in quantity and reduction in production cost are com-
bined, the Abundant Gas supply curve allows 31,000 EJ of cumulative natural gas
production at $3 per GJ or less by 2050. Extended Data Fig. 2 shows the reduction
in cost from 2010 (red curve) to 2050 (blue curve). These production costs are dif-
ferent from the actual prices in the market place. The costs do not include taxes or
royalties, nor do they include external environmental or social costs associated
with gas production12.

GCAM and MESSAGE models further tested sensitivity to the magnitude of
production cost reductions. GCAM is a model relatively less sensitive to Abundant
Gas supply, while MESSAGE is a model relatively more sensitive to it. The two
models projected a total of five natural gas supply scenarios: (1) the Conventional
Gas scenario; (2) the Abundant Gas scenario (at the standard 50% cost reduction);
(3) the Abundant Gas scenario (with the high cost reduction of 75%); (4) the Abun-
dant Gas scenario (with the low cost reduction of 25%); (5) the Abundant Gas sce-
nario (with the zero cost reduction, abundant in quantity only).

The results are shown in Extended Data Fig. 3. Collectively, these scenarios cover
a wide range of cost reduction found in the literature. Our core finding from the
main analysis is found to be consistent with results from this sensitivity. In all cases
considered, we found that more abundant natural gas could substantially change
the global energy system over the decades ahead without producing commensurate
changes in emissions or climate forcing.

GCAM reported 113% to 182% additional natural gas consumption in 2050,
while the change in CO2 emissions is found to be in the 20.9% to 22.0% range and the
change in radiative forcing is found to be in the 10.3% to 11.1% range. MESSAGE
reported 156% to 1170% additional natural gas consumption in 2050, while its
change in CO2 emissions is found to be in the 21.0% to 10.6% range and its change
in radiative forcing is found to be in the 10.7% to 13.4% range.

Just as in the main analysis, the models did not agree on the direction of the
impact on CO2 emissions. GCAM consistently reported lower CO2 emissions with
respect to lower cost assumptions. MESSAGE reported that the CO2 emissions
increase at the high end of the cost reduction range. However, these changes are
very small, with a magnitude less than 2% of the total emissions. Once we consider
the combined effect of all greenhouse gases, the two models consistently agree on
the direction of the change: the lower the natural gas production cost, the higher the
total radiative forcing and associated temperature change. Our main finding that
increased use of abundant gas does not produce a discernible reduction effect on cli-
mate forcing is found to be consistent across the range of cost reduction sensitivities.

Main analysis. The main analysis presented in the paper may be sensitive to a
range of model assumptions. We reported two of the core sensitivities in the main
text. Here we describe detailed methodologies for the main analysis and the sen-
sitivity analyses.

The main analysis follows a standard method for IAM study on baseline scenarios.
The five models are explicitly designed to project the future emissions trajectory
under various assumptions about the energy system and the economy. Represent-
ing the energy and economic system in an abstract structure, IAMs provide a sim-
ulation method of conducting an analysis when a ‘controlled experiment’ in the
strict sense is not possible. Similar to a controlled experiment, our numerical exper-
iment keeps all other parameters constant and varies only the natural gas supply
curve. We then simulate the effect of market forces on the energy system evolution
through 2050. From the two simulations that differ only in terms of natural gas
supply, we report the differences in the output variables, such as energy system com-
position, emissions, and climate forcing. Such differences in output variables are
directly attributable to the differences in input variables.

To closely replicate the human system dynamics, each model calibrates its para-
meters to the observed data in the historical years. The data used for calibration is
reported in the model descriptions. Calibrated parameters include technological
parameters such as energy production efficiency and emissions intensity, economic
parameters such as price elasticities and income elasticities, and non-market para-
meters such as regional preferences for specific fuel type or preferences for a specific
mode of travel. Projecting into the future, some parameters are assumed to improve
over time (for example, energy production efficiency) and others are assumed to be
constant (for example, social preferences for a specific mode of travel are assumed
to be constant).

As this is a baseline scenarios study, we did not assume any explicit climate change
mitigation policies. This study addresses the following question: if there are no new
policies to mitigate climate change, does increased use of abundant natural gas reduce
greenhouse gas emissions? However, although no economy-wide climate change
mitigation policy has been currently implemented, the currently existing policies
that have been implemented in the past would affect the parameters calibrated to
historical observations. For instance, the Corporate Average Fuel Economy (CAFE)
standard in the USA has been enforced since 1978 to increase the fuel economy of
cars and decrease fuel consumption. Although this was not explicitly intended as a
climate change mitigation policy, it has had the side-effect of reduced emissions
per distance travelled. This side-effect would be implied in the calibration process
and propagate forward into the future. As a result, the future projection of emis-
sions would be lower than they would otherwise have been without the CAFE
standard in effect.

Similarly, any energy policies that were enforced before the calibration periods
would affect the calibration parameters. These include Renewable Fuel Standard
policies that mandate the ratio of biofuels in gasoline, building energy standards
that mandate the minimum efficiency levels of building shells, and renewable or
fossil fuel energy subsidies. These policies affect the implied preference for certain
energy sources or efficient equipment. However, we do not include the policies that
are proposed, but not currently in effect. For studies that do include proposed poli-
cies in their scenarios, see refs 31 and 32. Next, we describe one sensitivity analysis
that explicitly represents a future energy policy that is currently not included in the
calibration.
Abundant gas exclusively substitutes coal scenario. In our main analysis models
allow natural gas to substitute not only for coal, but also for a range of energy sources
including solar, wind, nuclear, and bioenergy. These substitutions are driven by the
economic competitiveness of each fuel type. However, it is also possible to imagine a
policy architecture in which a normative policy protects low-carbon energy sources,
thus effectively forcing additional natural gas to exclusively substitute coal. Under
such restrictions, we expect overall CO2 emissions to decrease. To estimate the mag-
nitude of the sensitivity to the substitution restriction, we assume a future where
low-carbon energy sources are protected by a globally enforced Clean Energy Stan-
dard. In this scenario, natural gas is assumed to exclusively substitute for coal.

First, we assume that the low-carbon energy quantity is fixed at the same level as
the Conventional Gas scenario. Then, we calculate the quantity difference in low-
carbon energy between the Conventional Gas and Abundant Gas scenarios; this is
the amount of low-carbon energy that would be protected under the policy. To keep
the scale of energy system unchanged, we assume the same amount of coal is instead
substituted by additional gas. The total amount of gas consumption remains unchanged.
We then apply the emissions factors from Extended Data Table 3 and recalculate
the additional emission reduction.

With the exception of BAEGEM, all models show that the ‘coal substitution only’
assumption results in emission reductions in 2050, ranging from 20.1% (WITCH)
to 25.9% (MESSAGE). See Extended Data Table 2 for the range of values. Com-
pared to the emissions changes in the main analysis, in which the majority of the
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models showed positive emissions increase, the ‘coal substitution only’ scenario shows
that under certain policy conditions, abundant gas could help reduce CO2 emissions.

In the case of BAEGEM, the lower gas prices accelerate economic activity, such
that the overall energy system is 11% larger in the Abundant Gas scenario. The
‘coal substitution only’ assumption does reduce the average emission intensity of
the energy system, but the energy system expansion effect still dominates, such that
the total emission is still larger than in the Conventional Gas scenario.
High fugitive methane emissions scenario. The fugitive methane emission rate is
subject to large uncertainty. The rates used in the five models all fall within the
range 0.3–0.6 kg of CH4 per GJ (Extended Data Table 3). These values are similar
to the values reported in conventional literature23,24,33. However, some recent liter-
ature suggests that the fugitive methane rate may be substantially higher by up to a
factor of four7,27,28. To test our results’ sensitivity to high fugitive methane rates, we
select the upper bound of fugitive methane estimates (7.9%) found in the literature7

and re-estimate the climate forcing.
We start from the original emission trajectories from each model. Then, while

keeping all else equal, we recalculate the methane emission trajectory by applying
the high fugitive methane emission rate to the natural gas use. These modified emis-
sion trajectories are then reprocessed through the common climate model MAGICC6.
With the high fugitive methane assumptions, the abundant gas increases the total
anthropogenic radiative forcing by 0.2% to 12% in 2050, which is 0.5% to 5% points
higher than under the standard assumptions. A full comparison is shown in Extended
Data Table 4.
IAMs of energy–economy–climate systems. The five models that are used in this
study are members of a class of models referred to IAMs. IAMs in general encom-
pass the broad suite of human and natural Earth systems including the economy,
energy, agriculture, land-use, land cover, and biogeophysical processes from car-
bon and hydrologic cycles, the atmosphere, oceans and climate11. The five models
employed in this study are well equipped to assess the impact of abundant natural
gas on climate forcing. Each contains a state-of-the-art energy–economy systems
model coupled to a simple climate model.

Each of the five models represents energy and economic systems differently.
Below, we provide a general description of the strengths and limitations the five
models bring to the issue of assessing the impact of abundant natural gas on cli-
mate forcing. This is followed by more detailed descriptions of the five models. The
IAMs of energy–economy–climate systems employed in this study bring a number
of strengths to the issue of the global long-term climate forcing implications of abun-
dant natural gas. In general, the models were designed to address precisely the kind
of problem we explore in this paper. They have the appropriate geographic, tem-
poral, and sectoral coverage.

All of the models explicitly represent processes that start from the extraction of
primary energy (exhaustible fossil fuels and renewable energy) to energy transfor-
mation (for example, liquid fuel refineries and power generation) to end-use services
(buildings, industry, and transport). The models feature explicit representation of
energy markets with price-responsive demand and supply for coal, oil, and gas as
well as low-carbon energy sources20,34. The flexibility and interdependence of energy
markets are crucial for the present study because these features determine the degree
to which additional natural gas is consumed and by how much this reduces the
demand for other fuels. All five models employ a standard economic paradigm in
their representation of energy markets. Price is the principal force determining and
equilibrating the supply of and demand for different fuels.

IAMs vary in a number of important ways. While all of the models in this study
have explicit representations of both the economic system and the energy system,
they vary in terms of their relative emphasis on representing the details of the two
interlinked systems. Model structures that emphasize economic interactions across
all sectors of the industry are particularly strong for examining how changes in one
industry propagate through the whole economy. These models are also strong in
examining changes in international trade patterns due to region-specific changes in
industrial structure. BAEGEM13 is one example of this type of model with 25 explicit
sectors of the economy each consuming a bundle of energy sources, where the share
of the bundle is determined by the relative prices.

In contrast, GCAM14 and MESSAGE35 place greater emphasis on representing
the details of the physical energy system. They contain detailed representations of
key energy systems and technology options for producing, transforming and using
energy, while adopting more aggregate representations of the broader economy.
GCAM and MESSAGE have more than 100 different energy supply and conversion
technology representations. This approach is more rigid in the ability to substitute
between the factors of production, namely capital/labour inputs and energy inputs,
compared to the approach used by models such as BAEGEM. However, it can better
capture the physical details of individual services provided in the end-use sectors,
such as ton-kilometres of freight or GJ of residential heating. This modelling approach
is particularly strong for in-depth analysis of a specific energy technology and tracking
the physical flows of energy goods and services.

REMIND36 and WITCH17 lie between BAEGEM on the one end and GCAM
and MESSAGE on the other. These models have more detail in their economic
structure and less energy system detail than the latter, but more energy system detail
and less economic system detail than the former.

Another domain in which the models vary is their assumption about the know-
ledge and behaviour of their economic agents. Intertemporal optimization models
represent economic agents that maximize their economic utility over the model
time horizon. The agents are assumed to know future price changes with certainty
and hence the resulting model solution is economically optimal for each agent.
MESSAGE, REMIND, and WITCH employ this method.

On the other hand, GCAM and BAEGEM takes a more descriptive approach
where the economic agents are assumed to not know the future price changes, but
rather make production and consumption decisions based only on the informa-
tion available to them at any given time. This approach provides insights about
how the system might be expected to evolve under imperfect information about
the future. However, the resulting equilibrium trajectory may not be economically
optimal.
Modelling paradigm for IAMs. The variety in modelling approaches used by the
five models in this exercise strengthens this analysis. This diversity guards against a
result that is the product of an individual model’s idiosyncratic behaviour. To the
extent that models employ different methodologies and get qualitatively similar
results, we have greater confidence in the result. That said, all models subscribe to
the standard economics paradigm. Other modelling paradigms exist, such as adap-
tive agent models, system dynamics models, or infrastructure models. We have not
tested these modelling paradigms in this paper. As such, the models do not span
the full range of all possible methods that could potentially be employed to assess
the impact of more abundant natural gas for climate forcing.

One limitation of the models employed in this study is that they do not model
explicit locations of physical infrastructure. The geographic locations of present
and future natural gas pipelines and liquefied natural gas terminals are modelled at
coarse international resolution, and do not take into account detailed local infor-
mation that shapes decisions about which facilities are deployed, and where and
how they are connected to the broader system. Geographically resolved infrastruc-
ture models can potentially include this level of detail. However, infrastructure
models are relatively static in nature and are therefore generally not employed to
model the global energy system’s evolution over multiple decades into the future.

Also, the five models are built on the foundation of the standard economic para-
digm, and they do not, for instance, employ an adaptive agent modelling approach
or systems dynamics approach. Future research could employ a broader suite of
modelling methods to shed further light on the implications of abundant natural
gas for climate forcing, and examine whether other modelling approaches would
yield a qualitatively different result.
Representing the policy environment in IAMs. The energy policy environment
exerts a strong influence on energy production and use and thereby on climate forc-
ing. Our default assumption is that no new policies and measures are introduced
after the calibration period. Alternative assumptions can produce different results
for energy, for the economy and for climate forcing. We tested one energy policy
that can potentially change the results. We found that exogenously specifying the
quantity of low-carbon energy sources and forcing natural gas to substitute exclu-
sively for coal results in emissions being reduced in the models.

Other policies, such as carbon tax, cap-and-trade, or natural-gas vehicle subsidies,
could alter our results. The climate implications of abundant gas under climate
policies are of great interest. However, the issue is sufficient in scope and depth to
require its own future research, and hence is not addressed here.
Baseline assumptions in IAMs. Finally, we point out that the numerical simula-
tions of the effects of increased natural gas availability that we have performed for
this paper are all based on each model’s native reference scenario assumptions. Those
scenarios are each developed by the modelling teams themselves and no attempt
was made to harmonize assumptions other than natural gas supply curves. This
was intentionally done to increase the variety of conditions against which the impli-
cations of abundant gas would be assessed.

Specifying different exogenous assumptions would produce different results. Some
perturbations have well established consequences common to all of the models.
For example, higher population growth or higher rates of economic productivity
growth increases the scale of the energy system overall. Perturbations in the assumed
rate at which technological change that occurs in low-carbon technologies would
change the future emission intensity of the energy system.

While we have not attempted to explore the sensitivity of our results to variation
in those assumptions, the five models’ native assumptions cover a wide uncertainty
range consistent with the large majority of the literature37, but they do not cover
the extremes found in the literature (see Extended Data Fig. 4). Examining the four
principal components of model projections (population, gross domestic product
(GDP), energy consumption, and CO2 emissions), we observe that the five models
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cover most of the 10th to 90th percentile range for population and GDP in 2050.
The projected ranges for energy consumptions and CO2 emissions are narrower,
but cover most of the 25th to 75th percentile range. To the extent that the five
models report qualitatively similar results despite the large variations in baseline
assumptions, we have greater confidence in the results.
Uncertainties in IAMS. Uncertainty attends every element of the modelling pro-
cess. There are two major elements of uncertainty in the modelling system: model
structure and model input assumptions (future population, economic activity, tech-
nology and policy). Methods have been developed to address each of these uncer-
tain elements. Uncertainty in model input assumptions are addressed in a variety of
ways ranging from simple sensitivity analysis to formal uncertainty quantification
analysis. Uncertainty in model structure is more difficult and model intercompar-
ison is an important tool for exploring this source of uncertainty.

The formal Monte Carlo analysis38,39 employs a single model to process numer-
ous samples of input variables, such as fossil fuel supply, economic growth, tech-
nological learning, and so on. The distribution of the output shows the range of
uncertainty associated with the model results. For simple models, uncertainties asso-
ciated with all model inputs can be examined. However, with the growing complexity
of IAMs, this method is becoming increasingly difficult to implement.

Sensitivity analyses identify key variables of interest and examine each model’s
response to variation in those input values. We have identified three such variables
and performed sensitivity analyses. We have also examined sensitivity to energy
policy, specifically sensitivity to low-carbon energy policy. In this latter case we found
that under a global low-carbon energy protection policy, the availability of more
abundant gas can reduce climate forcing. We also explored the sensitivity of our
results to the rates of fugitive methane emissions and found that with high fugitive
methane emission rates, more abundant gas can discernibly increase climate forc-
ing. Finally, we explored the sensitivity of model outputs to natural gas supply char-
acterizations, specifically production cost, and found that our results were consistent
across a wide range of natural gas supply assumptions.

Model intercomparison projects (MIPs), where a number of models simulate a
common set of scenarios, are the primary method employed to explore the impli-
cations of variation in model structure, although they are also used to structure
sensitivity and scenario analysis. The Energy Modelling Forum (EMF)10 has been
conducting MIPs of energy–economy models since 1977. The MIPs conducted by
EMF are analogous to the Coupled Model Intercomparison Project (CMIP)40 of
the climate modelling community, where a larger number of climate models project
the future climate and assess the distribution of the projection. MIPs can be thought
of as the modelling equivalent of scientific hypothesis testing using different methods.
If a number of models with heterogeneous architecture reach a common conclu-
sion, we can have greater confidence in that conclusion.

This study is an example of a MIP with a small number of models. The com-
parison of the results across the models shows large uncertainty. The uncertainty is
especially large in the future level of natural gas consumption, and consequently
the use of competing energies, such as solar photovoltaics and nuclear power plants.
The uncertainty is also present in the size of the impact of abundant gas on the
emissions. These results are highly dependent on model architecture and the implied
flexibility of fuel-switching. However, the models all agree on the most potent con-
clusion: increased supply of abundant gas does not discernibly reduce either CO2

emissions or climate forcing. Some models report a discernible increase in emis-
sions or climate forcing, and others report negligible change. But none of the models
report more than a 2% reduction in emissions or climate forcing. This qualitative
agreement across five heterogeneous models in this exercise gives greater confi-
dence in the conclusion.
Overview of the BAEGEM model. BAEGEM13 is a recursively dynamic com-
putable general equilibrium model of the world economy. For each one-year time
step, BAEGEM simulates the interrelationships between economic growth, flows
of international trade and investments, constraints on natural resources and pro-
duction factors, greenhouse gas emissions and climate change policies.

The central core of BAEGEM is built on the familiar approaches of the GTAP
model41, with the household consumption behaviour and the producer behaviour
represented separately by a constant difference of elasticities function and a nest-
ing of Leontief, constant elasticity of substitution (CES) and constant ratios of
elasticity of substitution, homothetic (CRESH) functions42.

BAEGEM is written in GEMPACK43. The full model code is complemented by
four interlinked modules: (1) the government module; (2) the technology mix module;
(3) the energy module; and (4) the greenhouse gas emissions module. The model is
ideally suited to analysing domestic and international energy-related policies, and
the impacts of economic shocks.

The BAEGEM database is derived from a number of sources. The global social
accounting matrix is derived from the GTAP version 8 database44 with a base year
of 2007. To enhance the capability of modelling individual commodities, the number
of commodity groups in BAEGEM has been expanded from 57 in the GTAP version

8 database to 72. The disaggregated commodities include black thermal coal, brown
coal, coking coal, iron ore, bauxite, copper ore, gold, uranium, titanium, zirconium,
coke, nuclear fuel, alumina, copper, aluminium and liquefied natural gas.

The emissions database covers all Kyoto gases and is sourced from the Inter-
national Energy Agency45,46, the United National Framework Convention on Climate
Change47 and the US Environmental Protection Agency48. The data in the govern-
ment module are sourced from Global Insight while the data in the technology mix
and energy modules are sourced from the IEA.

The global temperature rise, total radiative forcing and the atmospheric concen-
tration of carbon dioxide can be calculated from the BAEGEM results by linking to
MAGICC49, with climate sensitivity set to three degrees Celsius. BAEGEM natively
links to MAGICC 5.3, but for this study we have used MAGICC 6.0 for latest sci-
entific knowledge and consistency across models.

Supplementary Fig. 1 and Supplementary Table 1 provide an overview of the other
key features of BAEGEM.
Modelling energy commodities in BAEGEM. The energy module tracks the
production of primary and secondary energy, and the consumption of final energy
by government, households and firms. Changes in production volume over the pro-
jection period are driven by global demand growth, which in turn is determined by
real GDP growth, and changes in prices, consumption preference, market structure,
sector productivity and market structure.

The government demand for each commodity is derived from a Cobb–Douglas
function nested with Armington composites of commodities supplied by domestic
and foreign sources. The household demand for each commodity is determined by
the demand of a representative household and the growth in population. At the
first level, the representative household chooses quantities of non-energy commod-
ities and an energy composite (that is, coal, gas, refined petroleum product, elec-
tricity and heat) to maximize a utility function, given a budget constraint. At the
next level, the representative household chooses quantities of energy commodities
to minimize the cost of consuming the energy composite in the previous level. The
purpose of this two-level demand system is to reflect better the substitutability between
energy commodities with a more flexible substitution system.

Demands for energy commodities in each production sector are derived from a
nesting of Leontief, CES and CRESH functions. At the first level, a Leontief tech-
nology links the input of factor-energy composite to the industry output level. At
the second level, it is a CES cost minimization problem searching for an optimal
combination of energy and factor composites where energy commodities and prim-
ary factors (that is, capital, labour, land and natural resources) are substitutable, but
not perfectly so. For land and natural resource-intensive industries (that is, crops,
livestock, coal, oil, and gas), a CES structure with imperfect substitutability ensures
that constraints on land and natural resource or more intensive use of capital and
labour under finite natural resources can be modelled properly in BAEGEM. At the
third level, another cost minimization problem is specified, but here it searches for
an optimal combination of energy commodities under a CRESH production function.

Electricity supply from various technologies is modelled inside the technology
mix module. The ‘technology bundle’ approach ensures that electricity output can
be produced from a bundle of individually identified generation technologies and
that each technology uses a different mix of inputs. The purpose of integrating a
bottom-up modelling approach for the electricity sector into BAEGEM is to rep-
resent better the technology-specific detail of the sector while retaining the benefits
of the top-down interactions modelled in BAEGEM. In this application, the elec-
tricity output is the sum of nine technologies: coal; oil; gas; nuclear; hydro; wind;
solar; biomass; and others.

The substitution possibilities between electricity technologies in BAEGEM are
governed by a CRESH aggregation function. CRESH is a generalization of CES and
allows elasticity of substitutions to vary between its elements. In other words, certain
technologies identified in the framework can be assumed to be more substitutable
than others. The use of the family of CRESH aggregation functions allows for the
fact that electricity, which is a homogenous output, can be generated in an eco-
nomy simultaneously from different technologies with different production costs.
Modelling greenhouse gas emissions in BAEGEM. The greenhouse gas module
tracks Kyoto gas emissions (for CO2, CH4, N2O, HFCs, PFCs and SF6) over the
course of production, transformation, consumption, and combustion. For each time
step, emissions pathways of Kyoto gases are derived from the quantities of these
economic activities and changes in emission factors. The projections of radiative
forcing agents other than Kyoto gases are selected from emission scenarios in MAGICC
according to modelling criteria, assumptions and applications. Supplementary Table 2
provides the list of the gases and the data sources for assigning emissions coeffi-
cients for each sector in BAEGEM.

BAEGEM assumes the constant proportionality of emissions with respect to the
quantity of fossil fuel combusted over time. The disaggregated CO2 emissions for
the base year is derived from the GTAP 8.0 database with adjustments to ensure
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that aggregate combustion emissions at country level are consistent with the IEA
combustion emission database50.

Non-combustion emissions, such as fugitive emissions from fossil fuel mining,
enteric fermentation in livestock production and chemical transformation in man-
ufacturing processes, are assumed to change in proportion to their production levels
adjusted by EMF21 marginal abatement curves51. The use of marginal abatement
curves in the module allows a gradual reduction of non-combustion emissions per
unit of output with additional reduction opportunities when carbon price increases.
The disaggregated non-CO2 emissions for the base year is derived from the US
Environmental Protection Agency database48 and the GTAP 7.0 database with adjust-
ments to ensure that aggregated non-CO2 emissions are consistent with the IEA non-
CO2 emissions database46.
Overview of the GCAM model. GCAM is a global integrated assessment model
of energy, economy, land-use, and climate. GCAM originates from the Edmonds
and Reilly model52–56. In this paper, we use the standard release of GCAM 3.1 with
the natural gas system specifically modified to reflect the common assumptions on
natural gas. GCAM is an open-source model14 primarily developed and maintained
at the Joint Global Change Research Institute. The full documentation of the model
is available at the GCAM wiki14, and the following description is a summary of the
wiki documentation.

GCAM is a long-term global model with particular emphasis on the represen-
tation of human dimensions of the Earth system. GCAM integrates representations
of the global economy, energy systems, agriculture and land use, with representa-
tion of terrestrial and ocean carbon cycles, and a suite of coupled gas-cycle and
climate models (Supplementary Fig. 2).

The climate and physical atmosphere in GCAM is represented by MAGICC22.
The emission trajectories of greenhouse gases are modelled in GCAM’s energy and
land-use components. GCAM is natively integrated with MAGICC 5.3, but for this
study we have used MAGICC 6.0 for the latest scientific knowledge and consis-
tency across models.

The global economy of GCAM is represented in 14 geopolitical regions, expli-
citly linked through international trade in energy commodities, agricultural and
forest products, and other goods such as emissions permits. The scale of economic
activity is driven by population size, age and gender, and labour productivity, which
determine economic output in each region. The energy and land-use market equi-
librium is established in each period by solving for a set of market-clearing prices for
all energy and agricultural good markets. This equilibrium is dynamic-recursively
solved for every five years in the period 2005–2100. Supplementary Table 3 provides
an overview of the other key features of GCAM.
Modelling energy system and natural gas in GCAM. In GCAM, the energy system
represents processes of energy resource extraction, transformation, and delivery,
ultimately producing services demanded by end users. Resources are classified as
either depletable or renewable; in either case, the extraction costs of a given resource
are assumed to increase as economically attractive resources are employed, but are
also subject to technological progress which can lower extraction costs for a given
resource grade. In each time period, the market prices of energy goods and services,
including fossil fuel resources, are determined within the market equilibrium.

Fossil fuel energy is produced from a graded, regionally disaggregated deple-
table resource base. Renewable energy forms are also disaggregated by region and
resource grade; however, by their nature, the resource is not consumed by use. Primary
energy forms can be transformed into final energy products, including electricity,
processed gas products, refined liquids, and so on.

Energy transformation sectors convert resources initially into fuels consumed
by other energy transformation sectors, and ultimately into goods and services con-
sumed by end users. Multiple technologies compete for market share; shares are
allocated among competing technologies using a logit choice formulation57. The
cost of a technology in any period depends on two key exogenous input parameters—
the non-energy cost and the efficiency of energy transformation—as well as the prices
of the fuels it consumes. The non-energy cost represents all fixed and variable costs
incurred over the lifetime of the equipment (except for fuel costs), expressed per unit
of output. For example, a gas-fired electricity plant incurs a range of costs associated
with construction (a capital cost) and annual operations and maintenance. The
efficiency of a technology determines the amount of fuel required to produce each
unit of output. The prices of fuels are calculated endogenously in each time period
based on supplies, demands, and resource depletion. The depletion of economically
available energy resources is explicitly tracked throughout the modelling period.

The natural gas resource supply curves for the two scenarios are based on syn-
thesis by the GEA12, as described above. In GCAM, natural gas can be used for direct
combustion in the end-use sectors or converted into other energy forms, such as
electricity hydrogen or refined liquids, before being consumed in the end-use sectors.
Direct combustion and conversion to other forms both result in CO2 emissions. The
physical quantity of carbon is preserved throughout the energy system process. Once
natural gas is extracted, the carbon in the fuel is either emitted or sequestered. Non-CO2

emissions are tracked separately. The next subsection describes the treatment of
non-CO2 emissions in detail.
Modelling greenhouse gas emissions in GCAM. GCAM tracks 16 different green-
house gases, aerosols and short-lived species. Supplementary Table 4 provides the
list of the gases and the data sources for assigning emission coefficients for each
sector in GCAM.

Fossil fuel CO2 emissions are modelled according to the following method: (1)
The total emission in the base year is calibrated to the Carbon Dioxide Information
Analysis Center database58. (2) The fossil fuel consumption in the base year is cali-
brated to the IEA’s Energy Balances Database59,60. (3) The average emission coeffi-
cients are derived from the ratio of the total emission and the total fuel consumption
for each fuel (coal, oil, and gas). (4) These emission coefficients are applied to each
sector in the base year. (5) For future periods, GCAM solves for market shares of
each fuel in each sector, and the emissions are calculated to be the product of emis-
sion coefficients and the fuel consumption in each sector.

Non-CO2 gases in the energy system are calculated according to the following
method: (1) The total emission for each gas in the base year is calibrated to the RCP
data18,61. (2) Emissions by each sector in GCAM are compiled from the databases
listed in Supplementary Table 4. (3) The individual emission coefficients for the
base year are calculated by scaling the individual sector emissions to match their
sum to the total emissions. (4) For future periods, GCAM solves for market shares
of each technology in each sector, and the emissions are calculated by the product
of emission coefficients and the technology usage level in each sector. (5) Future
emission coefficients are assumed to improve over time with economic growth based
on Energy Modelling Forum Study 2148,51.

Extended Data Table 3 shows the calculated emissions coefficients of CO2 and
CH4 emissions for each fossil fuel. Fugitive CH4 emission for natural gas is modi-
fied in the sensitivity analysis to reflect the wide range of estimates in the literature.
Overview of the MESSAGE model. MESSAGE35,62,63 is a linear-programming sys-
tems engineering optimization model used for medium- to long-term energy system
planning and policy analysis. The model minimizes total discounted energy system
costs, and provides information on the utilization of domestic resources, energy
imports and exports and trade-related monetary flows, investment requirements,
the types of production or conversion technologies selected (technology substitu-
tion), pollutant and greenhouse gas emissions, and inter-fuel substitution processes,
as well as temporal trajectories for primary, secondary, final, and useful energy.

MESSAGE stands at the core of the IIASA integrated assessment framework15,
which combines a blend of different models to represent the global economy and
the interactions between energy, agriculture, and forest sectors and their implica-
tions for greenhouse gas emissions and associated climate responses.

MESSAGE is linked to the macro-economic model MACRO for assessing eco-
nomic feedbacks and price-induced changes of energy demand62. In the form used
here, MACRO has its roots in a long series of models by Manne and Richels, the
latest of which is MERGE 5.164. MACRO’s objective function is the total discounted
utility of a single representative producer–consumer (for each of its 11 world regions).
The maximization of this utility function determines a sequence of optimal savings,
investment, and consumption decisions. In turn, savings and investment determine
the capital stock. The capital stock, available labour, and energy inputs determine
the total output of an economy according to a nested CES production function.
Energy demand in six categories (industry electric and thermal, residential electric
and thermal, transport and non- energy use) is determined within the model, con-
sistent with the development of energy prices and the energy intensity of GDP.
When MACRO is linked to MESSAGE, internally consistent projections of GDP
and energy demand are calculated in an iterative fashion that takes price-induced
changes of demand and GDP into account. This is achieved through iterations
between the two models, in which demand, energy system costs and energy prices
are exchanged until the solution of both models converge. For details of the iter-
ative model linkage, see ref. 62.

In addition to the energy sector, MESSAGE represents the greenhouse gas emis-
sions from land-use changes in the agricultural and forest sector. For the calculation
of physical climate responses, MESSAGE is coupled with MAGICC65. MESSAGE is
natively integrated with MAGICC 5.3, but for this study we have used MAGICC 6.0
for the latest scientific knowledge and consistency across models. Supplementary
Table 5 provides an overview of the other key features of MESSAGE.
Modelling energy system and natural gas in MESSAGE. A typical model appli-
cation is constructed by specifying performance characteristics of a set of technol-
ogies and defining a Reference Energy System that includes energy technologies
and flows along the entire energy chain. In the course of a model run MESSAGE
determines how much of the available technologies and resources is actually used
to satisfy a particular end-use demand, subject to various constraints, while mini-
mizing total discounted energy system costs. A simplified illustration of the MESSAGE
Reference Energy System is shown in Supplementary Fig. 3.
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The representation of the energy system includes explicit tracking of the long-
lived energy infrastructure by vintage, which allows for consideration of the timing
of technology diffusion and substitution, the inertia of the system for replacing exist-
ing facilities with new generation systems, clustering effects (technological inter-
dependence) and possible phenomena of increasing returns (that is, the more a
technology is applied the more it improves and widens its market potentials). Com-
bined, these factors can lead to ‘lock-in’ effects66,67 and path dependency (change
occurs in a persistent direction based on an accumulation of past decisions). As a
result, technological change can go in multiple directions, but once change is initiated
in a particular direction, it becomes increasingly difficult to change its course.

Important inputs for MESSAGE are technology costs and technology perfor-
mance parameters. For the scenarios included in this paper, technical, economic and
environmental parameters for over 100 energy technologies are specified explicitly
in the model. Costs of technologies are assumed to decrease over time as experience
(measured as a function of cumulative output) is gained. Assumptions for the main
energy conversion technologies are summarized in ref. 68. The regional energy
costs are based on IEA69. For carbon capture and storage technologies, the power
sector applications are based on ref. 70 and the liquid conversion processes are based
on refs 71–73. Biomass technology costs are based on ref. 71. For the evolution of
technology costs over time we adopt the assumptions of the GEA-Mix scenario of
the Global Energy Assessment74.

Fossil fuel resource estimates and potentials for renewable energy are another
important set of input parameters. For fossil fuel availability the model distinguishes
between conventional and unconventional resources for different categories of oil,
gas, or coal occurrences75. With regard to volumes for coal and oil we mainly follow
the quantitative assumptions adopted by the GEA76. Resource assumptions for
natural gas are different across the scenarios in this paper and were specifically updated
from ref. 12 to represent 14 different occurrences of natural gas for each of the 11
MESSAGE regions. Energy losses (own use) of natural gas extraction are modelled
explicitly and range from close to zero up to 25% of the extracted gas, depending on
the type of natural gas occurrence. Fugitive CH4 emissions from natural gas extrac-
tion are assumed to be between close to zero to 5% of the extracted natural gas and
increase for unconventional gas resources. Assumptions about energy losses and
fugitive emissions are based on ref. 77. For renewable energy resource potentials we
rely on spatially explicit analysis of resource availability and adopt the assumptions
discussed in ref. 68.

Representation of natural gas infrastructure in the MESSAGE model comprises
explicit technologies for extraction, transmission and distribution, trade, conver-
sion and use of natural gas in appliances of various service sectors. Main energy
conversion technologies include various types of power generation technologies,
heat generation (including combined heat and power facilities), hydrogen genera-
tion, and gas-to-liquid supply chains. Intra-regional trade options include piped gas
as well as liquefied petroleum gas. Natural gas consumption of end-use appliances
are modelled at the level of three main energy end-use sectors, including residential
and commercial, industry and the transport sector. CO2 emissions are modelled
along the conversion chain and are either vented to the atmosphere or sequestered
underground in the case of carbon capture and storage.
Modelling greenhouse gas emissions and CH4 in MESSAGE. In addition to CO2

emissions, the MESSAGE model considers the full basket of non-CO2 greenhouse
gases (CH4, N2O, and F-gases) as well as emissions from other radiatively active
substances from the energy, industrial and non-energy sectors of the economy (dis-
aggregated at each of the model’s eleven regions). These include particulate matter
(PM2.5), sulphur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds
(VOC), carbon monoxide (CO), black carbon (BC), organic carbon (OC), and
ammonia (NH3). Representation of non-CO2 gases in MESSAGE is described in
detail in ref. 63. Here, we primarily focus on CH4.

CH4 emissions are calibrated for the base-year to the RCP inventory18. The model
represents CH4 sources by linking appropriate emission coefficients to various activ-
ity variables in the model. These include coal, oil and gas extraction and transporta-
tion; and energy-related fossil fuel and biomass combustion. We assume gradual
technological improvements in regions with high coefficients for these energy-
related sources, such as reduced future pipeline leakage in the gas sector in the form
of decreased emission coefficients. As explained earlier, in the extraction sector emis-
sions coefficients are different across different natural gas occurrences, and emissions
can thus increase when shifting from conventional to unconventional occurrences.

For livestock- and agriculture-related CH4, sector-specific drivers are used to
project emissions into the future, whereas emissions factors decline for these sources
over time, consistent with the projected productivity improvements in livestock man-
agement and agricultural production78.

For CH4 emissions from solid waste, we use IPCC country-specific mass-balance
methodology79 to obtain estimates of current emissions. We then examine long-
term trends in waste generation rates, recycling, and gas recovery to develop long-
term emissions. Based on land availability constraints and current trends in most

developed countries, the rates of recycling and incineration are assumed to increase
around the world, thus leading to a lower share of waste on landfills.

MESSAGE considers also the recovery of CH4 in energy and non-energy sec-
tors. In the energy sector CH4 may be captured from coal mining (through dega-
sification systems) which is fed into the energy system. In the solid waste sector, the
recovered CH4 from landfills can be used as gas by the industrial sector or converted
to electricity for end use. The resulting CH4 emissions factors of different fossil fuels
are shown in Extended Data Table 3.
Overview of the REMIND model. REMIND is a global multi-regional model of
the energy–economy–climate system spanning the period 2005–2100, with 5-year
time steps between 2005 and 2060, and 10-year time steps thereafter. The periods
2005 and 2010 are used for calibration purposes. The scenarios start to differ from
2015 onwards. The world is divided into 11 regions: five individual countries (China,
India, Japan, United States of America, and Russia) and six aggregated regions formed
by the remaining countries (the European Union, Latin America, sub-Saharan Africa
without South Africa, a combined Middle East/North Africa/Central Asia region,
other Asia, and the rest of the world).

The macro-economic core of REMIND is an intertemporal general equilibrium
model of economic growth with perfect foresight that is solved using optimization
methods to compute the market equilibrium with full cooperation between regions.
This approach is similar to RICE80 and MERGE64. The macro-economic production
function takes as input capital, labour and final energy. The resulting economic
output is then available for investments into the macro-economic capital stock as
well as for consumption, trade of goods, and financing the energy system. Macro-
economic consumption, exogenous population and the pure rate of time prefer-
ence of 3% per year determine the welfare in each region.

An overview of the REMIND model is shown in Supplementary Fig. 4. The main
features are summarized in Supplementary Table 7. The model has been published
in the academic literature81–83 and a full model description is available online36.

The REMIND model participated in a number of model comparison studies30,83–85.
The energy sector and its sub-components have been reviewed in a number of model
comparison studies. REMIND performed reasonably compared to the other par-
ticipating models. REMIND showed particular strength in the sensitivity of price-
quantity changes on fossil fuel markets and the international trade of fossil fuels29,86.
Modelling energy systems and natural gas in REMIND. The energy system is hard-
linked to the macro-economic core via final energy demand and costs incurred by
the energy system86. Final energy demand is represented by a production function
constant elasticity of substitution (nested CES production function) and includes
transport energy, electricity, and various non-electric energy types for stationary
end uses. This means that final energy demands are price responsive depending on
the substitution elasticities.

The energy sector supplies final energy. The conversion of primary energy into
secondary energy carriers as well as the distribution of secondary energy carriers to
end-use sectors is represented by capacity stocks of more than 50 technologies in
which costs of investment and operation and maintenance are also accounted for.
System inertias are represented via the vintage capital structure and adjustment
cost for accelerating capacity ramp-up. Therefore, primary energy demands are
price elastic and depend on price-elastic final energy demands, all relative prices
and system flexibilities in the energy sector. The price-responsive primary energy
demands are crucial for the results of this study derived with the REMIND model.
The effect of additional gas supplies acts on highly interdependent energy markets
and price responsive energy demands are the main trigger for second-order effects
due to the gas supply expansion.

The supply side of exhaustible primary energy sources (coal, oil, gas and uranium)
assumes cumulative extraction cost functions in each region. In addition to the
cumulative extraction cost function the fossil fuel extraction sector distinguishes
different grades with an upper limit of supply, specific extraction costs and decline
rates. The intertemporal general equilibrium, therefore, reflects producer rents and
scarcity rents of the fossil fuel extraction sector. Major subsidies for fossil fuels are
also reflected87. Natural gas can supply the power sector and supply gases for sta-
tionary use reflecting the residential, the service and the industry sector. The fossil
fuel sector16 and the nuclear power sector82 are fully documented elsewhere. The
supply of renewable primary energy comprises renewable energy potentials (bio-
mass, hydro power, wind power, solar energy, and geothermal energy). Renewable
energy and storage technologies feature technology learning, reducing investment
costs with increasing installed capacity. Furthermore, the integration of fluctuating
renewables is subject to integration costs that are implying diminishing returns
depending on the market share. Bio-energy supply and land-use emissions are
consistent with the land-use model MAgPIE88.

International trade is explicitly represented assuming a world market for final
goods and primary energy carriers (fossil fuels, uranium and bio-energy). Importers
and exporters of primary energy have to pay trading costs, which induce regional
price differentials. For the case of natural gas trading costs are substantial and also
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energy losses for the transportation are considered. Trading costs are a crucial
factor for the diverse development of regional energy systems. A major shift from
conventional to abundant gas triggers a change of the relative geo-spatial distri-
bution of gas endowments. In the abundant gas case the endowments are not only
larger, but also geographically more evenly distributed, which improves domestic
gas supply in many regions that are considered major importers in the conven-
tional gas case.
Modelling greenhouse gas emissions in REMIND. Finally the model calculates
energy related CO2 and non-CO2 greenhouse gas (for example, CH4 and N2O) as
well as aerosol emissions via time-dependent emission factors (see Supplementary
Table 8). Regarding CH4 emission factors of extraction activities, they are differ-
entiated for fossil fuels and regions but remain constant over time (see Extended
Data Table 3). The marginal abatement cost functions map marginal abatement
costs to relative reduction from the baseline level and are linearly scaled with the
activity-dependent baseline. These time-dependent marginal abatement cost curves
are employed to inform the model about mitigation solutions that prevent CH4

leakages and make this gas available for supply. Hence, as gas prices increase over
time by moving to higher cost deposits, the incentive to invest in mitigation tech-
nologies increases and so CH4 emission factors are effectively reduced. The strength
of the effect depends on the endogenous gas price. The greenhouse gas emissions
representation in the REMIND model has been fully reported in the peer-reviewed
literature89.
Overview of the WITCH model. WITCH17 is a dynamic global model that inte-
grates the most important elements of climate change in a unified framework. The
economy is modelled through an inter-temporal optimal growth model which cap-
tures the long-term economic growth dynamics. A compact representation of the
energy sector is fully integrated (hard linked) with the rest of the economy so that
energy investments and resources are chosen optimally, together with the other
macroeconomic variables. Land-use mitigation options are available through a soft
link with a land-use and forestry model (GLOBIOM)90. Emission scenarios are pro-
cessed through a simple climate model calibrated to MAGICC622 to compute future
climate outcomes. Climate change impacts on the economic output are captured
through a damage function, accounting for implicit adaptation decisions. Explicit
investment in additional adaptation efforts can reduce the damages associated with
temperature change. Feedback loops between economy and climate are thus fully
integrated in WITCH to simulate the intertemporal trade-offs between costs of
climate change mitigation, adaptation, and residual damages.

WITCH represents the world in a number (currently 13) of representative native
regions (or coalitions of regions); as shown in Supplementary Fig. 5, for each it
generates optimal mitigation and adaptation strategies for the long term (2005 to
2100), as a result of a maximization process in which the welfare of each region (or
coalition of regions) is chosen strategically and simultaneously to other regions.
This makes it possible to capture regional free-riding behaviours and strategic inter-
action induced by the presence of global externalities. In this game-theory set-up,
regional strategic actions interrelate through greenhouse gas emissions, dependence
on exhaustible natural resources, trade of oil and carbon permits, and technol-
ogy research and development. The endogenous representation of research-and-
development diffusion and innovation processes constitutes a distinguishing feature
of WITCH. This approach gives the possibility to explore how research-and-
development investments in energy efficiency and carbon-free technologies integrate
the currently available mitigation options. The model features multiple externalities,
both on the climate and the innovation side. The technology externality is mod-
elled via international spillovers of knowledge and experience across countries and
time91,92. This formulation of technical change affects both decarbonization as well
as energy savings. Supplementary Table 9 provides an overview of the other key
features of WITCH.
Modelling energy system and natural gas in WITCH. In WITCH, the energy
sector is fully integrated with the rest of the economy. It is distinguished in an elec-
tric sector, a transportation sector, and an aggregated non-electric (industry and
residential) sectors. The energy sector is described by a production function that
aggregates different factors at various levels and with associated elasticities of sub-
stitution. All the main energy carriers and technologies are included.

Natural gas is used in the industry and residential sector as well as for generating
electricity. Gas power is available with and without carbon capture and storage.
WITCH also tracks CH4 emitted in the non-energy sector. The marginal price of
natural gas, along with the other energy carriers, is determined by cumulative global
extraction and available resources. Natural gas is traded among the 13 regions, which
can buy or sell it from a common pool. Bilateral trade across each region couple is not
accounted for. This requires the modeller to vet the trade pattern results carefully
when modelling regionally heterogeneous effects. However, this poses little prob-
lem in a world of abundant gas availability, where the global gas market is expected
to be more integrated and the role of bilateral contracts to be less pronounced.

Modelling greenhouse gas emissions in WITCH. The model generates the
greenhouse gases reported in Supplementary Table 10, either directly or via exo-
genous assumptions. Mitigation can happen through technology substitution or
storage, direct reduction via marginal abatement cost curves or end of pipe via emis-
sion factors. CO2 emission factors are reported in Extended Data Table 3. Emission
trajectories are processed through the MAGICC6 climate model, which calculates
the climate outcome.
Overview of the MAGICC model. Throughout the analysis we use MAGICC6 for
simulating radiative forcing and temperature change. MAGICC is a simple carbon-
cycle climate model originally developed by Wigley and Raper65,93. The version 6 is
updated to emulate the simulations from large-scale climate models and carbon-
cycle models as represented in the Coupled Model Intercomparison Project 3
(CMIP3)40 and Coupled Climate Carbon Cycle Model Intercomparison Project
(C4MIP)94. See ref. 22 for the documentation of the calibration process.

MAGICC has been traditionally used in the IAMs, and most prominently in the
development of the RCPs95,96. The RCP scenarios in turn were used in large-scale
climate models to simulate the future climate in the IPCC Fifth Assessment Report19.

Although a simple climate model like MAGICC is by no means a sufficient sub-
stitute for the large-scale climate models, its careful calibration to the large-scale
climate models and validation exercises ensure the direction and the magnitude of
impact is consistent with the current scientific understanding of the climate sys-
tem. With its flexible structure and fast runtime, MAGICC can be readily inte-
grated into IAMs. Such a smaller computational burden allows IAMs to simulate
more future scenarios without needing a supercomputer to run large-scale climate
model.

For this study, we have processed all emission trajectories from the IAMs through
MAGICC6 to obtain radiative forcing and temperature change. MAGICC allows
emulation of a number of climate models. This study uses the default setting used
for RCP analysis. The RCP default setting uses median estimates from the climate
model inter-comparison exercises CMIP340 and C4MIP94. For an emulation of
carbon cycle model, the C4MIP Bern-CC model97 was chosen as it represents the
middle of range C4MIP results, and for climate sensitivity 3 uC is used. The full
documentation of the RCP default setting is available in ref. 96.

The coverage of greenhouses gases and other forcing agents differs widely across
five models. The range of forcing agents covered by each model is available in Sup-
plementary Tables 2, 4, 6, 8, and 10. All models endogenously model CO2. All but
WITCH endogenously model CH4 and N2O. GCAM, MESSAGE, and REMIND
endogenously model aerosols and other short-lived species. For the minor forcing
agents that the models do not endogenously simulate, we have used exogenous
emissions trajectories from the RCP8.5 scenario96 because it best approximates our
baseline scenario. Forcing the secondary effect of emissions, such as indirect cloud
formation or atmospheric chemistry feedback from non-methane hydrocarbons
and other reactive gases, is modelled natively in MAGICC98.
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Extended Data Figure 1 | Radiative forcing composition for high fugitive
methane scenarios. a, Year 2010 and year 2050 composition of radiative
forcing for the Conventional Gas scenario with high fugitive methane for five
models. b, Year 2050 relative difference in radiative forcing (the Abundant Gas

scenario minus the Conventional Gas scenario) all with high fugitive methane
assumption for the five models. 1% difference in forcing for model average is
equivalent to 0.044 W m22.
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Extended Data Figure 2 | Global natural gas supply curves. The current natural gas supply curves provided by Global Energy Assessment12. Future cost
reduction assumptions are documented in the Methods.
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Extended Data Figure 3 | Natural gas supply curve sensitivity analysis.
a, Global natural gas consumption. b, CO2 emissions from fossil fuels.
c, Total radiative forcing. d, Global mean surface temperature change (from

pre-industrial average 1750–1849). Conventional Gas and Abundant Gas
denote the quantity of natural gas supply. The decimal numbers denote the
fraction of cost reduction over 2010–2050.
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Extended Data Figure 4 | Uncertainty ranges in principal components of
model projections. a, Global population. b, Global GDP. c, Total primary
energy consumption. d, Fossil fuel and industrial CO2 emissions. Coloured

lines are model reported values from this study. Shaded areas are ranges of
projections found in the literature obtained from the IPCC AR5 database37.
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Extended Data Table 1 | Cost reduction in low-carbon energy technologies over 2010–2050 in the Abundant Gas scenario

PV, photovoltaics.
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Extended Data Table 2 | CO2 emissions in 2050 from fossil fuels and industry with standard energy market assumptions and with the coal-
substitution-only assumption
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Extended Data Table 3 | 2050 emission factors for fossil fuels in each model

CO2 emission factors specify the average carbon content of the fuel. CH4 emission factors specify average fugitive methane emissions associated with production and transportation of each fossil fuel reported for
the Abundant Gas scenario.
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Extended Data Table 4 | 2050 anthropogenic radiative forcing with standard fugitive methane emission assumptions and with high fugitive
methane emission assumptions
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